NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


2 Comments

As New Risks Emerge in Producing and Transporting Oil, University of Washington Helps NOAA Plan for Spills

This is a guest post by the Emerging Risks Workgroup at the University of Washington in Seattle.

Trucks and heavy machinery used to drill for natural gas parked in dirt.

A hydraulic fracturing operation at a Marcellus Shale natural gas well in Pennsylvania. (U.S. Geological Survey)

From fracking to oil trains, the landscape of oil production and transportation in North America has been undergoing a major transformation in recent years. This transformation has implications for how NOAA’s Office of Response and Restoration prepares its scientific toolbox for dealing with oil spills. Our group of graduate students from the University of Washington is trying to provide NOAA with a picture of new or emerging risks that oil spill response plans need to adapt to.

To do this, we first have to look at what is causing the risks of transporting oil and gas products to change over time. We then compare those changes to changes that have already been accounted for by spill response planning. Once these “emerging” risks are accounted for, we can list in detail those areas that are going to be areas of concern for NOAA in the future.

Fracking

The main drivers of change for spill risks are the changes in the production of crude oil and natural gas. By far, the largest change in the market is the proliferation of hydraulic fracturing or “fracking,” which involves forcing fluids under great pressure through production wells to “fracture” rock formations to allow more crude oil or natural gas to be released. This controversial drilling technique has seen rapid and abundant growth in North America.

Fracking and other new technologies have resulted in a change in the types of petroleum products being transported in the U.S. It has changed where the products are originating, the quantities involved, and the methods of transportation.

LNG

Liquefied Natural Gas (LNG) is natural gas that has been cooled to -260° Fahrenheit and liquefied for ease of transport. Its production has substantially increased in recent years. This is a result of the lower prices for natural gas that are caused by the immense supply, which is in turn due to increased production from fracking. Because there is so much LNG available at lower prices, two major changes in natural gas transportation have occurred.

First, due to the immense volume of available LNG (and the lack of export bans), the U.S. has started to export more LNG than in the past. The biggest recent change in LNG transport is the more widespread adoption of the LNG tanker. These tankers are just what the name implies: tanker ships storing large quantities of refrigerated LNG. These massive LNG tankers create a myriad of new challenges due to the nature of LNG (it is highly flammable) and the locations of shipping ports, which need to be large enough and properly equipped to load them.

Second, LNG is gaining popularity as a fuel for ships. Many of the new ships shipping companies are purchasing are built to run on LNG as well as traditional bunker fuel. Additionally, a number of existing ships are being retrofitted to run on LNG in certain conditions. As a result, fueling stations at the ports that service these large ships have to add a new fuel type that must be transported to the port and stored before fueling ships. This also further complicates port safety by adding more fueling processes that must be supported at in-port fueling stations.

Oil by Rail

Oil tank cars with railroad tracks.

According to the Association of American Railroads, in 2008 U.S. railroads moved 9,500 train cars of crude oil, while in 2012, U.S. trains moved nearly 234,000 carloads of oil. (U.S. Pipeline and Hazardous Materials Safety Administration)

Fracking, as well as the advances in producing oil from oil sands, has changed where crude oil is being produced. Because pipelines require more permits and are slower and more expensive to build, maintain, and operate than rail, there has been a large increase in transporting oil via rail cars. These “rolling pipelines” are a convenient use of existing transportation infrastructure but cause significant changes in the risks of transporting crude oil in the U.S.

Many of these rail lines, at times, run adjacent to navigable waterways and end at a port for export, which means spills from derailments may sometimes release crude oil into waterways. We have already seen an increase in train derailments and resulting oil spills in recent weeks. This new risk is likely to grow, as the amount of oil transported by rail continues to grow each year.

Project Details and Timeline

We will be finishing our research and writing our report in the coming weeks. We plan on presenting our findings to NOAA’s Office of Response and Restoration in mid-March and will also be presenting at a symposium for the University of Washington’s Program on the Environment.

If you have any questions about the ERW, its members, our research, or would like to read any of our scoping documents, memos, or (eventually) the final paper, please visit our website at www.erw.comuv.com.

The Emerging Risks Workgroup (ERW) is a group of four graduate students from the University of Washington that are working with faculty advisor Robert Pavia and Doug Helton, the Incident Operations Coordinator for NOAA’s Office of Response and Restoration. The students in the group are all part of the Environmental Management Certificate Program at UW’s Program on the Environment. Stacey Crecy is from the School of Marine and Environmental Affairs and Andrew Cronholm, Barry Hershly, and Marie Novak are all from the Evans School of Public Affairs.

