NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Surveying What Hurricane Katrina Swept out to Sea

This is a post by Nir Barnea of NOAA’s Marine Debris Program.

Sunken boat next to a house in Louisiana.

Hurricane Katrina’s storm surge, over 25 feet high in places, destroyed houses, boats, and infrastructure along the Gulf Coast, and when it receded, it washed out to sea massive amounts of what became marine debris. (U.S. Coast Guard)

Hurricane Katrina was a powerful storm, one which brings a variety of powerful images to people’s minds: The satellite image of the huge storm moving toward the Gulf Coast, the flooded neighborhoods of New Orleans, damaged boats strewn all over like discarded toys.

But for me, the image I remember most vividly is one of stairways leading to homes no longer there. Driving along Mississippi’s Route 90 from Biloxi to Pass Christian on a hot August day in 2006, I saw dozens of them. They were the only remnants left of the beautiful beachfront houses that once lined that road, an area devastated by Hurricane Katrina’s overwhelming storm surge.

Swept Away

The same massive storm surge that demolished these houses was the reason I was in the region a year after Hurricane Katrina struck the Gulf Coast. The storm surge, over 25 feet high in places, destroyed houses and infrastructure, and when it receded, it washed out to sea massive amounts of what became marine debris.

In the wake of Hurricane Katrina and less than a month later, Hurricane Rita, the marine debris in ports and navigation channels was cleared quickly. However, the remaining debris, outside of navigation channels and in fishing and boating areas, posed a safety hazard to people, damaged boats and fishing gear, and hampered recreation and commercial activities.

To help deal with this debris, Congress appropriated funding in 2006 and again in 2007 to NOAA’s Office of Coast Survey and Office of Response and Restoration to survey traditional fishing grounds, map items found, disseminate survey information to assist with removal, and inform the public.

The project took three years. During the first phase, areas off the coast of Alabama, Mississippi, and eastern Louisiana were surveyed with side scan sonar. The survey teams generated maps of suspected underwater debris items (called “targets”) and placed them on the Gulf of Mexico Marine Debris Project website. We also shared with the public the locations of debris items determined to be a danger to navigation.

In the second phase of the project, our survey covered nearshore areas along the central and western Louisiana coastline. In addition to side scan sonar, survey teams used multi-beam survey technology for major targets, which is a powerful tool that provided us with vivid images of the objects detected.

NOAA, Federal Emergency Management Agency (FEMA), U.S. Coast Guard, and the State of Louisiana collaborated closely to determine which targets were the result of Hurricanes Katrina or Rita and therefore eligible for removal. Many of the targets we detected were actually not the result of these two major storms.

Dealing with Disaster Debris

Overturned boat in water awaiting salvage with another boat salvaged in background.

To help deal with the debris not yet cleared after Hurricanes Katrina and Rita, Congress appropriated funding to NOAA to survey traditional fishing grounds, map items found, and share that information to assist with removal and public notification. (NOAA)

On September 2, 2009, the project partners met in Baton Rouge, Louisiana, for a workshop summarizing the project. Participants provided insights and suggestions for improving the process, which were later gathered into the workshop proceedings [PDF]. We learned many lessons from this project, which should be put to good use in the future.

One of the things I liked most about the project was its collaborative nature. Project partners included two NOAA offices and eight contractors, Coast Guard, FEMA, a host of state agencies from the three impacted states, NOAA Sea Grant, and of course, the general public in the Gulf of Mexico. This collaborative effort did not go unnoticed, and the project received the Gulf Guardian Award for Partnership.

Hurricane Katrina was the first severe marine debris event for the young NOAA Marine Debris Program, established in 2005. It was not the last.

Over the last 10 years, our program, along with other parts of NOAA, have dealt with marine debris from Hurricane Sandy, a tsunami in American Samoa, and most recently, the influx of debris from the Japan tsunami of 2011.

Sadly, this trend suggests more such events in the future. NOAA and other agencies have learned a lot over the past 10 years, and we are better prepared for the next disaster which might sweep debris out to sea or bring large amounts of it onto shore (what we call “severe marine debris events”). Learn more at gulfofmexico.marinedebris.noaa.gov and marinedebris.noaa.gov/current-efforts/emergency-response.


Leave a comment

10 Years after Being Hit by Hurricane Katrina, Seeing an Oiled Marsh at the Center of an Experiment in Oil Cleanup

This is a post by Vicki Loe and Amy Merten of NOAA’s Office of Response and Restoration.

Oil tank damaged during Hurricane Katrina.

During Hurricane Katrina in 2005, one of the Chevron oil terminal’s storage tanks was severely damaged on top, possibly after being hit by something extremely large carried by the storm waters. (NOAA)

On August 29, 2005, not far from Chevron Pipe Line Company’s oil terminal in Buras, Louisiana, Hurricane Katrina made landfall. Knowing the storm was approaching, residents left the area, and Chevron shut down the crude oil terminal, evacuating all personnel.

