NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Mapping the Problem After Owners Abandon Ship

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division.

One of the largest vessel removal efforts in Washington history was a former Navy Liberty Ship, the Davy Crockett. In 2011 the Davy Crockett, previously abandoned by its owner on the Washington shore of the Columbia River, began leaking oil and sinking due to improper and unpermitted salvage operations. Its cleanup and removal cost $22 million dollars, and the owner was fined $405,000 by the Washington Department of Ecology and sentenced to four months in jail by the U.S. Attorney, Western District of Washington.

As I’ve mentioned before, derelict and abandoned vessels like the Davy Crockett are a nationwide problem that is expensive to deal with properly and, if the vessels are left to deteriorate, can cause significant environmental impacts. Unfortunately Washington’s Puget Sound is no exception to this issue.

Agency Collaboration

I’m part of the Derelict Vessel Task Force led by U.S. Coast Guard Sector Puget Sound. Made up of federal, state, and local agencies, this task force aims to identify and remove imminent pollution and hazard-to-navigation threats from derelict vessels and barges within Puget Sound. Among these agencies there are different jurisdictions and enforcement mechanisms related to derelict vessels.

A key player is Washington’s Department of Natural Resources (WA DNR), which manages the state Derelict Vessel Removal Program (DVRP). The DVRP has limited funding for removal of priority vessels. Unfortunately, according to WA DNR [PDF], with the growing number and size of problem vessels, program funding can’t keep up with the rising removal and disposal costs. The backlog of vessels in need of removal continues to grow.

Keeping Track

I’m working with the NOAA Office of Response and Restoration’s Spatial Data Branch to enter this list of derelict vessels into ERMA®. ERMA is a NOAA online mapping tool that integrates both static and real-time data to support environmental planning and response operations. Right now the vessels are primarily tracked in the WA DNR DVRP database. By pulling this data into ERMA, the task force will not only be able to see the vessels displayed on a map but also make use of the various layers of environmental sensitivity data already within ERMA. The hope is that this can help with the prioritizing process and possibly eventually be used as a tool to raise awareness.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington's Puget Sound as well as the colors indicating the shoreline's characteristics and vulnerability to oil.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington’s Puget Sound as well as the colors indicating the shoreline’s characteristics and vulnerability to oil. (NOAA)

However, there aren’t enough resources within the Derelict Vessel Task Force to gather and continue to track (as the vessels can move) all the data needed in order to map the vessels accurately in ERMA. As a result, the task force is turning to local partners in order to help capture data.

Reaching Out

One such partner is the local Coast Guard Auxiliary Flotillas, a group of dedicated civilians helping the Coast Guard promote safety and security for citizens, ports, and waterways. In order to garner support for data-gathering, I recently attended the USCG Auxiliary Flotilla Seattle-Elliott Bay meeting, along with members of the local Coast Guard Incident Management Division who head the Puget Sound Derelict Vessel Task Force.

I spoke about a few local derelict vessel incidents and their impacts to the environment. I also showed how ERMA can be a powerful tool for displaying and prioritizing this information—if we can get the basic data that’s missing. As a result, this Flotilla will follow up with my Coast Guard colleagues and start collecting missing information on derelict and abandoned vessels on behalf of the Coast Guard and WA DNR.

Gathering data and displaying derelict vessels graphically is a small, but important, step on the way to solving the massive problem of derelict vessels. Once complete I hope that ERMA will be a powerful aid in displaying the issue and helping make decisions regarding derelict vessels in the Puget Sound. Stay tuned.

[Editor’s Note: You can see a U.S. Coast Guard video of the start-to-finish process of removing the Davy Crockett from the Columbia River along with the Washington Department of Ecology’s photos documenting the response.]

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


Leave a comment

“Gyre: The Plastic Ocean” Exhibit Puts Ocean Trash on Display in Alaska

Last summer, we heard from the NOAA Marine Debris Program’s Peter Murphy as he accompanied other scientists, artists, and educators on the Gyre Expedition, a 500-mile-long collaborative research cruise around the Gulf of Alaska. Along the way, Murphy and the scientists would stop periodically to survey and collect marine debris that had washed on shore.

Meanwhile, the artists with them were observing the same trash through a creative lens. They were taking photos and collecting bits of it to incorporate into the pieces now on exhibit in Gyre: The Plastic Ocean at the Anchorage Museum. This hands-on exhibit opened February 7 and will be available at the Anchorage Museum through September 6, 2014. The Gyre project aims to bring perspective to the global marine debris problem through art and science.