The views expressed in this post reflect those of the authors and do not necessarily reflect the official views of the National Oceanic and Atmospheric Administration (NOAA) or the federal government.


Leave a comment

45 Years after the Santa Barbara Oil Spill, Looking at a Historic Disaster Through Technology

Forty-five years ago, on January 28, 1969, bubbles of black oil and gas began rising up out of the blue waters near Santa Barbara, Calif. On that morning, Union Oil’s new drilling rig Platform “A” had experienced a well blowout, and while spill responders were rushing to the scene of what would become a monumental oil spill and catalyzing moment in the environmental movement, the tools and technology available for dealing with this spill were quite different than today.

The groundwork was still being laid for the digital, scientific mapping and data management tools we now employ without second thought. In 1969, many of the advances in this developing field were coming out of U.S. intelligence and military efforts during the Cold War, including a top-secret satellite reconnaissance project known as CORONA. A decade later NOAA’s first oil spill modeling software, the On-Scene Spill Model (OSSM) [PDF], was being written on the fly during the IXTOC I well blowout in the Gulf of Mexico in 1979. Geographic Information Systems (GIS) software didn’t begin to take root in university settings until the mid-1980s.

To show just how far this technology has come in the past 45 years, we’ve mapped the Santa Barbara oil spill in Southwest ERMA, NOAA’s online environmental response mapping tool for coastal California. In this GIS tool, you can see:

  • The very approximate extent of the oiling.
  • The location and photos of the drilling platform and affected resources (e.g., Santa Barbara Harbor).
  • The areas where seabirds historically congregate. Seabirds, particularly gulls and grebes, were especially hard hit by this oil spill, with nearly 3,700 birds confirmed dead and many more likely unaccounted for.

Even though the well would be capped after 11 days, a series of undersea faults opened up as a result of the blowout, continuing to release oil and gas until December 1969. As much as 4.2 million gallons of crude oil eventually gushed from both the well and the resulting faults. Oil from Platform “A” was found as far north as Pismo Beach and as far south as Mexico.

Nowadays, we can map the precise location of a wide variety of data using a tool like ERMA, including photos from aerial surveys of oil slicks along the flight path in which they were collected. The closest responders could come to this in 1969 was this list of aerial photos of oil and a printed chart with handwritten notes on the location of drilling platforms in Santa Barbara Channel.

A list of historical overflight photos of the California coast and accompanying map of the oil platforms in the area of the Platform "A" well blowout in early 1969.

A list of historical overflight photos of the California coast and accompanying map of the oil platforms in the area of the Platform “A” well blowout in early 1969. (Courtesy of the University of California Santa Barbara Map and Image Library) Click to view larger.

Yet, this oil spill was notable for its technology use in one surprising way. It was the first time a CIA spy plane had ever been used for non-defense related aerial photography. While classified information at the time, the CIA and the U.S. Geological Survey were actually partnering to use a Cold War spy plane to take aerial photos of the Santa Barbara spill (they used a U-2 plane because they could get the images more quickly than from the passing CORONA spy satellite). But that information wasn’t declassified until the 1990s.

While one of the largest environmental disasters in U.S. waters, the legacy of the Santa Barbara oil spill is lasting and impressive and includes the creation of the National Environmental Policy Act, U.S. Environmental Protection Agency, and National Marine Sanctuaries system (which soon encompassed California’s nearby Channel Islands, which were affected by the Santa Barbara spill).

Another legacy is the pioneering work begun by long-time spill responder, Alan A. Allen, who started his career at the 1969 Santa Barbara oil spill. He became known as the scientist who disputed Union Oil’s initial spill volume estimates by employing methods still used today by NOAA. Author Robert Easton documents Allen’s efforts in the book, Black tide: the Santa Barbara oil spill and its consequences:

Others…were questioning Union’s estimates. At General Research Corporation, a Santa Barbara firm, a young scientist who flew over the slick daily, Alan A. Allen, had become convinced that Union’s estimates of the escaping oil were about ten times too low. Allen’s estimates of oil-film thickness were based largely on the appearance of the slick from the air. Oil that had the characteristic dark color of crude oil was, he felt confident from studying records of other slicks, on the order of one thousandth of an inch or greater in thickness. Thinner oil would take on a dull gray or brown appearance, becoming iridescent around one hundred thousandth of an inch.  Allen analyzed the slick in terms of thickness, area, and rate of growth. By comparing his data with previous slicks of known spillage, and considering the many factors that control the ultimate fate of oil on seawater, he estimated that leakage during the first days of the Santa Barbara spill could be conservatively estimated to be at least 5,000 barrels (210,000 gallons) per day.