The massive storm’s 144 mile per hour winds, 18 foot storm tide, and waves likely twice the height of the surge put the terminal under water. At some point during the storm, one of the terminal’s storage tanks was severely damaged on top, possibly after being hit by something extremely large carried by the storm waters. The tank released crude oil into an adjacent retention pond designed to catch leaking oil, which it did successfully.

However, just a few short weeks later, Hurricane Rita hit the same part of the Gulf and the same oil terminal. Much of the spilled oil was still being contained on the retention pond’s surface, and this second hurricane washed the oil into a nearby marsh.

A Double Impact

Built in 1963, Chevron’s facility in Buras is one of the largest crude oil distribution centers in the world and is located on a natural levee on the east bank of the Mississippi River. These back-to-back hurricanes destroyed infrastructure at the terminal as well as in the communities surrounding it. Helicopter was the only way to access the area in the weeks that followed.

Chevron wildlife biologist and environmental engineer Jim Myers witnessed the storms’ aftermath at the terminal. He described trees stripped of leaves, and mud and debris strewn everywhere, including power lines. Dead livestock were found lying on the terminal’s dock. And black oil was trapped in the marsh’s thick mesh of sedge and grass. This particular marsh is part of a large and valuable ecosystem where saltwater from the Gulf of Mexico and freshwater from the Mississippi River come together.

Even after using boom and skimmers to remove some oil, an estimated 4,000 gallons of oil remained in the 50 acre marsh on the back side of the terminal. Delicate and unstable, marshes are notoriously difficult places to deal with oil. The chaos of two hurricanes only complicated the situation.

Decision Time

Once the terminal’s substantial cleanup and repair activities began, an environmental team was assembled to consider options for dealing with the oiled marsh. Dr. Amy Merten and others from NOAA’s Office of Response and Restoration, Jim Myers and others from Chevron, and personnel from the U.S. Coast Guard, Louisiana Department of Wildlife and Fisheries, and U.S. Fish and Wildlife Service rounded out this team.

The team considered several options for treating the marsh, but one leapt to the top of the list: burning off the oil, a procedure known as in situ burn. In situ burning was the best option for several reasons: the density and amount of remaining oil, remote location, weather conditions, absence of normal wildlife populations after the storms, and the fact that the marsh was bound on three sides by canals, creating barriers for the fire. Also, for hundreds of years, the area had seen both natural burns (due to lightning strikes) and prescribed burns, with good results.

Yet this recommendation met some initial resistance. In situ burning was a more familiar practice for removing oil from the open ocean than from marshes, though its use in marshes had been well-reviewed in scientific studies. Still, in the midst of a hectic and widespread response following two hurricanes, burning oil out of marshes seemed like a potentially risky move at the time.

Furthermore, some responders working elsewhere followed conventional wisdom that the oil had been exposed to weathering processes for too long to burn successfully. However, the oil was so thick on the water’s surface and so protected from the elements by vegetation that the month-old oil behaved like freshly spilled oil, meaning it still contained enough of the right compounds to burn. The environmental team tested the oil to demonstrate it would burn before bringing the idea to those in charge of the post-hurricane pollution cleanup, the Unified Command.

Burn Notice

Left: Burning marsh. Right: Same view of green marsh 10 years later.

Similar views of the same marsh where the 2005 oil spill and subsequent burn occurred after Hurricanes Katrina and Rita. The view on the right is from August of 2015. (NOAA)

Fortunately, the leader of the Unified Command approved the carefully crafted plan to burn the oiled marsh. The burns took place on October 12 and 13, 2005, a month and a half after the spill. After dividing and cutting the affected marsh into a grid of six plots, responders burned two areas each day, leaving two plots unburned since they were negligibly oiled and did not have the right conditions to burn.

Lit with propane torches, the fire on the first day was dramatic, generating dense black smoke and burning for three hours, the result of burning the part of the marsh closest to the terminal, where the oil was thickest. The second fire generated less smoke but burned longer, for about four and half hours. Afterward, you could see how the burn’s footprint matched where different levels of oil had been.

Observations after the fact assured the environmental team that most (more than 90 percent) of the oil had been burned in the four treated areas. Small pockets of unburned oil were collected with sorbent pads, and any residual oil was left to degrade naturally. Within 24 hours of burning, traces of regrowth were visible in the marsh, and in less than a month, sedge grasses had grown to a height of one to two feet, according to Myers.

A Marsh Reborn

Healthy lush marsh vegetation at water's edge.

