NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Recipes for Disaster: Cleaning up After Food Spills

Ship, oil spill, and Thanksgiving turkey.

Shutterstock.com/All rights reserved.

At a holiday feast like Thanksgiving, something is sure to be spilled: gravy, cranberry sauce, salt, and even more tragically, sometimes oil. For those of us in NOAA who deal with the effects of spills every day of the year, we’ll be grateful if there aren’t any major spills of these items, edible or otherwise, this Thanksgiving.

The Beans

During a large storm on December 8, 2004, the cargo ship M/V Selendang Ayu lost power and ran aground just off the coast of Alaska’s remote Aleutian Island of Unalaska, approximately 25 miles southwest of Dutch Harbor. It was in these chilly waters that the ship broke in two and literally spilled the beans—about 60,000 tons of soybeans—along with 337,000 gallons of oil. The beans and most of the oil were washed onto the island’s rocky beaches, coating miles of shoreline.

In the aftermath of the spill, NOAA’s Office of Response and Restoration helped conduct shoreline surveys before and after cleanup, made cleanup recommendations, and was involved in assessing damage to natural resources and planning restoration. While spill responders labored to remove oil from the beaches, they left the tons of soybeans to rot and disperse naturally.

An unfortunate side effect of this, however, was that the decomposition used up oxygen in the water, similar to what happened when molasses spilled in Hawaii’s Honolulu Harbor in September 2013. This caused low oxygen levels and impacts to marine invertebrates such as shellfish in the intertidal zone. The seagulls took care of the invertebrates, but there are few natural predators of soybeans in the surf of the Aleutian Islands. At one point, there was a concern that the soybeans could begin sprouting in the moist conditions, but that was never observed, and they continued decomposing over the next year and a half.

Coconut Oil

Coconut oil, while popular with some bakers, is less popular with spill responders. On February 11, 1986, NOAA responded to the mess that followed when a ship carrying 85,000 gallons of coconut oil was struck by a tug boat crossing the Kill Van Kull, a tidal strait separating New York’s Staten Island from Bayonne, N.J. The stricken Dua Mar released all of its coconutty cargo into the strait.

NOAA provided the U.S. Coast Guard with a trajectory of where the oil would go, along with properties of coconut oil (it solidifies at temperatures below 76 degrees Fahrenheit) and an analysis of potential environmental impacts to nearby animals, plants, and habitats. Because it was winter, the coconut oil solidified upon mixing with the water and washed onto structures along the shore. Cleanup efforts involved pitchforks and shovels but were complete after several weeks.

Palm Kernel Oil

A palm oil spill in a port off of Colombia in 2008.

A palm oil spill in a port off of Colombia in 2008. (Elastec/All rights reserved)

A mere month after coconut oil coated the waters off Staten Island, N.Y., Proctor and Gamble reported a spill of 50 gallons of palm kernel oil nearby. The oil entered a line from one of their facilities to a tug boat, which eventually leaked it out the exhaust drain into the tidal strait known as Arthur Kill.

In this case, NOAA advised that the palm kernel oil would not solidify but instead remain a light oil floating on the water’s surface. This vegetable oil is not the same as what is commonly known simply as “palm oil” (that comes from the palm fruits rather than the palm seed). Still, both types of palm oils and other vegetable oils have the potential to harm species that frequent the surface of the water, usually via smothering, suffocating, or removing the waterproofing abilities of feathers or fur.

Butter

Firefighters in Madison, Wisc., had to deal with 16 million pounds of butter melting and flowing out of the burning refrigerated warehouse. The butter is visible here in the dug-out channels.

Firefighters in Madison, Wisc., had to deal with 16 million pounds of butter melting and flowing out of the burning refrigerated warehouse. The butter is visible here in the dug-out channels. (Wisconsin Department of Natural Resources)

Yes, butter. It can be more than just a hazard to your arteries, as 70 firefighters in Madison, Wisc., learned in the eight days that followed the Great Butter Fire of May 3, 1991. A four-alarm blaze erupted at the cold-storage facilities of the Central Storage and Warehouse Company. The extreme heat melted 16 million pounds of butter along with lard and cheese stored in the warehouses, creating a grease fire and releasing a stream of melted butter into surrounding roadways and ditches and threatening nearby Starkweather Creek and Lake Monona.

