NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


2 Comments

Our Top 10 New Year’s Resolutions for 2014

In 2013, a NOAA team collected 14 metric tons of fishing gear, plastic, and other debris from the shoreline and waters around Hawaii's Midway Atoll. We're looking forward to keeping our coasts clean in 2014 too! (NOAA)

In 2013, a NOAA team collected 14 metric tons of fishing gear, plastic, and other debris from the shoreline and waters around Hawaii’s Midway Atoll. We’re looking forward to keeping our coasts clean in 2014 too! (NOAA)

With the end of 2013, many are reflecting on how the past year went. For NOAA’s Office of Response and Restoration, we think we handled things pretty well, despite seeing some unusual challenges come our way (e.g., grounded drilling rig, molasses spill, 70 foot stranded dock). After all, being prepared—and preparing others—for the worst is a major focus in our work.

Despite our many accomplishments of the last year, however, we know that we should always be striving to improve how we respond to oil and chemical spills, assess and restore damaged ecosystems, and reduce the threat of marine debris.

So, without further ado, here are our top 10 resolutions for 2014:

  1. Lose “wait.” That is, we’re increasing our capacity to process damage assessment cases and get dollars for restoration out the door more quickly.
  2. Get more mobile. We’re making several of our websites friendlier for mobile devices. In particular, stay tuned to response.restoration.noaa.gov and incidentnews.noaa.gov.
  3. Make more friends. We’re now on Facebook and Twitter, so don’t be shy about following us for the latest news and updates.
  4. Stay trendy. As trends change in what petroleum products America is importing and exporting, we’re working with the University of Washington to explore how this will affect our readiness to respond to the oil spills of tomorrow.
  5. Quit littering. Or rather, get others to quit littering. We’re always dreaming up better ways to change people’s behavior so that everyone’s trash, including plastics, stays out of our oceans.
  6. Get our ducks in a row. When Hurricane Sandy came racing toward the East Coast, it was bringing wind and waves that would literally reshape the shoreline. As a result, we’re updating our northeast Environmental Sensitivity Maps to reflect changes caused by the storm and to add information that would enhance the value of these geographic summaries of vulnerable coastal resources when another disaster strikes.
  7. Help others. We’re partnering with states impacted by Sandy to assess and remove marine debris from the storm, so that means getting funding out fast to those who need it.
  8. Update our look. This spring, we’ll be releasing a major update to our mapping program MARPLOT, which allows emergency responders such as firefighters to create, customize, and download maps for offline use. Users will see very high-quality base (background) maps, including the familiar sight of Google maps.
  9. Listen more. We’ll be looking forward to hearing your thoughts on restoration plans and projects around the country, starting with Deepwater Horizon public meetings across the Gulf of Mexico in January.
  10. Release a new GNOME. In 2014, we’ll be releasing GNOME 2, our next generation oil spill modeling system. GNOME 2 will offer a Web-based system for forecasting the path of spilled oil in pre-designated locations in the U.S., include better 3-D modeling support, and integrate our oil weathering model, ADIOS.

Thanks for helping us make 2013 a great year. We look forward to even more in 2014!


Leave a comment

Study Shows Gulf Dolphins in Poor Health following Deepwater Horizon Oil Spill

A dolphin is observed with oil on its skin on August 5, 2010, in Barataria Bay, La.

A dolphin is observed with oil on its skin on August 5, 2010, in Barataria Bay, La. (Louisiana Department of Wildlife and Fisheries/Mandy Tumlin)

Barataria Bay, located in the northern Gulf of Mexico, received heavy and prolonged oiling after the 2010 Deepwater Horizon oil spill. This area is also home to many bottlenose dolphins. In the wake of the spill, how healthy are dolphins living in this area? And how do they compare to dolphins living elsewhere?

As part of the Natural Resource Damage Assessment for the Deepwater Horizon oil spill, a team of more than 50 government, academic, and non-governmental researchers assessed the health of bottlenose dolphins living in Louisiana’s Barataria Bay, which received heavy oiling following the Deepwater Horizon spill, and in Florida’s Sarasota Bay, which was not oiled following the spill.

The team of scientists and veterinarians temporarily captured live dolphins, performed comprehensive health examinations on them at the site, and then released them. The health exam included measuring each dolphin’s length and weight; doing a physical exam; sampling skin, blood, and blubber; and performing an ultrasound to evaluate their internal organs, particularly their lung condition and pregnancy status. The team has published the results of this study in the peer-reviewed journal Environmental Science & Technology.