The marsh that was oiled after Hurricanes Katrina and Rita in 2005, and subsequently burned to remove the oil. This is how it looked in August of 2015, showing an abundance of diverse vegetation. (NOAA)

Ten years later, in August of 2015, I was curious to see how the marsh had come back. I had seen many photos of during and after the burn, and subsequent reports were that the endeavor had been a great success.

Knowing I would be in the New Orleans area on vacation, I was pleased to learn that Jim Myers would be willing to give me a tour of this marsh. I met him at the ferry dock to cross to the east side of the Mississippi River and the Chevron terminal.

We looked out over the marsh from an elevated platform behind the giant oil storage tanks. All you could see were lush grasses, clumps of low trees, and birds, birds, birds. Their calls were nonstop. We saw cattails uprooted next to flattened paths leading to the water’s edge, evidence of alligators creating trails from the water to areas for basking in the sun and of cows, muskrats, and feral hogs feeding on the cattails’ roots.

The water level was high, so rather than hike through the marsh, we traveled the circumference in a flat-bottomed boat. We saw many species of birds, as well as dragonflies, freely roaming cows, fish, and an alligator.

Today, the marsh is flourishing. I could see no difference between the areas that were oiled and burned 10 years ago and nearby areas that were untouched. In fact, monitoring following the burn [PDF] found that the marsh showed recovery across a number of measures within nine months.

This marsh represents one small part of a system of wetlands that has historically provided a buffer against the high waters of past storms. Since the 1840s, when it was settled, Buras, Louisiana, has survived being hit by at least five major hurricanes. But Hurricane Katrina was different.

Gradually, marshes across the northern Gulf of Mexico have been disappearing, enabling Hurricane Katrina’s floodwaters to overwhelm areas that have weathered previous storms. Ensuring existing marshes remain healthy will be one part of a good defense strategy against the next big hurricane. Given the successful recovery of this marsh after both an oil spill and in situ burn, we know that this technique will help prevent the further degradation of marshes in the Gulf.

See more photos of the damaged tank, the controlled burn to remove the oil, and the recovered marsh 10 years later.

Find more information about the involvement of NOAA’s Office of Response and Restoration after Hurricanes Katrina and Rita.

Amy Merten with kids from Kivalina, Alaska.Amy Merten is the Spatial Data Branch Chief in NOAA’s Office of Response and Restoration. Amy developed the concept for the online mapping tool ERMA (Environmental Response Mapping Application). ERMA was developed in collaboration with the University of New Hampshire. She expanded the ERMA team at NOAA to fill response and natural resource trustee responsibilities during the 2010 Deepwater Horizon oil spill. Amy oversees data management of the resulting oil spill damage assessment. She received her doctorate and master’s degrees from the University of Maryland.


Leave a comment

Thanks, Oil Pollution Act: 25 Years of Enabling Environmental Restoration After Oil Spills

Oil coating rock and sand beach with palm trees.

While it doesn’t eliminate the possibility of oil spills, the Oil Pollution Act of 1990 tells us who is responsible for cleaning up this oiled beach and what they have to do to restore the environment harmed by the spill. (U.S. Coast Guard)

Imagine yourself preparing for your next trip to the beach. The sun is shining and you drive with excitement to your favorite spot on the coast. But when you arrive, instead of being welcomed by clean sand and blue ocean waves, you see a thick black sludge washing over both beach and birds.

What happened? A ship just offshore has spilled oil that has made its way to your favorite beach. The spill is large enough to close the beach, halt fishing, and warrant advisories about eating local fish. Wildlife and their habitats are also fouled with oil.

You might wonder: Who caused this and who is going to clean this up? How badly is this harming the local wildlife and how will the environment be restored? Who is going to pay for it? How long will the beach and fisheries be closed? And how can a disaster like this be prevented?

Before 1990, there was no single law to deal with all these questions. A series of existing federal, state, and local laws contained general provisions about oil spill cleanup, liability, and compensation, but they were largely considered to be inadequate.

A New Decade, A New Law, A New Program

Close up of Athos I oil tanker.

The ship Athos I hit a submerged anchor in the Delaware River in 2004 and spilled more than 263,000 gallons of heavy crude oil. (U.S. Coast Guard)

Fortunately, on August 18, 1990, a little more than a year after the Exxon Valdez disaster, the Oil Pollution Act was passed and signed into law. This historic and timely legislation gave NOAA and other agencies the authority to address impacts to natural resources caused by oil spills in navigable U.S. waters and shorelines.

The law is designed to prevent oil spills, ensure cleanup if they occur, and restore the natural resources impacted as a result of spills. Those responsible for the spill must restore the environment and compensate the public for its lost uses (like beach and recreational fishery closures), from the time of the incident until those natural resources fully recover.