NOAA Marine Debris Program Director Nancy Wallace kicked-off the exhibit’s opening weekend symposium by introducing the topic of marine debris—its origins, composition, and impacts. The symposium, coordinated by Murphy, provided a chance for attendees to participate with scientists, removal experts, and artists in an interactive session exploring the issue of marine debris. They were able to discuss marine debris’ origin and impacts, as well as the cleanup and communication efforts, and how science and art can help us in understanding, capturing, and communicating the issue.

Learn more about our involvement with the Gyre project and if you can’t make it to Anchorage, take a look at some of the incredible art installations created from marine debris now on exhibit.

A quote by Marine Debris Program Director Nancy Wallace displayed in the Anchorage Museum's "Gyre: The Plastic Ocean" exhibit explains how debris impacts large marine animals such as gray whales.

A quote by Marine Debris Program Director Nancy Wallace displayed in the Anchorage Museum’s “Gyre: The Plastic Ocean” exhibit explains how debris impacts large marine animals such as gray whales. (NOAA)


1 Comment

Changing Technology Changing Science Changing Us

Ice on a river with a bridge crossing it in a city.

The frozen Chicago River outside of the AAAS Annual Meeting. (NOAA)

Freezing temperatures and blackened piles of snow along the Chicago streets were the backdrop to the American Association for the Advancement of Science (AAAS) Annual Meeting on February 13–17.

Alongside the thousands of scientists, journalists, and other professionals, I was there mostly to learn about the latest technology and trends in science communications, but was pleased to discover that the need for better communication was a theme throughout this science conference, even in sessions that had little to do with communications per se.

Evolving Access to Science and its News

Highlighted in the science communication seminars were differences in how today’s audiences receive information and how changing technology plays into that. In the symposium, “Communicating Science: Engaging with Journalists,” Carl Zimmer, science writer at the New York Times, talked about how scientists are now able to post their papers directly to field-specific archive sites, which, rather than being restricted to small and specific audiences, are available for anyone to see not only the paper but the subsequent comments and discussion. This represents a huge change from the older model for scientific journal articles, which are critiqued by other scientists in that discipline (“peer reviewed”) before being published, instead of after.

Sign from the AAAS Meeting.The upside of this, according to Zimmer, is that it is easier for journalists to find information on new developments from papers on these “pre-print servers.” The downside is the possibility that the information is not yet valid to report. David Baron, another panelist and science editor for PRI’s “The World” radio podcast, sees a bigger role for science foundations as alternative sources for finding objective information.

Robert Lee Hotz, science writer at the Wall Street Journal, talked about the span of what he calls the “digital age,” starting with Steve Jobs and Steve Wozniak introducing the Apple II computer in 1977, to the advent of 24/7 news in 1987, to the mass availability of free news via the Internet at present. He pointed out however, that there are roughly the same amount of professional science journalists in this country now as then—40,000, a fact which indicates to him that despite increased availability of news sources, “more and more people are getting less.” At the same time as these changes in coverage are happening at traditional media, many people have stopped going to traditional media for news. This trend has created opportunities for alternative science news models, demonstrated by the creation of 172 non-profit online news sites since 1980, including ProPublica, the Yale Center for Environmental Law and Policy newsletter, and InsideClimateNews.

David Baron advocates a storytelling approach to communicating about science issues, as audiences are more likely to be engaged longer by a narrative style. He cited a recent episode about climate change on the radio program This American Life. Instead of just presenting facts and figures, the narrative follows Nolan Duskin, state climatologist of Colorado, as he talks with ranchers at a farm conference to illustrate the challenges of climate change in the context of everyday life.

Paula Apsell, Senior Executive Producer of NOVA at WGBH Boston, sees more choices on TV but less science now than in the past, and describes the NOVA of today as not just a popular science TV series but a broader media brand extending online. The majority of NOVA consumers are going to the online archives from search. This is consistent with the current expectation for media to be on more platforms all the time. The challenge, according to Apsell, is to alter the style to these other platforms without “dumbing down” the substance. With so much information now available on the Web, there are also increased opportunities for error. As a result, Apsell emphasized the need for skepticism when researching science stories and rigorous cross-checking.

MASHing Science with Dating

A man gesturing on a stage.