We spoke with two of the NOAA scientists involved, Dr. Lori Schwacke and Dr. Teri Rowles, to learn more about the research and what their findings mean for dolphins in the Gulf of Mexico.

Q: When did you conduct the dolphin health assessments and what did you observe?

Aug 2011: A veterinarian performs an ultrasound to assess a Barataria Bay dolphin’s health.

Aug 2011: A veterinarian performs an ultrasound to assess a Barataria Bay dolphin’s health. (NOAA)

The first health assessments were conducted in the summer of 2011 in Barataria Bay, La., and in Sarasota Bay, Fla. We found that the dolphins in Barataria Bay were in very poor health. Many of them were underweight and their blood tests showed a number of abnormal conditions such as anemia, elevated markers of inflammation, and increased liver enzymes.

Also, one rather unusual condition that we noted in many of the Barataria Bay dolphins was that they had very low levels of some hormones (specifically, cortisol) that are produced by the adrenal gland and are important for a normal stress response. Under a stressful condition, such as being chased by a predator, the adrenal gland produces cortisol, which then triggers a number of physiological responses including an increased heart rate and increased blood sugar. This gives an animal the energy burst that it needs to respond appropriately. In the Barataria Bay dolphins, cortisol levels were unusually low. The concern is that their adrenal glands were incapable of producing appropriate levels of cortisol, and this could ultimately lead to a number of complications and in some situations even death.

We also found significant lung disease. We looked for several different abnormalities based on studies that have been done on captive animals, and what we saw was most consistent with pneumonia. In some of the animals, the lung disease was so severe that we considered it life-threatening for that individual.

Q: How serious were the conditions observed in dolphins from Barataria Bay?

Some of the conditions observed in these dolphins were very serious. Some of the animals had multiple health issues going on, such as lung disease, very high liver enzymes, and indications of chronic inflammation. The veterinarians assigned a prognosis for each animal and nearly half of the Barataria Bay dolphins were given a guarded (uncertain outcome) or worse prognosis. In fact, 17 percent of them were given a poor or grave prognosis, indicating that they weren’t expected to live.

In comparison, in Sarasota we had only one guarded prognosis and the rest were in good or fair condition. Sarasota dolphins were much healthier than Barataria Bay dolphins.

Q: Have you been able to follow up on the status of any of the dolphins examined during these assessments?

We know one of them died. Y12 was a 16-year-old male that we examined in August 2011. He was underweight and many of his blood parameters were out of the expected range. The veterinary team assigned him a grave prognosis. His carcass was recovered by the Louisiana Department of Wildlife and Fisheries in January of 2012. So we know that he only survived a little over five months  after the health assessment was conducted. . But often carcasses aren’t recovered, and there were other dolphins that we examined that we didn’t expect to live for very long.

We’re also conducting photographic monitoring studies to monitor the survival and reproductive success or failure of the dolphins we sampled. Several of the females we sampled in Barataria Bay were pregnant so we’ve been monitoring them around and past their due date to see whether or not we see them with a calf. The gestation period for a dolphin is around 12 months, so these monitoring studies take a little bit longer. We hope to report those results soon.

Q: Are the disease conditions observed in Barataria Bay dolphins—lung disease, compromised stress hormone response—consistent with those expected from exposure to oil?

The decreased cortisol response is something fairly unusual but has been reported from experimental studies of mink exposed to fuel oil. The respiratory issues are also consistent with experimental studies in animals and clinical reports of people exposed to petroleum hydrocarbons.

Q: How do you know these health impacts weren’t caused by other lingering pollutants in the Gulf?

We analyzed the dolphins’ blubber to evaluate the levels of contaminants that have been previously reported in marine mammal tissues and then also linked with health effects. This covered a fairly broad suite of contaminants and included polychlorinated biphenyls (PCBs) as well as a suite of persistent pesticides that we know accumulate in dolphins over their lifetime, leaving a record of their exposure. We found that the levels of these pollutants in Barataria Bay dolphins were actually lower than the levels in Sarasota Bay dolphins. The levels from Barataria Bay dolphins were also low compared to previously reported levels in dolphins from a number of other coastal sites in the southeastern U.S. Therefore, we don’t think that the health effects we saw can be attributed to these other pollutants that we looked at.

Q: Are there more dolphin health assessments currently taking place or planned for the future?

Yes, in the summer of 2013 we repeated the studies in Sarasota Bay and Barataria Bay and expanded the studies to Mississippi Sound, where we assessed dolphins both in Mississippi and in Alabama waters. Those samples and data are still being analyzed.