At first, responders tried to absorb the grease using six truckloads of sand. Next, engineers at the Wisconsin Department of Natural Resources successfully redirected the river of butter [PDF] away from the still-burning warehouse by digging channels and lagoons that led to lower ground. This method allowed the buttery liquid to form pools, keeping it away from the urban waterways that had recently received $1 million in environmental restoration. The fire was extinguished on May 11 but had destroyed about 50 million pounds of food in the process. In an interesting turn of events, the ruined butter and lard were actually salvaged and processed into animal feed.

The brave firefighters of the City of Madison’s Station Five, located just down the road from the warehouse, still commemorate this buttery and cheesy fire on their official station logo.

**

On behalf of NOAA, have a happy and spill-free Thanksgiving!


5 Comments

In New Jersey, Celebrating a Revived Marsh and the Man who Made it Possible

This is a post by the NOAA Restoration Center’s Carl Alderson.

Ernie Oros speaking next to Woodbridge marsh.

Former State Assemblyman and champion of open space, Ernie Oros at the Woodbridge marsh dedication ceremony on Oct 16, 2007. (New York New Jersey Baykeeper/Greg Remaud)

Ernie Oros, former New Jersey State Assemblyman and octogenarian, stood next to me on the bank of a newly created tributary to the Woodbridge River and looked out across an expanse of restored tidal marsh. It was May 2008 and the marsh that he had long championed was now lush and green and teeming with fish. This inspiring sight before us was the result of a marsh restoration project undertaken by NOAA, the Army Corps of Engineers, New Jersey Department of Environmental Protection, and the Port Authority of New York and New Jersey.

Years ago a tall berm was raised between the Woodbridge River and this marshland, effectively walling it off from the reach of the tides that replenished it. Reeds that grow in damaged marshes choked off the tides even further.

He gave a pause, drew a breath and was on to the next subject before I had finished marveling at the sea of grass standing before us. “When can you get the observation walkway back up?” Ernie asked me. “Soon,” I replied, “we have a plan.” “Good,” he said, “I’m not getting any younger.”

That’s how the conversation went until August 2012 when Ernie passed away at the age of 88. The construction of the tidal marsh itself—with all the complexities of hydrology, chemistry, biology, logistical twists and turns, negotiations, permits, and contract discussions—seemed to go up in a snap. In two years it went from design contract to dedication ceremony. Yet, the observation boardwalks—there were now two—seemed to lag behind in a mire of contract disputes, tight budgets, two hurricanes, and extension after extension of funding agreements.

A Vision to Restore

I never wondered why Ernie was so anxious to move forward; he was after all in his 80s and by his own account in failing health. In his knock-around clothes, he looked like an old clam digger, but in his best suit, like the one he wore the day of the marsh dedication ceremony, he still cut the figure of the State Assemblyman he once was. Ernie had a vision for this place, and he was now on a roll. He had long ago established Woodbridge River Watch, a community organization to advocate for open space in Woodbridge, N.J.; he had guided the town through major acquisition and conservation efforts; he gathered momentum for his butterfly garden; planned to landscape the perimeter with local historic artifacts; and now he could add the marsh restoration to his list of achievements.

Among all of his accomplishments, nothing could be more dramatic than having blown life into this dying marshland. It linked the past and the future to a community that blossomed at the cross roads of the American colonial experience in the 17th century, soared to the peak of industrialization beginning in the 18th and 19th centuries, then boomed and at last came to rest upon the suburbanization movement of the 20th century. For myself, I could live with the simple sweet note of this being an urban habitat: a rebirth for colonial wading birds, ribbed mussels, fiddler crabs, and young juvenile bluefish called “snappers.” But for Ernie, the marsh was the opening hymn to a chorus of American history.