And in a lesson that history repeats itself: Platform “A” leaked 1,130 gallons of crude oil into Santa Barbara Channel in 2008. Our office modeled the path of the oil slicks that resulted. Learn more about how NOAA responds to oil spills today.


2 Comments

A Tale of Two Shipwrecks: When History Threatens to Pollute

Last year I wrote about NOAA’s work in identifying potentially polluting shipwrecks in U.S. waters.

Several men work to pump oil onto a barge on the ocean.

During November 2013, the Canadian Coast Guard (Western Region) worked with Mammoet Salvage to remove the oil remaining on board the wreck of the Brigadier General M.G. Zalinski. The Zalinski sank off the North Coast of British Columbia, Canada, and its wreck remains upside down on top of an underwater cliff. (Daniel Porter, Mammoet Salvage)

One of the wrecks that we’ve been watching with interest has been the wreck of the Brigadier General M. G. Zalinski, a World War II U.S. Army transport ship that ran aground and sank in 1946 near Prince Rupert, Canada.  For the past decade the vessel has been the source of chronic oil spills in British Columbia’s Inside Passage, and patches to the hull were only a temporary solution.

Response operations were just completed in late December 2013, and the Canadian government reported that two-month-long operations safely extracted approximately 44,000 liters (about 12,000 gallons) of heavy Bunker C oil and 319,000 liters (84,000 gallons) of oily water from the wreck.  More information on the project is on Canada’s Department of Fisheries and Oceans website.

Every shipwreck has its own story to tell. One of the interesting bits of trivia about the Zalinski is that the crew of the sinking ship back in 1946 was rescued by the Steam Ship Catala. The Zalinski, lying in Canadian waters, is not in our database of potentially polluting shipwrecks, but the S.S. Catala is, or should I say, was.

The Catala met its end in 1965 when the ship grounded during a storm and was abandoned on a beach on the outer coast of Washington state.  Over time the vessel was buried in sand, but 40 years later, winds and tides had changed the face of the beach, re-exposing the Catala’s rusted-out, oil-laden hull.  In 2007, the State of Washington led a multi-agency effort to remove not only the 34,500 gallons of oil still on board but also the ship’s wreckage and the potential for a major oil spill near a number of state parks and national wildlife refuges on the coast.

Learn more about how NOAA worked with the U.S. Coast Guard and Regional Response Teams to prioritize potential threats to coastal resources from the nation’s legacy of sunken ships.


4 Comments

When the North Cape Ran Aground off Rhode Island, an Unexpected Career Took Off

This is a post by the Office of Response and Restoration’s Acting Chief of Staff Kate Clark.

January 19, 1996 was a Friday. I was a senior at the University of Rhode Island, pursuing an ocean engineering degree. I had no idea what I would do with it once I got it, but I loved the ocean, I had a tuition waiver since my dad taught there, and, hey, they had a well-known engineering program. I was living with roommates “down the line” in the fishing village of Point Judith in Narragansett, R.I.

When my friends and I returned home from a night out, it was the usual weather I was accustomed to during a coastal Rhode Island winter storm: foggy, rainy, and windy. But what I was not accustomed to was the nauseating smell of gasoline in the air and the helicopter traffic overhead.

Nudist Beach to Oiled Wreck

I woke on January 20 to the news that a ship had run aground, roughly four miles east on Moonstone Beach in South Kingstown. Being Rhode Island–born and Rhode Island–bred (as the fight song goes), I was all too familiar with Moonstone Beach, so called for the numerous ocean-polished silicate rocks that lined the beach. This town beach where I grew up was idyllic for families because the shallow, warm salt ponds that sat right behind the thin strip of sandy beach were perfect for young kids. As a child I spent long summer days there combing the beach for shells and jellyfish.