NOAA has been working to protect and restore impacted natural resources at hazardous waste sites and oil spills since the early 1980s. In 1992, shortly after the Oil Pollution Act came into effect, NOAA created the Damage Assessment, Remediation, and Restoration Program (DARRP). The program was established as the central location for expertise in NOAA to assess, restore, and protect coastal environments damaged by oil spills, hazardous waste releases, and ship groundings. DARRP brings together scientific and legal experts from three parts of NOAA: the Office of Response and Restoration, Office of Habitat Conservation, and General Counsel for Natural Resources.

In DARRP’s 23 year history, our experts have assessed the environmental impacts of dozens of oil spills and recovered nearly $2 billion from those responsible for oil spills. These funds are being used to restore a variety of habitats—from tidal wetlands and coral reefs to sandy beaches and rocky coastlines—as well as the sea turtles, fish, birds, and other wildlife harmed by spills. This even extends to funding recreational improvement projects, such as boat launches and fishing piers, to make up for oil spills’ impacts on outdoor recreation.

Since then, DARRP staff have worked cooperatively with other agencies to assess and restore impacted natural resources resulting from oil spills on the coasts and Great Lakes. As we celebrate the 25th anniversary of the Oil Pollution Act, we’re looking back on a few oil spills around the country and DARRP’s work to assess and restore the natural resources harmed by those spills.

A Pipeline Rupture in Washington State

On June 10, 1999, a rupture in a pipeline running through Bellingham, Washington, discharged approximately 236,000 gallons of gasoline into a tributary of Whatcom Creek. Fumes from the gasoline ignited a fire, which moved down Whatcom Creek and through a city park and residential neighborhoods, tragically taking the lives of three children.

DARRP worked with partner agencies to assess the impacted natural resources. The incident destroyed critical habitat for salmon, killed hundreds of thousands of fish and aquatic wildlife including crayfish and amphibians, and burned 42 acres of habitat and parkland. Fisheries were closed in Whatcom Creek and its tributaries for three months.

Thanks to the Oil Pollution Act, a settlement with the Olympic Pipeline Company in 2004 provided more than $3.5 million for restoration. The funds were used to restore freshwater marsh and vegetation, creek channels and pools, and salmon habitat. In addition, the city park was expanded by 13.4 acres, and recreational enhancements, like trailheads and bathroom facilities, are expected to be completed this year.

A Thanksgiving Disaster on the Delaware River

On November 26, 2004, the M/T Athos I hit several submerged objects in the Delaware River while preparing to dock at a refinery in Paulsboro, New Jersey, releasing nearly 265,000 gallons of crude oil.

Oil from the tanker spread 115 miles downriver, impacting 280 miles of shoreline in Pennsylvania, New Jersey, and Delaware. DARRP worked with partner agencies to identify impacts to shoreline and river-bottom habitats, birds, and recreational activities like fishing, boating, and hunting.

A settlement in 2010 provided $27.5 million for 10 restoration projects for the coastal environment and community. Projects include the restoration of shorelines, streams, marsh, meadows, and grasslands; recreational trail improvements; dam removals; boat ramp restoration; and oyster reef creation.

A Pipeline Failure on the Kalamazoo River

On July 25, 2010, a failure in an Enbridge pipeline released approximately 843,000 gallons of diluted bitumen, a diluted form of oil from oil sands (tar sands), into Michigan’s Talmadge Creek, spreading nearly 38 miles down the Kalamazoo River. This release of oil was one of the largest inland oil spills in U.S. history.

The oil impacted more than 1,560 acres of stream and river habitat, as well as floodplain and upland areas. The release impacted birds, mammals, reptiles, and other wildlife, and the river was immediately closed to the public, impacting recreational and other uses of the river.

On June 8, 2015, a settlement was reached with Enbridge, the responsible party, for nearly $4 million. The settlement will fund multiple restoration projects along the Kalamazoo River. NOAA and partner agencies released a Draft Damage Assessment and Restoration Plan/Environmental Assessment [PDF] for public comment in May 2015.

These cases represent just a small sample of the coastal environments and species impacted by oil spills that DARRP works to assess, restore, and protect. We’re thankful for the Oil Pollution Act and the ability to look back on the last 23 years of successful environmental restoration in its wake.

For a closer look at the other oil spills, hazardous waste sites, and ship grounding sites that DARRP has worked to restore, check out https://darrp.noaa.gov.


Leave a comment

It Took More Than the Exxon Valdez Oil Spill to Pass the Historic Oil Pollution Act of 1990

Aerial view of Exxon Valdez tanker with boom and oil on water.

While the tanker Exxon Valdez spilled nearly 11 million gallons of oil into Alaskan waters, a trifecta of other sizable oil spills followed on its heels. These spills helped pave the way for passage of the Oil Pollution Act of 1990, which would vastly improve oil spill prevention, response, and restoration. (NOAA)

If you, like many, believe oil shouldn’t just be spilled without consequence into the ocean, then you, like us, should be grateful for a very important U.S. law known as the Oil Pollution Act of 1990.