It took me a long time to realize what Ernie was up to. The marsh wasn’t just a host for the history garden; it itself was an artifact. The marsh represented every century that came before the first European settlers arrived. Better than any artifact, the marsh was living history as far as Ernie was concerned.

An interpretative sign displaying the flora and fauna found in Woodbridge Marsh.

An interpretative sign displaying the flora and fauna found in Woodbridge Marsh. (Illustrations: Jorge Cotto. Design: Ann Folli)

The observation boardwalks were the last piece of the plan. Both Ernie and I viewed the future boardwalks and their brightly designed story panels as a means of drawing in the citizens of Woodbridge. Boardwalks send a signal of welcome where a marsh alone often does not. The signs would interpret for them the plants, the animals, the natural processes unfolding in the marsh around them.

That is why Ernie was so anxious to see this vision through to completion. Despite the town’s position on the waterfront of three major bodies of water—the Raritan River, Raritan Bay, and Arthur Kill (a tidal straight separating the township from New York City)—very little of it was accessible to the public. Ernie hoped to change that by inviting people into a renewed Woodbridge Marsh.

A Day to Remember

Greg Remaud is the Deputy Director for the New York/New Jersey Baykeeper. The Baykeeper, a long-time partner of NOAA and advocate for open space in New York Harbor, is a non-profit organization committed to the conservation and restoration of the Hudson-Raritan Estuary. For Remaud, it had become increasingly apparent that the post-industrial age presented opportunities to create New Jersey’s waterfront in a new image.

Greg had met up with Ernie Oros years before. With the help of many others, this pair championed a new way forward for the Woodbridge River. Eventually, they were able to draw the attention of key agencies and help these dreams take the shape of Spartina grasses, High Tide bush, and killifish.

Then, earlier this year, I learned of the Baykeeper’s plan to honor Ernie’s memory with a day-long celebration.

One of the sons and great-grandsons of Ernie Oros canoeing on the banks of the Woodbridge River on Ernie Oros Celebration Day, September 28, 2013.

Ernie’s son Richard Oros and Michael Kohler, Ernie’s great-grandson, canoeing on the banks of the Woodbridge River on Ernie Oros Celebration Day, September 28, 2013. (Carl Alderson/all rights reserved)

On the astonishingly beautiful Saturday morning of September 28, 2013, the NOAA Restoration Center was on hand to be part of a very special event to honor Ernie’s life. To honor his legacy, the New York/New Jersey Baykeeper held a family-friendly event right next to what I consider Ernie’s greatest environmental achievement: the 67-acre Woodbridge River Wetland Restoration Project.

In a day that featured music, games, picnics, and face painting, the most popular event was the free kayak tours with the very capable staff of the Baykeeper, who led citizens through a seeming maze of restored marshes and tidal creeks. Several of Ernie’s family members were present. His sons, granddaughters, and great-grandkids jumped into canoes and kayaks to venture a ride through Ernie’s great achievement.

A Role for NOAA

NOAA’s involvement with the Woodbridge River Wetland Restoration Project began to take shape sometime in the late 1990s. We provided funds from natural resource damage settlements for two local oil spills to conduct feasibility studies, design, and permitting in 2000. Under a partnership of federal and state agencies, the project was designed and constructed between 2006 and 2007. NOAA and New Jersey Department of Environmental Protection provided $2.3 million, combining it with funds from the Army Corps of Engineers Harbor Deepening Program to make the full project come together for the Woodbridge River.

The project removed berms and obstructions that had sealed the former wetland from the Woodbridge River for decades and reunited two large tracts of land with the tides via created tidal creeks and planted marsh grasses. Today, the site is once again the home of wading birds, waterfowl, fiddler crabs, ribbed mussels, and seemingly hundreds of thousands of killifish. Ernie had tirelessly dedicated much of his adult life to campaign for the acquisition, protection, and restoration of his beloved Woodbridge River wetlands and his achievements will live on in their vibrant waters.