However, other sections of Moonstone Beach were well known throughout the 1970s and 1980s as a popular nudist beach. When public access to Moonstone Beach was closed by the U.S. Fish and Wildlife Service in 1988 to save habitat for endangered least tern and piping plover, it shut down the East Coast’s last fully staffed oceanic nudist beach.

The tank-barge that grounded on Moonstone Beach during that harsh winter storm in 1996 was called the North Cape. Its hull ripped open and spilled 828,000 gallons of home heating oil into the pounding surf. That strong smell of oil in the air around the southern shores of South Kingstown and Narragansett was soon replaced by the stench of rotting crustaceans, shellfish, and starfish that died from the oil and washed up in droves along the beaches of Block Island Sound.

In the weeks that followed, the local fishing and lobstering economy was brought to its knees as 250 square miles of Block Island Sound was closed to fishing. Families I had grown up with and classmates who went to work fishing after high school struggled to make ends meet.

Lessons for Life

During the spring of 1996, I was in need of a topic for my required senior project. At that time, the chair of the Ocean Engineering Department was interested in using media reports and other sources to do a hindcast investigation into the reported volume of oil spilled. I worked on it for several months that spring and became extremely familiar with the details of the incident. Ultimately, the project was a non-starter and I moved on to a different project. (If you’re doing the math, yes, it took me more than four years to graduate).

A large pile of dead lobsters in the bed of a pickup truck.

Dead lobsters collected from Rhode Island beaches after the North Cape oil spill, which killed 9 million lobsters. (Rhode Island Department of Environmental Management)

While I did this research, I knew nothing about oil spill response or assessing damages to natural resources, but the seed was planted. One thing I learned was that the North Cape spill was unique in the way the heavy surf thoroughly mixed the spilling oil into the water column, pounded it into the substrate, and ultimately carried it offshore to deliver a staggering blow to Block Island Sound’s thriving bottom-dwelling sea life.

Once I joined the work force after graduation, it seems all roads led back to oil spill preparedness, response, and restoration. It began with planting eel grass with funds from the World Prodigy oil spill and continued with consulting on containment and spill prevention for the Department of Defense. As I was finishing up graduate school at Louisiana State University, I came across a job opportunity to work for NOAA’s Office of Response and Restoration (OR&R) conducting Natural Resource Damage Assessments along the Gulf Coast. That was 12 years ago and I have worked at OR&R ever since.

An Environment for Success

The environmental damages from the North Cape oil spill resulted in $7.8 million for restoration along Rhode Island’s coast, which went to lobster and shellfish restoration, seabird and piping plover habitat protection, water quality improvements, and recreational fishing enhancements. The success of these projects required innovation, teamwork, and perseverance on the behalf of federal and state trustees, local officials, fishermen, and the public.

The last of the successful restoration projects wrapped up well after I started working for OR&R. I was pleased to be involved at times in this damage assessment and restoration work, though certainly not as involved as many of my colleagues. Still, it felt as though I had come full circle. The North Cape oil spill that devastated a local community and its natural resources 18 years ago this month set the course for my career. As the Grateful Dead song goes, “Once in a while you get shown the light. In the strangest of places if you look at it right.”

Kate Clark.Kate Clark finally graduated with an ocean engineering degree from the University of Rhode Island and went on to complete a masters degree in oceanography from the Louisiana State University. She is now the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.


Leave a comment

Protecting the Great Lakes After a Coal Ship Hits Ground in Lake Erie

The coal ship CSL Niagara got stuck in Lake Erie's soft, muddy bottom at the entrance to Sandusky Bay in November 2013.

The coal ship CSL Niagara got stuck in Lake Erie’s soft, muddy bottom at the entrance to Sandusky Bay in November 2013. (U.S. Coast Guard)

In the course of a year, from October 2012 to October 2013, the Emergency Response Division of NOAA’s Office of Response and Restoration responded to 138 oil spills, chemical accidents, and various other threats to coastal environments and communities. Many of these responses required considerable time from the scientific team to estimate where spills might spread, analyze chemical hazards, and assess whether natural resources are at risk. Sometimes, however, we’re called into some incidents that end well, with minimum help needed on our part and no oil spilled.

Last November, LCDR John Lomnicky received a call from the U.S. Coast Guard with an example of an accident that had the potential to be much worse. LCDR Lomnicky is our Scientific Support Coordinator for the Great Lakes region and is based in Cleveland, Ohio.