Congress passed this legislation and President George H.W. Bush signed it into law 25 years ago on August 18, 1990, which was the summer after the tanker Exxon Valdez hit ground in Prince William Sound, Alaska. On March 24, 1989, this tanker unleashed almost 11 million gallons of oil into relatively pristine Alaskan waters.

The powerful images from this huge oil spill—streams of dark oil spreading over the water, birds and sea otters coated in oil, workers in shiny plastic suits trying to clean the rocky coastline—both shocked and galvanized the nation. They ultimately motivated the 101st Congress to investigate the causes of recent oil spills, develop guidelines to prevent and clean up pollution, and pass this valuable legislation.

Yet that monumental spill didn’t fully drive home just how inadequate the patchwork of existing federal, state, and local laws were at addressing oil spill prevention, cleanup, liability, and restoration. Nearly a year and a half passed between the Exxon Valdez oil spill and the enactment of the Oil Pollution Act. What happened in the mean time?

The summer of 1989 experienced a trifecta of oil spills that drained any resources left from the ongoing spill response in Alaska. In rapid succession and over the course of less than 24 hours, three other oil tankers poured their cargo into U.S. coastal waters. Between June 23 and 24, the T/V World Prodigy spilled 290,000 gallons of oil in Newport, Rhode Island; the T/V Presidente Rivera emptied 307,000 gallons of oil into the Delaware River; and the T/V Rachel B hit Tank Barge 2514, releasing 239,000 gallons of oil into Texas’s Houston Ship Channel.

But these were far from the only oil spills plaguing U.S. waters during that time. Between the summers of 1989 and 1990, a series of ship collisions, groundings, and pipeline leaks spilled an additional 8 million gallons along the United States coastline. And that doesn’t even include another million gallons of thick fuel oil released from a shore-side facility in the U.S. Virgin Islands after it was damaged by Hurricane Hugo.

Birds killed as a result of oil from the Exxon Valdez spill.

Thanks to the Oil Pollution Act, federal and state agencies can more easily evaluate the full environmental impacts of oil spills — and then enact restoration to make up for that harm. (Exxon Valdez Oil Spill Trustee Council)

Can you imagine—or perhaps remember—sitting at home watching the news and hearing again and again about yet another oil spill? And wondering what the government was going to do about it? Fortunately, in August of 1990, Congress voted unanimously to pass the Oil Pollution Act, which promised—and has largely delivered—significantly improved measures to prevent, prepare for, and respond to oil spills in U.S. waters.

Now, 25 years later, the shipping industry has undergone a makeover in oil spill prevention, preparedness, and response. A couple examples include the phasing out of tankers with easily punctured single hulls and new regulations for driving tankers that require the use of knowledgeable pilots, maneuverable tug escorts, and an appropriate number of people on the ship’s bridge during transit.

Oil spill response research also received a boost thanks to the Oil Pollution Act, which reopened a national research facility dedicated to this topic and shuttered just before the Exxon Valdez spill.

But perhaps one of the most important elements of this law required those responsible for oil spills to foot the bill for both cleaning up the oil and for economic and natural resource damages resulting from it.

This provision also requires oil companies to pay into the Oil Spill Liability Trust Fund, a fund theoretically created by Congress in 1986 but not given the necessary authorization until the Oil Pollution Act of 1990. This fund helps the U.S. Coast Guard—and indirectly, NOAA’s Office of Response and Restoration—pay for the upfront costs of responding to marine and coastal accidents that threaten to release hazardous materials such as oil and also of assessing the potential environmental and cultural impacts (and implementing restoration to make up for them).

This week we’re saying thank you to the Oil Pollution Act by highlighting some of its successes in restoring the environment after oil spills. You can join us on social media using the hashtag #Thanks2OilPollutionAct.


Leave a comment

Expanding a Washington River’s Floodplain to Protect Northwest Salmon and Communities

Bridge over industrial waterway in Tacoma and view of Mt. Rainier.

Mt. Rainier looms over the Thea Foss Waterway as it leads out to Commencement Bay, the industrial heart of Tacoma, Washington. Two new restoration projects will make up for the natural resource damages caused by organizations releasing hazardous substances into this and a neighboring waterway. (Photo: Kendrick Hang, Attribution 2.0 Generic License)

From the edge of the Emmons Glacier on Washington’s tallest peak, the scenic White River winds down the mountain, through forest, and joins the Puyallup River before finally reaching the sea at an industrial port in the city of Tacoma.

Here, in the salty waters of Puget Sound’s Commencement Bay, iconic Northwest salmon start their own journey in reverse. These fish head up waterways toward Mt. Rainier, where they were born, where they will spawn, and where they will die.