Carl Alderson.

Carl Alderson (left, NOAA) and Greg Remaud (right, NY/NJ Baykeeper) on the banks of the Woodbridge River on Ernie Oros Celebration Day, Sept. 28, 2013. Credit: Susan Alderson.

Carl Alderson is a Marine Resource Specialist with the NOAA Restoration Center, located at the JJ Howard Marine Science Lab in Highlands, N.J. Carl provides oversight of coastal habitat restoration projects and marine debris programs through NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) and Community-based Restoration Grants Program (CRP) in the mid-Atlantic region. He is a graduate of Rutgers University and is a Licensed Landscape Architect. Before joining NOAA, Carl worked for the City of New York and led a decade long effort to restore tidal wetlands, marine bird, and fish habitat as compensation for natural resources damages resulting from oil spills in New York Harbor. Carl is recognized as a national leader in restoration of coastal wetlands and bay habitats.


Leave a comment

Let Maps Open up the World Around You on GIS Day

Atlantic ERMA view of a grounded tanker after Post Tropical Cyclone Sandy.

In our online GIS tool Atlantic ERMA, you can see NOAA National Geodetic Survey aerial photography showing the derelict tanker John B. Caddell grounded on Staten Island, N.Y., following Post Tropical Cyclone Sandy. Red markers show field photos such as the image seen in the pop-up window in Atlantic ERMA. (NOAA)

Happy GIS Day! Today, GIS events are being hosted around the globe to highlight and celebrate the transformational role of Geographic Information Systems, or GIS.

GIS is mapping software that can display multiple sets of location-based information onto a single map. Viewing information this way can help you visualize lots of data and identify trends and relationships, such as the potential health impacts of living near power plants and major highways, or how many pizza places are within 10 miles of your house.

Like offices and agencies around the world, we in NOAA’s Office of Response and Restoration use GIS in our everyday work. Take a look at a few of the ways we use GIS—and you can too—to reduce environmental threats from coastal pollution.

Mapping Environmental Sensitivity

One of our teams is developing Environmental Sensitivity Index (ESI) maps using GIS technology to integrate and share information about sensitive shoreline resources, such as birds, wildlife, fisheries, and public beaches. Historically used for oil and chemical spill response and planning, these maps have become effective tools in preparing for and responding to storms, hurricanes, and other coastal disasters.

ESI data are published in a variety of GIS formats, including a file geodatabase and map document, that simplify their use within the GIS program ArcMap. Users can query data for their region to see what species are present in January, where threatened and endangered species live, what shoreline types are present, etc. You can download ESI data and ESI tools from our website and use them yourself.

Mapping Resources during a Disaster

MARPLOT is the mapping component in CAMEO, our software suite of tools for chemical spill response, which we develop with the U.S. Environmental Protection Agency (EPA). It’s a free and easy-to-use GIS system that emergency responders and planners use to display information from other programs in the CAMEO suite. This could mean mapping estimates of high-risk areas for toxic chemical clouds (from ALOHA) or the locations of chemical production and storage facilities in relation to schools and hospitals (from CAMEOfm).

MARPLOT can also be used as a general mapping tool, which allows users to add objects, move around the map, and get population estimates. Some users have adapted MARPLOT, which operates without an Internet connection, for use during tornado response, search and rescue operations, and emergency planning. The development team is working on a major revision to MARPLOT [UPDATE 2015: Now released!], which will include access to global basemaps, enhanced web-based features, and additional data management capabilities.

Mapping Environmental Response

Web mapping for environmental response, such as oil spills, has come a long way in the past decade. NOAA is a leader in this digital mapping revolution with ERMA®, the Environmental Response Management Application, which we designed with the University of New Hampshire’s Coastal Response Research Center and the EPA. It’s an online mapping tool offering comprehensive access to environmental response information and is customized for many coastal areas of the U.S.