Plenary speaker (and M*A*S*H star) Alan Alda discussed science communication, which he teaches at Stony Brook University, to an audience of about 1500 at the AAAS Annual Meeting in Chicago on February 15, 2014. (Alan Kotok/Creative Commons Attribution 2.0 Generic License)

From my perspective as a science communicator, the highlight of the conference was “Getting Beyond a Blind Date with Science,” a plenary session presented by Alan Alda, actor and the director of the Alan Alda Center for Communicating Science at Stony Brook University in New York. The Center grew out of Alda’s interest in science and 12 years of experience hosting the show Scientific American Frontiers on PBS, which he calls “the best thing I ever did in front of a camera.” Alda is also well known for his role as Captain Pierce in the 1970s TV series M*A*S*H (1972-1983). However, his work on Scientific American Frontiers convinced him that while many researchers have fascinating stories to tell, they are deeply involved in the complexities of their work, which can inhibit their ability to effectively communicate to non-scientists.

He uses the phrase “curse of knowledge” to describe “when you know something so well that you forget what it is like to not know it.” Alda compares the stages of a blind date to the steps in building a relationship with the audience in order to communicate science effectively. When a couple first meets, there is a deficit of trust before they begin to know one another. In the attraction stage, body language and tone are more important than language. The next stage, infatuation, incorporates emotion and memory. Finally, commitment is the stage where both parties are listening to and understanding each other.

He asks his scientist students to keep focusing on what it is about their work that they wish people could understand clearly. They do improvisation to learn to tell their stories in a more personal and engaging way, using emotion to create a memory.

Science Needs to Get Social

On my last day at the conference I attended a multidisciplinary presentation about satisfying food demands for the over 9 billion people expected to inhabit the Earth by 2050—and how we will accomplish this despite climate change, land degradation, and loss of environmental resources. The panel discussion was moderated by Dr. Kathy Sullivan, Acting NOAA Administrator.

During the discussion, panelist Dr. Paul Ehrlich of Stanford University underscored the need for societal understanding of these growing challenges. He emphasized that this problem isn’t a new one: scientists have been warning about global resource shortages in the face of a growing population, climate change, and depleted resources since the 1960s. The problem, he says, is that people still do not understand the implications of these issues for the future and he predicts that social science will need to play a much larger role if society is to take the actions necessary to alleviate these growing pressures on our planet

For more information on the conference, visit the AAAS 2014 Annual Meeting website.


1 Comment

What Restoration Is in Store for Massachusetts and Rhode Island after 2003 Bouchard Barge 120 Oil Spill?

A large barge is being offloaded next to a tugboat in the ocean.

On April 27, 2003, Bouchard Barge 120 was being offloaded after initial impact with a submerged object, causing 98,000 gallons of oil to spill into Massachusett’s Buzzards Bay. (NOAA)

The Natural Resource Damages Trustee Council for the Bouchard Barge 120 oil spill have released a draft restoration plan (RP) and environmental assessment (EA) [PDF] for shoreline, aquatic, and recreational use resources impacted by the 2003 spill in Massachusetts and Rhode Island.

It is the second of three anticipated plans to restore natural resources injured and uses affected by the 98,000-gallon spill that oiled roughly 100 miles of shoreline in Buzzards Bay. A $6 million natural resource damages settlement with the Bouchard Transportation Co., Inc. is funding development and implementation of restoration, with $4,827,393 awarded to restore shoreline and aquatic resources and lost recreational uses.

The draft plan evaluates alternatives to restore resources in the following categories of injuries resulting from the spill:

  • Shoreline resources, including tidal marshes, sand beaches, rocky coast, and gravel and boulder shorelines;
  • Aquatic resources, including benthic organisms such as American lobster, bivalves, and their habitats, and finfish such as river herring and their habitats; and
  • Lost uses, including public coastal access, recreational shell-fishing, and recreational boating.

The plan considers various alternatives to restore these resources and recommends funding for more than 20 projects throughout Buzzards Bay in Massachusetts and Rhode Island.

Shoreline and aquatic habitats are proposed to be restored at Round Hill Marsh and Allens Pond Marsh in Dartmouth, as well as in the Weweantic River in Wareham. Populations of shellfish, including quahog, bay scallop, and oyster will be enhanced through transplanting and seeding programs in numerous towns in both states. These shellfish restoration areas will be managed to improve recreational shell-fishing opportunities.

Public access opportunities will be created through a variety of projects, including trail improvements at several coastal parks, amenities for universal access, a handicapped accessible fishing platform in Fairhaven, Mass., and acquisition of additional land to increase the Nasketucket Bay State Reservation in Fairhaven and Mattapoisett. New and improved public boat ramps are proposed for Clarks Cove in Dartmouth and for Onset Harbor in Wareham.

A map of the preferred restoration projects for the Bouchard Barge 120 spill, as identified in the second draft restoration plan.

A map of the preferred restoration projects for the Bouchard Barge 120 spill, as identified in the second draft restoration plan. (NOAA)

The draft plan also identifies Tier 2 preferred projects; these are projects that may be funded, if settlement funds remain following the selection and implementation of Tier 1 and/or other restoration projects that will be identified in the Final RP/EA to be prepared and released by the Trustee Council following receipt and consideration of input from the public.

“We continue to make progress, together with our federal and state partners, in restoring this bay and estuary where I have spent so much of my life,” said John Bullard, National Oceanic and Atmospheric Administration (NOAA) Fisheries Northeast Regional administrator. “And, we’re eager to hear what members of the public think of the ideas in this plan, which are intended to further this work. We hope to improve habitats like salt marshes and eelgrass beds in the bay. These will benefit river herring, shellfish and other species and support recreational activities for the thousands of people who use the bay.”

The public is invited to review the Draft RP/EA and submit comments during a 45-day period, extending through Sunday, March 23, 2014. The electronic version of this Draft RP/EA document is available for public review at the following website:

https://darrp.noaa.gov/oil-spills/bouchard-barge-120

Comments on the Draft RP/EA should be submitted in writing to:

NOAA Restoration Center
Attention: Buzzards Bay RP/EA Review Coordinator
28 Tarzwell Drive
Narragansett, R.I. 02882
BuzzardsBay.RP.EA.Review@noaa.gov


Leave a comment

Happy Valentine’s Day from NOAA

Man holding a trash bag on a beach and pointing to a heart-shaped piece of wood enscribed with "Love."

NOAA’s Nir Barnea, Marine Debris West Coast Regional Coordinator, finds a bit of marine debris “love” at the 2007 International Coastal Cleanup held in Seattle, Wash. (NOAA)

At NOAA, we put our heart into our work every day of the year—whether we’re cleaning up marine debris from beaches or modeling the (at times) curiously shaped paths of spilled oil.

But on some days, we take this a little more literally than others. As you can see in this video, our oceanographers have used the NOAA oil spill forecast model GNOME to show what it looks like when they put their heart into their work for Valentine’s Day.

Perhaps this hypothetical scenario might be what we should expect if a shipment of candy hearts were to spill off the coast of Washington?

Happy Valentine’s Day from NOAA!


1 Comment

How Do You Solve a Problem Like Abandoned Ships?

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division.

Two rusted ships partially sunk in water and surrounded by containment boom.

The old freighter Helena Star has been allowed to become derelict, leaking oil and pulling down its neighboring vessel, the Golden West. (NOAA)

A rusted green hull, punched full of holes and tilted on its side, sits forlornly in the Hylebos Waterway of Tacoma, Washington. The dilapidated boat’s name, Helena Star, is partially obscured because the vessel is half sunk. The boat it is chained to, the equally rusted ship Golden West, is being drawn down into the waters with it. Bright yellow boom and a light sheen of oil surround the vessels. Meanwhile, the owners are nowhere in sight.

This is just one example of the nationwide problem of derelict vessels. These neglected ships often pose significant threats to fish, wildlife, and nearby habitat, in addition to becoming eyesores and hazards to navigation. Derelict vessels are a challenge to deal with properly because of ownership accountability issues, potential chemical and oil contamination, and the high cost of salvage and disposal. Only limited funds are available to deal with these types of vessels before they start sinking. In Washington’s Puget Sound alone, the NOAA Office of Response and Restoration’s Emergency Response Division has had several recent responses to derelict vessels that either sank or broke free of their moorings.

Many of these recent responses have come with colorful backstories, including a pair of retired Royal Canadian Navy vessels, a freighter that at one time housed the largest marijuana seizure by the U.S. Coast Guard (F/V Helena Star), the first American-designed and –built diesel tugboat (Tug Chickamauga), and the boat that carried author John Steinbeck and biologist Ed Ricketts on their famous trip through the Sea of Cortez (Western Flyer).

Unfortunately, all these vessels have met the end of their floating lives either through the deliberate action or negligence of their owners. Had the owners taken responsibility for maintaining them, the environmental impacts from leaked fuel, hazardous waste, and crushing impacts to the seabed could have been avoided, as well as the costly multi-agency response and removal operations that resulted.

heavy machinery is brought in to raise a sunken vessel from the sea floor.

In May 2012, the derelict fishing boat Deep Sea caught fire and sank near Washington’s Whidbey Island. The boat ended up leaking diesel fuel into waters near a Penn Cove Shellfish Company mussel farm, and the company took the precautionary measure of stopping the harvest. NOAA worked with them to sample mussels in the area for diesel contamination. Here, heavy machinery is brought in to raise the sunken vessel from the sea floor. (NOAA)

Yet there is hope that we can prevent these problems before they start. In Washington state there is momentum to combat the derelict vessel issue through measures to prevent boats from becoming derelict or environmental hazards, and by holding vessel owners accountable for what they own.