When Staying Grounded Is a Bad Thing

On November 17, just after 10:00 in the morning, the vessel master of the CSL Niagara reported to the U.S. Coast Guard that his ship had run aground while leaving Sandusky Bay through Moseley Channel to Lake Erie. Aboard the ship were 33,000 metric tons (36,376 U.S. tons) of coal, headed to Hamilton, Ontario, and about 193 metric tons of intermediate fuel oil (a blend of gasoil and heavy fuel oil) and marine diesel. The concern in a situation like this would be that the grounded ship might leak oil. Its stern was stuck in the soft mud at the bottom of Lake Erie. At the time, the vessel master reported there were no injuries, flooding, or visible pollution.

This ship, the CSL Niagara, has a long history of transporting coal in Lake Erie. Launched in April of 1972 for Canada Steamship Lines, Ltd., the new ship was 730 feet long and even then was carrying coal to Hamilton, Ontario. During over 40 years of sailing in the Great Lakes, the Niagara has also carried cargos of grain, coke, stone, and iron ore.

NOAA chart of Lake Erie.

Lake Erie has an average depth of 62 feet, but its western basin, where the CSL Niagara grounded, averages only 24 feet deep. (NOAA Chart)

Even though the vessel hadn’t released any oil, the Coast Guard Marine Safety Unit, who had responders at the scene very shortly after the accident, put in a call to the Office of Response and Restoration’s LCDR Lomnicky for scientific support. As a precaution, they requested that we model the trajectory of oil in a worst case scenario if 145 metric tons of intermediate fuel oil and 48 metric tons of diesel fuel were released all at once into the water. We also provided a prediction of when the lake’s lower-than-usual water level would return to normal so a salvage team could refloat the stuck vessel. After gathering all of this information for the Coast Guard, LCDR Lomnicky continued to stand by for further requests.

In the hours that followed the ship’s grounding, the winds grew stronger, hampering efforts to free the vessel. The wind was causing the water level in the lake to drop and NOAA’s National Weather Service in Detroit predicted a 7.5 foot drop in levels for western Lake Erie. By 8:30 p.m., with 30 knot winds in two-to-three foot seas, the three tugboats contracted by the ship’s owner to dislodge the Niagara were making some progress. By midnight, however, with weather conditions worsening, salvage operations were suspended and scheduled to resume at first light.

But the next morning, November 18, the water level had dropped another two feet, and the three tugs still had had no luck freeing the stern of the Niagara from the lake bottom. The ship’s owner was now working on plans for lightering (removing the fuel) and containing any potentially spilled oil. Fortunately, there were still no reports of damage to the vessel or oil discharged into the water. The ship was just stuck.

By 4:00 that afternoon the water conditions had improved and another attempt to free the vessel was planned. Also, a combined tug-barge was en route should lightering become necessary.

Later that evening, shortly after 10:00, the ship was pulled free by two of the tugs and was back on its way early the next morning.

The location where the CSL Niagara grounded in Lake Erie is indicated with a red diamond, along with a window of information and photo of the grounded ship. It is mapped in Great Lakes ERMA, NOAA's online mapping tool for coastal pollution cleanup, restoration, and response.

The location where the CSL Niagara grounded in Lake Erie is indicated with a red diamond, along with a window of information and photo of the grounded ship. It is mapped in Great Lakes ERMA, NOAA’s online mapping tool for coastal pollution cleanup, restoration, and response. (NOAA)

Keeping the Great Lakes Great

Lake Erie is the shallowest of the five Great Lakes, with an average depth of 62 feet. Yet its western basin, where this ship grounding occurred, has an average depth of only 24 feet. The lake is an important source of commerce for both the U.S and Canada, who depend on it for shipping, fishing, and hydroelectric power. These industries place environmental pressure on the lake’s ecosystems, which  are also threatened by urban and agricultural runoff.

Happily, quick responders, sound information, and a break in the weather may have prevented this incident from becoming something much worse. A spill into Lake Erie could be devastating, especially considering its shallow waters, but this time, like many other times along the nation’s coasts, an oil spill was avoided.

Didn’t know that NOAA works in the Great Lakes? Nicknamed “the third coast,” the Great Lakes are a major U.S. water body, with a shoreline that stretches longer than the East Coast and Gulf Coast combined. Learn more about the Great Lakes and NOAA’s efforts there in this Great Lakes regional snapshot.