ERMA integrates both static and real-time data, such as ESI maps, ship locations, weather, and ocean currents, in a centralized map for use during a disaster such as an oil spill or hurricane. It provides environmental responders and decision-makers with up-to-date information for planning, response, assessment, and restoration activities. The application incorporates data into a convenient, web-based GIS mapping platform that can be accessed simultaneously by a variety of users via the Internet.

ERMA Deepwater Gulf Response was used to assist with the response operations for the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Data related to this oil spill is displayed here and updated daily. In the northeast, Atlantic ERMA provided support to the Post Tropical Cyclone Sandy pollution response along the coast of New Jersey, New York, and Connecticut.

To the far north, Arctic ERMA has been used to integrate and display response-related information from oil spill technology demonstrations aboard an icebreaker in the remote Arctic Ocean and to display the data and high resolution imagery of the ShoreZone project, which seeks to map all 46,600 miles of Alaska’s coastal habitat and features. You can view all of the regional ERMA sites on our website.

Discover Your World

GIS DayYou can explore on the GIS Day website and NOAA’s Ocean Service website some of the amazing stories that GIS can help tell:

Post updated November 18, 2015.


Leave a comment

Alaska ShoreZone: Mapping over 46,000 Miles of Coastal Habitat

This is a post by the Office of Response and Restoration’s Zach Winters-Staszak.

A survey of St. Lawrence Island, Alaska, from July 2013 reveals the island's dramatic coastal cliffs.

A survey of St. Lawrence Island, Alaska, from July 2013 reveals the island’s dramatic coastal cliffs. (ShoreZone.org)

I learned a few things while I was at a meeting in Anchorage, Alaska, last month. Most importantly (and perhaps a surprise to those from Texas), I learned everything is bigger in Alaska, namely its shoreline. Alaska’s shoreline measures over 46,600 miles (75,000 km), longer than the shorelines of all the lower 48 states combined.

Now imagine for a minute the work involved in flying helicopters low along that entire shoreline, collecting high-resolution imagery and detailed classifications of the coast’s geologic features and intertidal biological communities. No small endeavor, but that’s exactly what the Alaska ShoreZone Coastal Inventory and Mapping Project, a unique partnership between government agencies, NGOs, and private industry, has been doing each summer since 2001.

Since then, ShoreZone has surveyed Alaskan coasts at extreme low tide, collecting aerial imagery and environmental data for roughly 80% of Alaska’s coastal habitats and continues to move towards full coverage each year. Collecting the vast amounts of imagery and data is a great accomplishment in and of itself, but ShoreZone, with help from NOAA’s National Marine Fisheries Service, has done an equally incredible job at making their entire inventory accessible to the public.

Just think how this valuable and descriptive information could be used. Planning for an Alaskan kayak trip next summer? ShoreZone can help you prioritize which beaches will save your hull from unwanted scratches. Trying to identify areas of critical habitat for endangered fishes? ShoreZone can help you in your research. Indeed, ShoreZone has many applications. For the Office of Response and Restoration, ShoreZone is an invaluable tool that serves alongside NOAA’s Environmental Sensitivity Index (ESI) maps and data as a baseline for the coastal habitats of Alaska and is currently being used for environmental planning, preparedness, and Natural Resource Damage Assessment planning in Alaska.

One of the many ways to access ShoreZone imagery and data is through Arctic ERMA, NOAA’s online mapping tool for environmental response. There are several advantages to this. For example, the National Marine Fisheries Service used ShoreZone imagery and data to designate critical habitat areas for endangered rockfish in Washington’s Puget Sound, a process that could also be applied to Alaska if necessary. That information could quickly be integrated into ERMA and displayed on a map allowing you to view the data used to determine those locations as well.

Screenshot of Alaska through Arctic ERMA and showing ShoreZone data layers.