Washington State House bill 2457 is currently in the Washington State Legislature. Among other measures, the proposed bill:

  • “Establishes a fee on commercial moorage to fund the state’s derelict and abandoned vessel program.”
  • “Creates new penalties for failure to register a vessel.”

Additionally, Washington’s San Juan County is developing a new Derelict Vessel Prevention program, using a grant from the Puget Sound Partnership. San Juan County, a county composed of small rural Pacific Northwest islands, has a high number of derelict vessels [PDF]. This program is going to be used not only in San Juan County but throughout counties bordering Puget Sound.

On January 15, 2014, Washington’s Attorney General Bob Ferguson and Commissioner of Public Lands Peter Goldmark (who leads the Department of Natural Resources) announced the state was pursuing criminal charges against the owners of the Helena Star, which sank in Tacoma’s Hylebos Waterway, and the Tugboat Chickamauga, which sank in Eagle Harbor. Both vessels released oil and other pollutants when they sank.

It is an ongoing battle to hold accountable the owners of derelict and abandoned vessels and prevent them from causing problems in our nation’s waterways. Yet with cooperation, prevention, and increased accountability we can help manage the problem, and in the end reduce impacts to Washington’s cherished Puget Sound.

Editor’s note: Stay tuned for more information about how LTJG Drury is working with Washington’s Derelict Vessel Task Force to tackle this growing problem in Puget Sound. Update: Mapping the Problem After Owners Abandon Ship.

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


1 Comment

PCBs: Why Are Banned Chemicals Still Hurting the Environment Today?

Heavy machinery removes soil and rocks in a polluted stream.

PCB contamination is high in the Housatonic River and New Bedford Harbor in Massachusetts. How high? The “highest concentrations of PCBs ever documented in a marine environment.” (U.S. Fish and Wildlife Service)

For the United States, the 20th century was an exciting time of innovation in industry and advances in technology. We were manufacturing items such as cars, refrigerators, and televisions, along with the many oils, dyes, and widgets that went with them. Sometimes, however, technology races ahead of responsibility, and human health and the environment can suffer as a result.

This is certainly the case for the toxic compounds known as polychlorinated biphenyls, or PCBs. From the 1920s until they were banned in 1979, the U.S. produced an estimated 1.5 billion pounds of these industrial chemicals. They were used in a variety of manufacturing processes, particularly for electrical parts, across the country. Wastes containing PCBs were often improperly stored or disposed of or even directly discharged into soils, rivers, wetlands, and the ocean.

Unfortunately, the legacy of PCBs for humans, birds, fish, wildlife, and habitat has been a lasting one. As NOAA’s National Ocean Service notes:

Even with discontinued use, PCBs, or polychlorinated biphenyls, are still present in the environment today because they do not breakdown quickly. The amount of time that it takes chemicals such as PCBs to breakdown naturally depends on their size, structure, and chemical composition. It can take years to remove these chemicals from the environment and that is why they are still present decades after they have been banned.

Sign by Hudson River warning against eating contaminated fish.

According to a NOAA, U.S. Fish and Wildlife Service, and State of New York report on the Hudson River, “Fish not only absorb PCBs directly from the river water but are also exposed through the ingestion of contaminated prey, such as insects, crayfish, and smaller fish…New York State’s “eat none” advisory and the restriction on taking fish for this section of the Upper Hudson has been in place for 36 years.” (NOAA)

PCBs are hazardous even at very low levels. When fish and wildlife are exposed to them, this group of highly toxic compounds can travel up the food chain, eventually accumulating in their tissues, becoming a threat to human health if eaten. What happens after animals are exposed to PCBs? According to a NOAA, U.S. Fish and Wildlife Service, and State of New York report [PDF], PCBs are known to cause:

  • Cancer
  • Birth defects
  • Reproductive dysfunction
  • Growth impairment
  • Behavioral changes
  • Hormonal imbalances
  • Damage to the developing brain
  • Increased susceptibility to disease

Because of these impacts, NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) works on a number of damage assessment cases to restore the environmental injuries of PCBs. Some notable examples include:

Yet the list could go on—fish and birds off the southern California coast, fish and waterfowl in Wisconsin’s Sheboygan River, a harbor in Massachusetts with the “highest concentrations of PCBs ever documented in a marine environment.”

These and other chemical pollutants remain a challenge but also a lesson for taking care of the resources we have now. While PCBs will continue to be a threat to human and environmental health, NOAA and our partners are working hard to restore the damage done and protect people and nature from future impacts.