Leave a comment

A Delaware Salt Marsh Finds its way to Restoration by Channeling Success

This is a post by Simeon Hahn, Regional Resource Coordinator for the Office of Response and Restoration’s Assessment and Restoration Division.

You can find the Indian River Power Plant situated along the shores of Indian River Bay in southern Delaware. This shallow body of water is protected from the Atlantic Ocean by a narrow spit of land to the east and is downriver of the town of Millsboro to the west.

In December 1999, the power plant’s owner at the time, Delmarva Power and Light, discovered a leak in an underground fuel line that over a decade had released approximately 500,000 gallons of oil.  The fuel oil had leaked into the soil and groundwater beneath the plant. When the edge of the underground oil plume reached Indian River Bay, oil seeping from the shoreline impacted the fringe of salt marsh growing along the beach, as well as the shallow-water area a short distance offshore.

In the cleanup that followed, about 1,000 tons of oily sediment were excavated from these marshes and replaced with a similar sand quarried from nearby. As part of the restoration, Delmarva replanted the area with hundreds of seedlings of smooth cordgrass (Spartina alterniflora) and other native plants common to the shores of Delaware’s inland bays. But further restoration was needed to compensate for the environmental services lost during the period when the marshes were oiled.

When I took on this case in 2007 as a NOAA coordinator  for the subsequent Natural Resource Damage Assessment, Slough’s Gut Marsh had already been selected as the site of an additional restoration project on Indian River Bay. Slough’s Gut Marsh, east of the James Farm Ecological Preserve near Ocean View, Del., is located on land owned by Sussex County and managed by the Delaware Center for the Inland Bays. The area was described to me as 24 acres of eroded and degraded salt marsh. After a lot of hard work, some innovative thinking, and five years of monitoring the results, I’m pleased to report that Slough’s Gut Marsh has been successfully restored.

What Does it Take to Fix a Marsh?

Previously, however, Slough’s Gut was on the decline, with many of the plants growing in its salty waters either stunted or dying off. The overriding goal, as with many marsh restoration projects, was to reverse this trend and increase the vegetative cover. But does just revegetating a marsh really restore it? On the other hand, some folks, including a few at NOAA, asked whether Slough’s Gut should even be considered for “restoration” since it was already functionally a marsh and … wasn’t the ecosystem working OK? The answer on both accounts was: We were about to find out.

Although the cause of the marsh plant die-offs was not entirely clear, we suspected it had to do with changes to the natural water drainage systems associated with:

  1. Historical mosquito ditching.
  2. Sea level rise.
  3. The gradual sinking of the land.
  4. All of the above.

These suspicions were based on monitoring conducted before Slough’s Gut was ever slated for restoration. It appeared that water would not drain sufficiently off the marsh during the tidal cycle and this was suppressing the vegetation, in a phenomenon known as “waterlogging.”

I became involved as we began scoping the restoration project design. At this point, I suggested that although revegetating the marsh was a reasonable goal, the primary emphasis should be on restoring a more natural network of tidal channels, replacing the old mosquito ditches. Around the 1940s, this salt marsh had been dug up and filled in, creating a series of parallel ditches connecting at a straightened main river channel (a now-questionable practice known as “mosquito ditching” because it aimed to reduce mosquito populations). The current configuration of channels that was leading to the loss of vegetation in Slough’s Gut was likely also impacting the fish, crabs, and other aquatic life that would normally use the marsh.

Looking to a similar project on Washington, DC’s Anacostia River, the design team decided on a technique for restoring tidal channels that uses observations from relatively unimpacted marshes. This example helped us answer questions such as:

  • How big should the channels be?
  • What would a natural channel network look like? (e.g., how often would the channels split, how much would they wind)?

Next, Delmarva Power and Light hired the contractor Cardno ENTRIX to develop a restoration design that used the existing channels as much as possible but restored the channel network by creating new channels while plugging and filling others. The Delaware Department of Natural Resources and Environmental Control (DNREC), which has extensive experience working in wetlands, executed the design. Then, we watched and waited.

The End Game

The number of birds observed at Slough's Gut Marsh has doubled since 2008. Here, a heron perches at the site.

The number of birds observed at Slough’s Gut Marsh has doubled since 2008. Here, a heron perches at the site. (Cardno ENTRIX)

Cardno ENTRIX monitored the renovated marsh for five years and collected data on its recovery. This past summer, the natural resource agencies involved (NOAA, the Delaware DNREC, and the U.S. Fish and Wildlife Service) together with Delmarva Power and Light, Cardno ENTRIX, and the Center for Inland Bays (the project hosts) visited Slough’s Gut Marsh to view and discuss its progress.