To find ShoreZone photos in ERMA, type “Alaska ShoreZone” in the find bar at the top, then click on the result to turn on the layer in the map. Next, to view ShoreZone photos in ERMA, first click on the Identify tool icon (i) and then click on a desired point in the map. A table will appear in a pop-up with the hyperlink to the desired photo. Or, click on this image to view ShoreZone data in Arctic ERMA. (NOAA)

As updates and additions to the imagery database become available they will also be available in Arctic ERMA. The Bureau of Safety and Environmental Enforcement (BSEE) has provided funding to complete the imagery processing and habitat mapping for the North Slope of Alaska. BSEE also provided funding to finish Arctic ERMA and to develop the internet-independent Stand-alone ERMA. The efforts are complementary and strategic given the increased activity in the Arctic.

To prepare for this increase in activity, the ShoreZone and ERMA teams are working to incorporate ShoreZone data into Stand-alone ERMA for use when Internet connectivity is unreliable. The beauty of the photos included here is deceptive. A majority of Alaska’s shoreline is rugged, unforgiving, and remote. Having access to high-resolution imagery along with environmental and response-focused data in the kind of Internet-independent package that ShoreZone and ERMA provide would be an indispensable tool during a hazardous incident like a ship collision, oil spill, or search and rescue mission. This is just one way NOAA and ShoreZone are working together to strengthen our commitment to the coastal environments and communities of Alaska.

Zach Winters-StaszakZach Winters-Staszak is a GIS Specialist with OR&R’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


Leave a comment

Swimming Upstream: Examining the Impacts of Nuclear-age Pollution on Columbia River Salmon

A view of the free-flowing section of Columbia River known as the Hanford Reach, along with the famous white bluffs that line it.

A view of the free-flowing section of Columbia River known as the Hanford Reach, along with the famous white bluffs that line it. (NOAA)

Flowing freely through southeastern Washington is an approximately 50 mile stretch of the Columbia River known as the Hanford Reach. This unique section of river is birthplace and home to many animals at different stages of life, including Chinook salmon, the largest of the river’s Pacific salmon. Yet this same segment of river at one time also served as the birthplace of the nuclear age: at the Hanford Nuclear Reservation. Today, NOAA, other federal and state agencies, and Indian tribes are still trying to determine the full impact of this nuclear legacy on fish, wildlife, and their habitats.

Beginning in 1943, the Hanford Reach, with its steady supply of water and relative isolation, attracted the attention of the U.S. government during World War II. Searching for a location to erect nuclear reactors for the top-secret Manhattan Project, the U.S. was racing to build an atomic bomb and this work took shape at Hanford.

Two of Hanford's nuclear reactors sit, decommissioned, along the Columbia River at the Hanford Nuclear Reservation.

Two of Hanford’s nine nuclear reactors sit, decommissioned, along the Columbia River at the Hanford Nuclear Reservation. (NOAA)

The first nuclear reactor built at Hanford—and the first full-scale nuclear production plant in the world—was the B Reactor, which began operating in 1944. This and the other eight reactors eventually constructed at Hanford were located right on the Columbia River, an essential source of water to carry away the extreme heat generated by nuclear fission reactions. In these plants, workers turned uranium (euphemistically referred to as “metal”) into weapons-grade plutonium (known as “product”). The plutonium eventually ended up in the atomic bomb dropped on Nagasaki, Japan, in 1945, as well as in nuclear arms stockpiled during the U.S.-Soviet Cold War. Hanford’s last reactors shut down in 1987.

The River Runs Through It

While the nuclear reactors were operating, however, water was pumped from the Columbia River and aerated at a rate of 70,000 gallons a minute. This was meant to improve its quality as it flowed through a maze of processing equipment—pipes, tubes, and valves—and into the core, the heart of the nuclear reactor. There, in the case of B Reactor, about 27,000 gallons of water gushed through 2,004 process tubes every minute. Each tube held 32 rods of uranium fuel.

The "valve pit" in Hanford's B Reactor, where the thousands of gallons of water that cooled the nuclear reactor's core passed through.