Recently NOAA and our partners announced a restoration project that will improve the floodplain of the White River for migrating fish. One of Mt. Rainier’s largest rivers and one of Puget Sound’s most important areas for imperiled salmon and steelhead, the White River has been re-routed and re-engineered for longer than a century.

This restoration was made possible by the U.S. Department of Justice’s August 6, 2015 announcement that more than 56 parties have agreed to restore key salmon habitat on the White River. The settlement will also permanently preserve intertidal habitat in Wheeler Osgood Waterway in Tacoma’s Commencement Bay. Fulfilling these restoration projects will resolve their liability for natural resource damages caused by releasing hazardous substances into the bay’s Thea Foss and Wheeler-Osgood Waterways.

Person along the wooded edge of a river in Washington.

One restoration project will set back levees on the White River and widen its previously re-engineered floodplain. This will create better habitat for migrating fish to feed, rest, and spawn, as well as offer improved flood protection for nearby homes and businesses. (NOAA)

The White River project will not only help protect the region’s salmon but also its communities as it sets back levees and widens the floodplain. By restoring fish habitat and providing slower-moving side channels on the river, the proposed project will reopen 121 acres of historic floodplain around the river. Allowing floodwaters more room to flow, this project will also help reduce the risk of flood damage for more than 200 nearby homes and businesses.

The latest project will continue a long legacy of ensuring those responsible for releasing hazardous materials—from industrial chemicals such as PCBs to heavy metals including lead and zinc—into Commencement Bay are held accountable for restoring public natural resources. This is the 20th natural resources settlement related to pollution in Commencement Bay, which is the industrial heart of Tacoma. Through these settlements, more than 350 acres of Puget Sound habitat will have been restored, offsetting impacts to salmon, other fish, and wildlife harmed by pollution in the bay.

Those responsible for the pollution will monitor and adaptively manage the project under a 10-year plan that ensures at least 32.5 acres of the restoration site are inundated by the river and thus accessible to fish. They also will pay more than $1 million toward the natural resource trustees’—including NOAA’s—assessment, oversight and the long-term stewardship costs of maintaining the project over the next 100 years and beyond.


3 Comments

Opening up the Hudson River for Migrating Fish, One Dam at a Time

This is a post by Carl Alderson of NOAA’s Restoration Center and Lisa Rosman of NOAA’s Office of Response and Restoration.

Creek passing over a dam in winter.

Water, both frozen and liquid, tumbles over the Orrs Mill Dam on Moodna Creek, a tributary of the Hudson River, in Cornwall, New York. NOAA scientists Lisa Rosman and Carl Alderson are investigating dams and other structures that are potentially preventing fish from migrating up these waterways. (NOAA)

One wintry day near the pre-Civil War–era town of Stockport, New York, NOAA scientists Lisa Rosman and Carl Alderson carefully edged their way down the snowy banks of Claverack Creek.

They pushed past the debris of a nearby maintenance yard, filled with old buses and cars and surrounded by junk covered in snow and ice. A roar of water could be heard just beyond this scene, tumbling out from the remains of a dam. The dam was framed by an assortment of large natural boulders and scattered concrete masses, everything partially blanketed in a snowy white ruin.

As the team surveyed this landscape, a seamless portrait of the Hudson River Valley emerged, making it easy to see how everything was connected. Cameras and video recorders, GPS units and notebooks came flying quickly in and out of warm pockets, with hands glad to be thrust back in after the duo collected the information they sought.

The scientists were scouting this particular creek for features they had spotted in satellite imagery. The purpose? To locate, verify, and catalog blockages to fish movement and migration.

­­They could see that this crumbling structure had been much higher at one time. Something, likely a storm, had sheared off the top portion of the dam. Even with the breach, the damage did not allow the river to flow freely past the dam’s base. So, the question for the team remained: Could migrating fish navigate past what was left of this dam?

Additional research revealed more about this remnant from another time. The Van De Carr Dam once powered a 19th century paper mill and a mattress factory, part of the national transition to water power and the start of the industrial age.

Today, however, NOAA has classified this dam as a barrier for fish trying to follow their instincts and migrate up this tributary of the Hudson River, as their parents and ancestors did before them.

Identifying Barriers

Rosman and Alderson are investigating potential habitat restoration opportunities along 69 tributaries to the Hudson River estuary. The Hudson River is a federal Superfund site spanning almost 200 miles from Hudson Falls in the north to the Battery in New York City.

Beginning in the late 1940s, two General Electric (GE) capacitor manufacturing plants in Hudson Falls and Fort Edward, New York, released industrial chemicals known as PCBs (polychlorinated biphenyls) into the Hudson River environment over several decades. The PCB pollution has contaminated Hudson River fish and wildlife, their prey, and their habitats.