Q: Was there anything about this study that you found surprising?

The magnitude of the health effects that we saw was surprising. We’ve done these health assessments in a number of locations across the southeast U.S. coast and we’ve never seen animals that were in this poor of condition.

Q: How does this study relate to or inform the investigation of the high number of marine mammal strandings observed along the Gulf Coast since February 2010 (the Unusual Mortality Event), which pre-dates the Deepwater Horizon oil spill?

Following the Deepwater Horizon oil spill, numerous dolphins were documented encountering oil, such as those in this photo from July 2010.

Following the Deepwater Horizon oil spill, numerous dolphins were documented encountering oil, such as those in this photo from July 2010. (NOAA)

The Unusual Mortality Event that’s underway is in the same general geographic area as the Deepwater Horizon oil spill response and overlaps with the Natural Resource Damage Assessment. These findings overlap with the high number of strandings, particularly in the Barataria Bay or central Louisiana area.

When you have a significant event like an oil spill or an Unusual Mortality Event, being able to study both live and dead animals provides more information about what might be going on as animals get ill and then die. Having access to findings from both of these studies enables us to look for commonalities between what we’re finding in the sick animals and what we’re finding in the dead animals to better evaluate causes and contributing factors.

Q: Outside of NOAA, who else did you work with to perform the health assessment?

This work was part of the Deepwater Horizon Natural Resource Damage Assessment being conducted cooperatively among NOAA, other federal and state trustees, and BP. This wouldn’t have been possible without the help of a number of our partners, including the National Marine Mammal Foundation, Chicago Zoological Society, and Louisiana Department of Wildlife and Fisheries. Also, Seaworld and the Georgia Aquarium provided personnel to support our studies. Their expertise and experience were key to getting these studies done.

We greatly appreciate the efforts of researchers from the Sarasota Dolphin Research Program, which led the dolphin health assessments in Sarasota.

Watch a video of the researchers as they temporarily catch and give health exams to some of the dolphins in Barataria Bay, La., in August of 2011:


Leave a comment

A Video Update on California Kelp Restoration from Thank You Ocean

Giant kelp.

The goal of removing the excess urchins is to allow young kelp plants to establish themselves and grow into a diverse, healthy kelp forest. (NOAA Monterey Bay National Marine Sanctuary)

“Imagine a barren underwater ‘desert’ turned back into a lush, healthy habitat in mere months!”

A recent video podcast produced by the Thank You Ocean Report welcomed NOAA scientist David Witting to discuss a project to restore kelp forests off the coast of southern California.

To bring back the decimated kelp forests, volunteer divers, commercial urchin divers, researchers, and local nonprofit groups are removing urchins to keep them from eating every newly settled kelp plant. This is one of the projects aimed at restoring fish habitat in southern California and was funded by the NOAA Montrose Settlements Restoration Program.

So, take a few minutes, kick up your feet (or flippers), and enjoy this early success story about NOAA and our partners’ efforts to restore the forests of the sea:


2 Comments

Science of Oil Spills Training Now Accepting Applications for Spring 2014

People looking at computer.

These trainings help oil spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. (NOAA)

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of March 3-7, 2014, at NOAA’s Gulf of Mexico Disaster Response Center in Mobile, Ala.

We will accept applications for this class through Friday, January 17, 2014, and we will notify applicants regarding their participation status by Friday, January 31, 2013.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These three-and-a-half-day trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 117 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. The class will be limited to 40 participants.

One additional SOS class is planned during fiscal year 2014 (ending September 30, 2014) in Seattle during the summer. At this time, we are only accepting applications for the Mobile, Ala., class; however, when the application dates for the Seattle class are finalized, we will announce them on this website.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

How Do Oil Spills Affect Coral Reefs?

Coral habitat in the Hawaiian Islands.

Coral habitat in the Hawaiian Islands. (NOAA)

A warming, more acidic ocean. Grounded ships and heavy fishing nets. Coral reefs face a lot of threats from humans. For these tiny animals that build their own limestone homes underwater, oil spills may add insult to injury.

But how does spilled oil reach coral reefs? And what are the effects?

How an oil spill affects corals depends on the species and maturity of the coral (e.g., early stages of life are very sensitive to oil) as well as the means and level of exposure to oil. Exposing corals to small amounts of oil for an extended period can be just as harmful as large amounts of oil for a brief time.