The “valve pit” in Hanford’s B Reactor, where the thousands of gallons of water that cooled the nuclear reactor’s core passed through. (NOAA)

Inside the reactor’s core, where the nuclear reactions were occurring, the water temperature would spike from 56 degrees Fahrenheit to 190 degrees in a single minute. Later in the reactor’s lifespan, the operators would be able to leave the water inside the nuclear reactor core long enough to heat it to 200 degrees before releasing the water into lined but leaky outdoor holding ponds. Once in the holding ponds, the reactor water would sit until its temperature cooled and any short-lived radioactive elements had broken down. Finally, the water would return to the Columbia River and continue its path to the Pacific Ocean.

Water played such an essential role in the nuclear reactor that engineers had four levels of backup systems to keep water constantly pumping through the core. In addition to being aerated, the water was also filtered and chemically treated. To prevent the core’s plumbing equipment from corroding, chromium was added to the water. Hanford’s D Reactor, in particular, handled large quantities of solid hexavalent chromium, a toxic chemical known to cause cancer.

The Salmon Runs Through It

A NOAA scientist takes stock of a male Chinook salmon during their fall run along the Hanford Reach in 2013.

A NOAA scientist takes stock of a male Chinook salmon during their fall run along the Hanford Reach in 2013. (NOAA)

Fast-forward to 2013. NOAA and its partners are participating in a natural resource damage assessment, a process determining whether negative environmental impacts resulted from the Department of Energy’s activities at Hanford. As part of that, NOAA is helping look at the places where water leaked or was discharged back into the Columbia River after passing through the reactors.

One goal is to establish at what levels of contamination injury occurs for species of concern at Hanford. Salmon and freshwater mussels living in the Columbia River represent the types of species they are studying. Yet these species may face impacts from more than 30 different contaminants at Hanford, some of which are toxic metals such as chromium while others are radioactive isotopes such as strontium-90.

Many of the Columbia River’s Chinook salmon and Steelhead trout spawn in or migrate through the Hanford Reach. Currently, NOAA and the other trustees are pursuing studies examining the extent of their spawning in this part of the river and determining the intensity of underground chromium contamination welling up through the riverbed. This information is particularly important because salmon build rocky nests and lay their eggs in the gravel on the bottom of the river.

You can learn more about the history of the Hanford Reach and the chromium and other contamination that threatens the river (around minute 8:50-9:03)  in this video from the Department of Energy:

The trustees have many other studies planned, all trying to uncover more information about the natural resources and what they have been experiencing in the context of Hanford’s history. Yet, for the natural resource damage assessment, even if the trustees find salmon experiencing negative impacts, the evidence found needs to be tied directly to exposure to Hanford’s pollution (rather than, for example, the influence of dams or pollution from nearby farms). It is a complicated process of information gathering and sleuthing, but eventually it will culminate in a determination of the restoration required for this critical stretch of habitat on the Columbia River.

For more information, see:


Leave a comment

Using the Almighty Dollar, NOAA Marine Debris Program Empowers Groups to Keep Coasts Clean

The NOAA Marine Debris Program funds projects that remove old fishing gear and other debris from beaches and coastal waters.

The NOAA Marine Debris Program funds projects that remove old fishing gear and other debris from beaches and coastal waters. (NOAA)

The U.S. has a long and winding shoreline—95,471 miles of it—extending into bays, inlets, and the Great Lakes. This massive scale creates a challenge just as big to keep trash and other debris off our shores and out of our coastal waters.

Fortunately, the NOAA Marine Debris Program uses the power of funding to put much-needed dollars into the hands of worthy community groups, non-governmental organizations, tribes, local government agencies, and universities working to address marine debris in their areas.

In addition to funding projects like these, the NOAA Marine Debris Program coordinates, strengthens, and promotes marine debris activities within NOAA and among its partners and the public through regional coordination, research, outreach, and education.