The investigation assesses the potential for removing dams and culverts that are preventing fish from migrating up and downstream within the Hudson River Valley. Removing abandoned dams and upgrading culverts will provide fish with access to habitat in tributaries of the Lower Hudson River, upstream of the river’s tidal influence.

Barrier after barrier, this scientific duo determines which dams on Hudson River tributaries still provide services, such as water supply, recreation, or hydroelectric power, and those which no longer serve any meaningful function. Back in the office, they enter the information collected in the field into a database that now includes more than 400 potential barriers to fish, both man-made and natural.

Dams and improperly sized or installed culverts have prevented important migratory fish, such as American shad and river herring, from swimming further upstream to spawn, as well as reducing the passage of the historically far-reaching American eel. In addition, NOAA catalogs the rivers’ natural barriers—steep gradients, rock ledges, waterfalls—to estimate the extent that most fish previously could travel upstream before the presence of dams.

Through a combination of advanced digital mapping software and scouting trips such as the one to Claverack Creek, Alderson and Rosman are identifying potential fish restoration projects. These projects will help make up for the decades when people were either not allowed to fish or retain catches along portions of the Hudson River and were advised against eating its highly polluted fish.

Opening up Rivers and New Opportunities for Collaboration

The data Rosman and Alderson are collecting help support other programs as well. NOAA and other government agencies prioritize removing or updating the barriers that provide the best opportunities for habitat improvement and fish passage. Dams that are not candidates for removal may still benefit from structures such as fish ladders, rock ramps, or bypass channels designed to enhance fish passage over or around the dam.

Already, their efforts have helped communicate the potential for habitat restoration in the region. In October 2014, they shared information about their database of fish barriers at a workshop co-hosted by New York State Department of Environmental Conservation’s (NYSDEC) water, dam safety, and estuary programs.

Later, at an April 2015 summit in Poughkeepsie, New York, the Hudson River Estuary Program announced the official kick-off of a new grant program that will benefit the river and its migrating fish. The program will award $750,000 to restore tributaries of the Hudson River and improve their resilience (e.g., dam removal and culvert and bridge upgrades) and $800,000 for local stewardship planning.

The grant announcement and collaboration among NOAA, NYSDEC, and several key stakeholders, including the Hudson River Estuary Program, The Nature Conservancy, and Scenic Hudson, signals an era of growing cooperation and interest in bringing back migrating fish to their historic habitats and improving the vitality of the Hudson River and its tributaries.


1 Comment

Melting Permafrost and Camping with Muskoxen: Planning for Oil Spills on Arctic Coasts

 Muskoxen near the scientists' field camp on Alaska's Espenberg River.

Muskoxen near the scientists’ field camp on Alaska’s Espenberg River. (NOAA)

This is a post by Dr. Sarah Allan, Alaska Regional Coordinator for NOAA’s Office of Response and Restoration, Assessment and Restoration Division.

Alaska’s high Arctic coastline is anything but a monotonous stretch of beach. Over the course of more than 6,500 miles, this shoreline at the top of the world shows dramatic transformations, featuring everything from peat and permafrost to rocky shores, sandy beaches, and wetlands. It starts at the Canadian border in the east, wraps around the northernmost point in the United States, and follows the numerous inlets, bays, and peninsulas of northwest Alaska before coming to the Bering Strait.

Planning for potential oil spills along such a lengthy and varied coastline leaves a lot for NOAA’s Office of Response and Restoration to consider. We have to take into account a wide variety of shorelines, habitats, and other dynamics specific to the Arctic region.

This is why fellow NOAA Office of Response and Restoration scientist Catherine Berg and I, normally based in Anchorage, jumped at the opportunity to join a National Park Service–led effort supporting oil spill response planning in the state’s Northwest Arctic region.

Our goal was to gain on-the-ground familiarity with its diverse shorelines, nearshore habitats, and the basics of working out there. That way, we would be better prepared to support an emergency pollution response and carry out the ensuing environmental impact assessments.

Arctic Endeavors

Man inflating boat next to ATV and woman kneeling on beach.

At right, NOAA Regional Resource Coordinator Dr. Sarah Allan collects sediment samples while National Park Service scientist Paul Burger inflates the boat near the mouth of the Kitluk River in northwest Alaska. (National Park Service)

Many oil spill planning efforts have focused on oil drilling sites on Alaska’s North Slope, especially in Prudhoe Bay and the offshore drilling areas in the Chukchi Sea. However, with increased oil exploration and a longer ice-free season in the Arctic, more ship traffic—and a heightened risk of oil spills—extends to the transit routes throughout Arctic waters.