Coral reefs can come in contact with oil in three major ways:

  1. Oil floating on the water’s surface can be deposited directly on corals in an intertidal zone when the water level drops at low tide.
  2. Rough seas can mix lighter oil products into the water column (like shaking up a bottle of salad dressing), where they can drift down to coral reefs.
  3. As heavy oil weathers or gets mixed with sand or sediment, it can become dense enough to sink below the ocean surface and smother corals below.

 

Oil slicks moving onto coral reefs at Galeta at low tide after the Bahia las Minas refinery spill, Panama, in April 1986.

Oil slicks moving onto coral reefs at Galeta at low tide after the Bahia las Minas refinery spill, Panama, in April 1986. (NOAA)

Once oil comes into contact with corals, it can kill them or impede their reproduction, growth, behavior, and development. The entire reef ecosystem can suffer from an oil spill, affecting the many species of fish, crabs, and other marine invertebrates that live in and around coral reefs.

As oil spill responders, NOAA’s Office of Response and Restoration has to take these and many other factors into account during an oil spill near coral reefs. For example, if the spill resulted from a ship running aground on a reef, we need to consider the environmental impacts of the options for removing the ship. Or, if an oil spill occurred offshore but near coral reefs, we would advise the U.S. Coast Guard and other pollution responders to avoid using chemical dispersants to break up the oil spill because corals can be harmed by dispersed oil.

We also provide reports and information for responders and natural resource managers dealing with oil spills and coral reefs:

You can learn more about coral reefs, such as the basic biology of corals, how damaged coral reefs can recover from an oil spill or be restored after a ship grounding, and what we’ve learned about oil spills in tropical reefs.

For lessons a little closer to home, be sure to find out five more things you should know about coral reefs and listen to this podcast about threats to coral health from NOAA’s National Ocean Service.


Leave a comment

Emergency Restoration Is in a Basketful of Coral

NOAA Fisheries Biologist Matthew Parry also contributed to this post.

Basket of loose corals collected from the area damaged by the VogeTrader's grounding, where divers are removing rubble.

Basket of loose corals collected from the area damaged by the VogeTrader’s grounding, where divers are removing rubble. (NOAA)

In 30 feet of water, just outside the entrance to Hawaii’s Kalaeloa Harbor, emergency coral restoration is just getting underway. NOAA and our partners are working with the owners of the cargo vessel M/V VogeTrader to repair corals that were injured when the vessel accidentally lodged itself onto the reef one morning in 2010.

The 734-foot bulk carrier M/V VogeTrader after it ran aground near Oahu, on February 5, 2010. The milky color in the water beneath the ship is the pulverized coral.

The 734-foot bulk carrier M/V VogeTrader after it ran aground near Oahu, on February 5, 2010. The milky color in the water beneath the ship is the pulverized coral. (U.S. Coast Guard)

The grounding—and the response activities taken to haul the vessel off the reef and prevent it from spilling any of its fuel—crushed, broke, dislodged, and buried various species of corals. A few of the types of marine life affected include the common coral species Montipora capitata (rice coral), Porites lobata (lobe coral), Pocillopora meandrina (cauliflower coral); sponges; and other bottom-dwelling invertebrates. We’re pursuing emergency restoration to prevent unnecessary future injuries that might occur if actions are further delayed.

Beginning on October 30, 2013, teams of divers began working to reattach broken coral and remove rubble to prevent loose pieces from moving with wave action and causing further damage to the reef.

This restoration project requires a series of trips, over several months, to the grounding location near the coast of Oahu. NOAA and our partners undertook the first of many of these missions during a recent two-day effort. Leaving from Kalaeloa/Barber’s Point Harbor, the first day was spent conducting acoustic mapping surveys to determine exactly where the rubble was located and the size of the affected area.

On the second day divers were back to find and move any live corals and coral fragments out of the area where rubble is going to be removed. We recovered the corals by hand, placing them in baskets before transporting them a short distance to areas outside the work zone. The corals will be safe there until after the rubble is removed and they can be transported back into the cleared area for reattachment.

Stay tuned as we post updates and photos of the progress. In the meantime, you can learn more about the underwater techniques and technologies we use for these types of projects.

UPDATE: Learn how undersea vacuums, power washers, and a strong winter storm would help this restoration work and watch a video of divers restoring the damaged coral.

Dr. Matthew Parry got his Ph.D. in Oceanography from the University of Hawaii in 2003. He came to work for the NOAA Restoration Center in Honolulu as part of the Damage Assessment, Remediation and Restoration Program in 2007. He continues to work at NOAA as a Fishery Biologist specializing in Natural Resource Damage Assessment