Get It Out

Earlier this year, we awarded $967,000 to 11 removal projects ranging from Alaska to Puerto Rico. Some focus on abandoned vessels and fishing gear, while other projects aim to sweep plastics, Styrofoam, and other consumer debris from beaches and sea turtle nesting sites.

One innovative project in North Carolina establishes a pilot program to encourage commercial fishers to collect derelict crab pots from surrounding waters so they can be transformed into artificial reefs, creating habitat for oysters.

The NOAA Marine Debris Blog reports that “through this program, NOAA has funded 76 marine debris removal projects and removed more than 3,800 metric tons of marine debris from our oceans and Great Lakes since 2006.”

Keep It Out

Yet the easiest way to clean up marine debris is to keep it from getting into the water in the first place. This is why the NOAA Marine Debris Program also awards grants for outreach and education efforts to prevent marine debris. In 2013, we provided $949,512 to eight groups across the country to develop hands-on education materials and activities, curricula, workshops, and museum displays, as well to three scientific organizations to research the interactions of microplastics with the marine environment.

The Rozalia Project for a Clean Ocean received one of these education grants, which they will use to support their traveling dockside education programs featuring “Hector the Collector.” Hector is a small, yellow remotely operated vehicle that dives in harbors searching for and gathering marine debris with its headlights, sonar, camera, and gripper claw. In addition to educational activities surrounding Hector, the Rozalia Project organizes beach cleanups, with aspirations of picking up 500,000 pieces of debris this year.

The projects funded through the NOAA Marine Debris Program typically last between one and two years but produce lasting benefits to the environment, fish and wildlife, and communities they serve.

To learn more about the NOAA Marine Debris Program’s efforts to remove and prevent marine debris, head to marinedebris.noaa.gov.


Leave a comment

No Solid Mass of Debris from Japan in the Pacific Ocean

Here is an example of confirmed Japan tsunami marine debris arriving in the U.S.: a 4-by-4-foot plastic bin spotted off the eastern coast of Oahu, Hawaii, on September 18, 2012.

There is no solid island of debris from Japan heading to the United States. Here is an example of confirmed Japan tsunami marine debris arriving in the U.S.: a 4-by-4-foot plastic bin spotted off the eastern coast of Oahu, Hawaii, on September 18, 2012. The barnacles on its bottom are a common open-water species. (Hawaii Undersea Research Laboratory)

We’ve heard a concern from some of you that there’s an island of debris in the Pacific Ocean coming from the 2011 earthquake and tsunami in Japan. For those of you who may be new to this topic, we’d like to address those concerns.

Here’s the bottom line: There is no solid mass of debris from Japan heading to the United States.

At this point, nearly three years after the earthquake and tsunami struck Japan, whatever debris remains floating is very spread out. It is spread out so much that you could fly a plane over the Pacific Ocean and not see any debris since it is spread over a huge area, and most of the debris is small, hard-to-see objects.

We have some helpful resources for you, if you’re interested in learning more.

While there likely is some debris still floating at sea, the North Pacific is an enormous area, and it’s hard to tell exactly where the debris is or how much is left. A significant amount of debris has already arrived on U.S. and Canadian shores, and it will likely continue arriving in the same scattered way over the next several years. As we get further into the fall and winter storm season, NOAA and partners are expecting to see more debris coming ashore in North America, including tsunami debris mixed in with the “normal” marine debris that we see every year.

NOAA has modeled the debris’ movement, and the model shows the overall spread of all simulated debris and an area where there may be a higher concentration of lower floating debris (such as wood) in one part of the Pacific. However, that doesn’t mean it’s in a mass, and it doesn’t tell us how much is there, it just shows there may be more debris there than in other areas. Observations of the area with satellites have not shown any debris.

Even though there’s no mass, addressing this debris is very important. NOAA has worked with partners in the states to monitor the debris, form response plans, and try to mitigate any impacts. We’ll continue that work as long as necessary. We’re happy to answer any questions you may have. Feel free to email us at MarineDebris.Web@noaa.gov.