This risk is especially apparent in the Northwest Arctic around the Bering Strait, where vessel traffic is squeezed between Alaska’s mainland and two small islands. On top of the growing risk, the Northwest Arctic coast, like much of Alaska, presents daunting logistical challenges for spill response due to its remoteness and limited infrastructure and support services.

To help get a handle on the challenges along this region’s coast, Catherine Berg and I traveled to northwest Alaska in July 2015 and, in tag-team fashion, visited the shorelines of the Chukchi Sea in coordination with the National Park Service. Berg is the NOAA Scientific Support Coordinator for emergency response and I’m the Regional Resource Coordinator for environmental assessment and restoration.

The National Park Service is collecting data to improve Geographic Response Strategies in the Bering Land Bridge National Preserve and the Cape Krusenstern National Monument, both flanking Kotzebue Sound in northwest Alaska. These strategies, a series of which have been developed for the Northwest Arctic, are plans meant to protect specific sensitive coastal environments from an oil spill, outlining recommendations for containment boom and other response tools.

Because our office is interested in understanding the potential effects of oil on Arctic shorelines, we worked with the Park Service on this trip to collect information related to oil spill response and environmental assessment planning in northwest Alaska’s Bering Land Bridge National Preserve.

The Wild Life

From the village of Kotzebue, two National Park Service scientists and I—along with our all-terrain vehicle (ATV), trailer, and all of our personal, camping, and scientific gear—were taken by boat to a field camp on the Espenberg River. After arriving, we could see signs of bear, wolf, and wolverine activity near where this meandering river empties into the Bering Sea. Herds of muskoxen passed near camp.

Considering most of the Northwest Arctic’s shorelines are just as wild and hard-to-reach, we should expect to be set up in a similar field camp, with similarly complex planning and logistics, in order to collect environmental impact data after an oil spill. As I saw firsthand, things only got more complicated as weather, mechanics, shallow water, and low visibility forced us to constantly adapt our plans.

Heading west, we used ATVs to get to the mouth of the Kitluk River, where the Park Service collected data for the Geographic Response Strategies, while I collected sediment samples from the intertidal area for chemical analysis. These samples would serve as set of baseline comparisons should there be an oil spill in a similar area.

Traveling there, we saw dramatic signs of coastal erosion, a reminder of the many changes the Arctic is experiencing.

The next day, the boat took us around Espendberg Point into Kotzebue Sound to the Goodhope River estuary. There, we used a small inflatable boat with a motor to check out the different sites identified for special protection in the Geographic Response Strategy. I also took the opportunity to field test the “Vegetated Habitats” sampling guideline I helped develop for collecting time-sensitive data in the Arctic. Unfortunately, the very shallow coastal water presented a challenge for both our vessels; the water was only a few feet deep even three miles offshore.

After an unplanned overnight in Kotzebue (more improvising!), I returned to the field camp via float plane and got an amazing aerial view of the coastline. The Arctic’s permafrost and tundra shorelines are unique among U.S. coastlines and will require special oil spill response, cleanup, and impact assessment considerations.

Sound Lessons

After I returned to the metropolitan comforts of Anchorage, my colleague Catherine Berg swapped places, joining the Northwest Arctic field team.

As the lead NOAA scientific adviser to the U.S. Coast Guard during oil spill response in Alaska, her objective was to evaluate Arctic shoreline types not previously encountered during oil spills. Using our Shoreline Cleanup and Assessment Technique method, she targeted shorelines within Kupik Lagoon on the Chukchi Sea coast and in the Nugnugaluktuk River in Kotzebue Sound. She surveyed the profile of these shorelines and recorded other information that will inform and improve Arctic-specific protocols and considerations for surveying oiled shorelines.

Though we only saw a small part of the Northwest Arctic coastline, it was an excellent opportunity to gauge how its coastal characteristics would influence the transport and fate of spilled oil, to improve how we would survey oiled Arctic shorelines, to gather critical baseline data for this environment, and to field test our guidelines for collecting time-sensitive data after an oil spill.

One of the greatest challenges for responding to and evaluating the impacts of an Arctic oil spill is dealing with the logistics of safety, access, transportation, and personnel support. Collaborating with the Park Service and local community in Kotzebue and gaining experience in the field camp gave us invaluable insight into what we would need to do to work effectively in the event of a spill in this remote area.

First, be prepared. Then, be flexible.

Thank you to the National Park Service, especially Tahzay Jones and Paul Burger, for the opportunity to join their field team in the Bering Land Bridge National Preserve.

Dr. Sarah Allan.

Dr. Sarah Allan has been working with NOAA’s Office of Response and Restoration Emergency Response Division and as the Alaska Regional Coordinator for the Assessment and Restoration Division, based in Anchorage, Alaska, since February of 2012. Her work focuses on planning for natural resource damage assessment and restoration in the event of an oil spill in the Arctic.