Based on the past five years of data, the marsh is on a path toward successful restoration. There has been a 50 percent increase in the density of fish, shrimp, and crabs living in Slough’s Gut, compared with levels before we restored the natural tidal channels. With this extra food, the number of birds observed there has doubled since 2008.

Additional environmental sampling showed localized drainage improvements, indicating that the new channel network is stable yet adaptable, as it should be in natural marshes. This feature is particularly beneficial when confronted with issues like sea level rise and hurricanes. Protecting and restoring tidal wetlands is an important effort in adapting to climate change in coastal areas.

This project demonstrates that ecological impacts in tidal marshes from historical ditching and diking can be restored by reconstructing a more natural tidal channel network. But don’t take my word for it. Next time you’re in the area, go see the success at Slough’s Gut yourself and leave time to visit the Center for the Inland Bays to learn more about other great environmental efforts going on in Delaware’s inland bays. The center is easily accessible and the view is tremendous.

The natural resource trustees celebrate the restoration of Slough's Gut Marsh in August 2013. Simeon Hahn is at the far right.

The natural resource trustees celebrate the restoration of Slough’s Gut Marsh in August 2013. Simeon Hahn is at the far right. (Cardno ENTRIX)

Simeon Hahn is an Office of Response and Restoration Regional Resource Coordinator in the Mid-Atlantic Region for the NOAA Damage Assessment, Remediation, and Restoration Program. He is located in EPA Region 3 in Philadelphia, Pa., and works on Superfund and state remedial projects and Natural Resource Damage Assessment cases. He has been an environmental scientist with expertise in ecological risk assessment, site remediation, and habitat restoration at NOAA for 15 years and 10 years before that with the Department of Defense.


Leave a comment

As North American Oil Production Explodes, So Do Oil Trains

National Transportation Safety Board officials at the scene of the Casselton, N.D., train derailment and explosion on January 1, 2014 in below-zero temperatures. One of the burned-out trains is in the background.

National Transportation Safety Board officials at the scene of the Casselton, N.D., train derailment and explosion on January 1, 2014 in below-zero temperatures. One of the burned-out trains is in the background. (National Transportation Safety Board)

December 30, 2013 turned out to be an explosive day. On that date, a train hauling grain near Casselton, N.D., derailed into the path of an oncoming crude oil train, resulting in several oil tank cars exploding.

Fortunately, the burning tank cars caused no injuries, but local residents were evacuated as a precaution. The North Dakota accident is one of a number of high-profile rail accidents in North America over the past year, which included the July 2013 accident in Quebec, Canada, that killed 47 people. Earlier this week, on January 8, another train accident occurred, this one in New Brunswick near the Maine border. It resulted in several crude oil and liquefied petroleum gas tank cars catching fire.

The growth in U.S. and Canadian oil production has exceeded pipeline capacity and has resulted in a dramatic increase in oil shipments via rail. According to the Association of American Railroads [PDF], in 2008 U.S. railroads moved “just 9,500 carloads of crude oil. In 2012, they originated nearly 234,000 carloads.”

These recent accidents have also raised concerns about the safety of some of these crude oils being transported. Within days of the North Dakota oil train accident, the U.S. Pipeline and Hazardous Materials Safety Administration issued a warning to emergency responders that “crude oil being transported from the Bakken region may be more flammable than traditional heavy crude oil.” The full safety alert can be found online [PDF].

This rise in transporting oil by rail is one way the growth in the domestic oil industry and changing oil transportation patterns can pose new environmental and safety risks. Unit trains carrying oil are becoming a common sight. (A “unit train” is an entire train carrying the same product to the same destination. A crude oil unit train of 100 tanker cars would carry about 60,000 barrels, or about 2.5 million gallons.) Additional rail terminals have been proposed in Washington state and elsewhere to accommodate growing oil production in the Dakotas and eastern Montana, particularly from the Bakken oil fields.

NOAA and other spill responders are working to understand these emerging risks in order to effectively and safely respond to oil spills. We are currently working with the University of Washington’s Program on the Environment on a project to explore these risks from changes in oil and gas production and transportation. Stay tuned for future blog posts about the progress and findings of this project. UPDATE: