NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Three and a Half Things You Didn’t Know About the History of Oil Spills

Lakeview oil gusher surrounded by sandbags.

The largest oil spill in the United States actually took place in 1910 in Kern county, California. The Lakeview #1 gusher is seen here, bordered by sandbags and derrick removed, after the well’s release had started to subside. (U.S. Geological Survey)

Like human-caused climate change and garbage in the ocean, oil spills seem to be another environmental plague of modern times. Or are they?

The human relationship with oil may be older than you think. In California’s San Joaquin Valley, that relationship may date back more than 13,000 years. Archaeologists have discovered a long history of Native Americans using oil from the area’s natural seeps, including the Yokut Indians creating dice-like game pieces out of walnut shells, asphalt, and abalone shells. At an archaeological site in Syria, the timeline extends back even further: bitumen oil was used to affix handles onto Middle Paleolithic flint tools dating to around 40,000 BC.

As history has a tendency to repeat itself, we can benefit from occasional glimpses back in time to place what is happening today into a context beyond our own fast-moving lives. When it comes to oil spills, you may be surprised to learn that this history goes far beyond—and is much more complicated than—simply the 2010 Deepwater Horizon and 1989 Exxon Valdez oil spills.

Based on the research of NOAA oil spill biologist Gary Shigenaka, here we present three and a half things you probably didn’t know about the history of oil spills.

1. Oil spills have been happening for more than 150 years, but society has only recently started considering them “disasters.”

If you look back in time for historical accounts of oil spills, you may have a hard time finding early reports. When the first oil prospectors in Pennsylvania would hit oil and it almost inevitably gushed into the nearby soil and streams, people at the time saw this not as “environmental degradation” but as a natural consequence of the good fortune of finding oil. In an 1866 account of Pennsylvania’s oil-producing Venango County, this attitude of acceptance becomes apparent:

When the first wells were opened…there was little or no tankage ready to receive it, and the oil ran into the creek and flooded the land around the wells until it lay in small ponds.  Pits were dug in the ground to receive it, and dams constructed to secure it, yet withal the loss was very great…the river was flooded with oil, and hundreds of barrels were gathered from the surface as low down as Franklin, and prepared as lubricating oil.  Even below this point oil could be gathered in the eddies and still water along the shore, and was distinctly perceptible as far down as Pittsburgh, one hundred and forty miles below.

2. The largest oil spill in the United States didn’t take place in the Gulf of Mexico in 2010 but in the California desert a hundred years earlier.

But similar to the Deepwater Horizon, this oil spill also stemmed from a runaway oil well. In Maricopa, California, the people drilling Lakeview Well No. 1 lost control of the well, which would eventually spew approximately 378 million gallons of oil into the sandy soil around it. The spill lasted more than a year, from March 14, 1910 until September 10, 1911, and only ceased after the well collapsed on itself, leaving a crater in the desert surrounded by layers of oil the consistency of asphalt.

3. The Alaskan Arctic is not untouched by oil spills; the first one happened in 1944.

The Naval ship S.S. Jonathan Harrington surrounded by Arctic sea ice.

The Naval ship S.S. Jonathan Harrington surrounded by Arctic sea ice. This ship likely caused the first major oil spill in Alaskan Arctic waters in August 1944. (U.S. Navy)

NOAA and many others are doing a lot of planning in case of an oil spill in the Alaskan Arctic. But whatever may happen in the future, in August of 1944, Alaska Native Thomas P. Brower, Sr. witnessed what was likely the first oil spill in the Alaskan Arctic. The U.S. Navy cargo ship S.S. Jonathan Harrington grounded on a sandbar near Barrow, Alaska. To lighten the ship enough to get off the sandbar, the crew apparently chose to release some of the oil it was carrying. In a 1978 interview, Brower describes the scene and its impacts on Arctic wildlife:

About 25,000 gallons of oil were deliberately spilled into the Beaufort Sea…the oil formed a mass several inches thick on top of the water. Both sides of the barrier islands in that area…became covered with oil.  That first year, I saw a solid mass of oil six to ten inches thick surrounding the islands.

…I observed how seals and birds who swam in the water would be blinded and suffocated by contact with the oil.  It took approximately four years for the oil to finally disappear. I have observed that the bowhead whale normally migrates close to these islands in the fall migration … But I observed that for four years after that oil spill, the whales made a wide detour out to sea from these islands.

And because the last point refers more to oil than oil spills, we’re counting it as item three and a half:

3½. The oil industry probably saved the whales.

Cartoon of whales throwing a ball with banners.

On April 20, 1861, this cartoon appeared in an issue of Vanity Fair in the United Kingdom. It hails the “Grand ball given by the whales in honor of the discovery of the oil wells in Pennsylvania.” (Public Domain)

The drilling of the first oil well in Pennsylvania in 1859 touched off the modern oil industry in the United States and beyond—and likely saved the populations of whales, particularly sperm whales, being hunted to near-extinction for their own oil, which was used for lighting and lubrication. The resulting boom in producing kerosene from petroleum delivered what would eventually be a lethal blow to the whaling industry, much to the whales’ delight.


Leave a comment

How Do You Keep Invasive Species out of America’s Largest Marine Reserve?

A young monk seal and birds on the beach of French Frigate Shoals in the Northwestern Hawaiian Islands.

The coral reefs of Papahānaumokuākea Marine National Monument are the foundation of an ecosystem that hosts more than 7,000 species, including marine mammals, fishes, sea turtles, birds, and invertebrates. Many are rare, threatened, or endangered, including the endangered Hawaiian monk seal. At least one quarter are found nowhere else on Earth. (NOAA)

From Honolulu, it takes a day and a half to get there by boat. But Scott Godwin, an expert in the ways “alien” marine life can travel and take hold in new places, knows what is at risk. He understands perfectly well what might happen if a new species manages to make that journey to the remote and incredible area under his watch.

Godwin works for the Resource Protection Program in NOAA’s Office of National Marine Sanctuaries. Along with the U.S. Fish and Wildlife Service and State of Hawaii, he is charged with protecting Papahānaumokuākea Marine National Monument, a tall order considering that it is one of the largest marine conservation areas in the world. This monument includes an isolated chain of tropical islands, atolls, and reefs hundreds of miles northwest of the main Hawaiian Islands—appropriately known as the Northwestern Hawaiian Islands—as well as nearly 140,000 square miles of surrounding waters. The monument is home to a host of rare and unique species, some found exclusively within its borders, as well as some of the healthiest and least disturbed coral reefs on Earth.

Map of main and Northwestern Hawaiian Islands

Papahānaumokuākea Marine National Monument is the single largest fully protected conservation area under the U.S. flag, and one of the largest marine conservation areas in the world. It encompasses 139,797 square miles of the Pacific Ocean — an area larger than all the country’s national parks combined. (NOAA)

And it is Godwin’s job to keep it that way. Along with climate change and marine debris, invasive species have been identified as one of the top three threats to this very special place, which, in addition to being a national monument, is also a national wildlife refuge and United Nations World Heritage Site. Fortunately, invasive species also happen to be Godwin’s area of expertise.

If new species were to break into the monument’s borders—and in some cases, they already have—the risk is of them exhibiting “invasive” behavior. In other words, outcompeting the native marine life among the coral reefs and taking the lion’s share of the most valuable resources: food and space.

But considering how remote and expansive the area is—the Northwestern Hawaiian Islands stretch across 1,200 nautical miles and are closed to the general public—how would anything find its way there in the first place?

Yet help from humans is how many species arrive in new environments, including the main Hawaiian Islands, where more than 400 non-native marine species are established. That means ships and other human activity coming from Hawaii represent the greatest potential for bringing invasive species into the monument.

Packing List: Bleach, Deep Freezer, and Quarantine Clothes

Dianna Parker of the NOAA Marine Debris Program learned this lesson firsthand. In October 2014, she and colleague Kyle Koyanagi joined a team of NOAA divers from the Pacific Islands Fisheries Science Center (PIFSC) on a mission to Papahānaumokuākea Marine National Monument to remove the tons of old fishing nets that wash up on its coral reefs each year.

In the months leading up to her departure from Honolulu, Parker learned she would need something called “quarantine clothes.” In essence, they were a brand-new set of clothes set aside for each time she would step on dry land in the Northwestern Hawaiian Islands. Furthermore, these new clothes had to be sealed in plastic bags and stored in a walk-in freezer for 48 hours before she could wear them. That made for a chilly start to the day, as Parker recalled.

The quarantine clothes were part of a U.S. Fish and Wildlife Service protocol for limiting both the introduction of foreign species into the monument and the spread of species between islands within it. “Something that’s native to one tiny island could be alien to the next one down the chain,” said Parker. The transmission could happen via a spore on your shoe or a seed stuck to your shirt.

In addition, all of the gear and equipment they were using, such as wet suits, fins, and life vests, had to be soaked in a dilute bleach solution before being used in a new location, a protocol developed by NOAA.

For the roughly month-long mission, Parker brought six full outfits to wear on the six islands the ship planned to visit. In the end, she only visited five islands and was able to turn a t-shirt from the sixth outfit into a makeshift hat to keep the hot sun at bay.

“Having to go through that level of precaution to not bring invasive species into the monument makes you realize just how delicate things are up there,” reflected Parker.

Stowaways Not Welcome

But before Parker and the rest of her team left on their mission, the vessel that would carry them, the NOAA Ship Oscar Elton Sette, first had to undergo a thorough cleaning and inspection before being granted a permit to enter the monument. The hull was scrubbed and checked by specially trained divers for even as much as a rogue barnacle. Ballast water, the water held in tanks on a ship to provide stability, was inspected closely as well because numerous creatures worldwide have been documented hitching a secret ride this way. And, of course, the ship was examined for rats, the perennial stowaways.

However, rats arrived in the monument years ago via the U.S. military activity previously based on Midway Atoll, a strategic naval base during World War II and the Cold War, and French Frigate Shoals, a runway and refueling stop for planes headed to Midway during World War II. While efforts to eradicate rats at these former military bases were successful, attempting a similar project for underwater species would be much more challenging. Marine species spread very quickly and human activities are necessarily limited by the finite amount of time we can spend underwater.

Currently, Godwin has documented about 60 non-native marine species in the Papahānaumokuākea Marine National Monument, mainly at Midway, but these species—the majority of which are marine invertebrates such as tube worms and sea squirts—are not recent arrivals. Most likely harken back to the area’s military days, which ended in 1994. Today the easiest way for a new marine species to get a foothold on these reefs is by colonizing “disturbed habitat,” or areas humans have altered, such as seawalls or docks, as is the case at Midway and French Frigate Shoals.

“Competition with native species is pretty stiff,” admits Godwin. While marine life from outside the monument can become established, they often don’t have the opportunity to become invasive, he said. “But we never say never,” which is why he helps train NOAA divers going to the monument to recognize the aggressive behaviors of marine invasive species.

Marine Debris and Surprises from Japan

Person pulling bio-fouled net out of water into boat with diver's help.

NOAA divers examining the abandoned fishing nets for potentially invasive species, as they were removing them from the Northwestern Hawaiian Islands in October 2014. (NOAA)

Godwin was on high-alert, however, when debris washed away from Japan during the 2011 tsunami began showing up in Hawaii. Most marine debris in the Northwestern Hawaiian Islands comes in the form of fishing nets typically lost in the open ocean—the kind the NOAA PIFSC team was clearing from reefs. Many of the species colonizing these nets are native to the open ocean and generally do not survive in the monument’s coastal environment.

But the boats and other debris from Japan came from the coast, bringing with them the hardy and flexible marine life capable of surviving the transoceanic journey until they found another coastal home. Fortunately, Godwin found that none of the non-native Japanese species showing up on tsunami debris became established in either Hawaii or the monument.

“Marine debris is a vector [for invasive species],” said Godwin, “but we have very little control,” which is why dealing with it in the monument focuses more on response than prevention. Yet with invasive species, prevention is always the goal. And when you get a glimpse of the unique place that is Papahānaumokuākea Marine National Monument, it is not hard to understand the lengths being taken to protect it.


1 Comment

To Save Corals in an Oahu Bay, First Vacuum up Invasive Algae, Then Apply Sea Urchins

Diver placing algae into Super Sucker vacuum hose.

With the help of a gentle vacuum hose attached to a barge — a device known as the “Super Sucker” — divers can now remove invasive algae from coral reefs in Kaneohe Bay in much less time. (Credit: State of Hawaii Division of Aquatic Resources)

Progress used to be painfully slow. On average, it would take a diver two strenuous hours to remove one square meter (roughly 10.5 square feet) of the exotic red algae carpeting coral reefs in Kaneohe Bay, Hawaii. In addition to ripping away thick mats of algae, divers also had to pluck off any remaining algae stuck to the reef and use a hand net to capture bits floating in the surrounding water. Even then, these invasive algae were quick to regrow from the tiniest remnants left behind.

Today, however, divers can clear the same area in roughly half the time, or even less, depending on how densely the algae are growing. How? With the help of a device called the “Super Sucker.”

This underwater vacuum is not much more than a barge equipped with a 40 horsepower pump and long hose that gets lowered into the water. Divers still pull off chunks of algae from the reef, but they then stuff it into the device’s hose. The steady, gentle suction of the Super Sucker pulls the algae—including any tiny drifting remnants—through the hose up to a mesh table on the barge. There, seawater drains out and any critters accidentally caught by the algae-vacuuming can be returned to the ocean. People on the barge can then pack the algae into mesh bags to be taken back to shore. (Watch a video of the Super Sucker at work.)

Super sucker barge with green collection hose in a tropical bay.

The Super Sucker barge at left in Kaneohe Bay. The green collection hose used to vacuum up invasive algae from the reefs below is visible on the water surface. (Credit: State of Hawaii Division of Aquatic Resources)

The success of the Super Sucker stands to be augmented with help from small, spiny sea creatures—sea urchins—as well as a new, dedicated infusion of funding from NOAA which will expand the device’s reach in Oahu’s Kaneohe Bay. But the question remains: How did exotic algae come to cause so much trouble for corals in the first place?

A Welcome Introduction, an Unintended Stay

The problematic marine algae, or seaweed, in Oahu’s Kaneohe Bay actually is a complex of two types of algae originally from Southeast Asia: Kappaphycus and Eucheuma. Both algae were brought to this area on the eastern side of Oahu in the 1970s in an attempt to cultivate them as a source of carrageenan, a thickening agent used in processed foods. While the agricultural endeavor never took off in Oahu, these algae did. Unfortunately, this was somewhat of a surprise. Two years after the algae’s introduction, several studies found a low likelihood of their escaping from experimental pens and threatening coral habitat in the bay.

In the decades since, Kappaphycus and Eucheuma have proven that prediction very wrong, as these algae are now comfortably established in Kaneohe Bay. Because these algae spread aggressively once they arrived in this new environment, they have earned the label “invasive.” The algae have been overgrowing the coral reefs, smothering and killing corals by blocking the sunlight these organisms need to survive. These days, some areas of Kaneohe Bay are no longer dominated by corals but instead by invasive algae.

Tumbleweed-like clumps of invasive algae on a coral reef.

Meet the complex of invasive algae plaguing coral reefs in Oahu’s Kaneohe Bay: Kappaphycus and Eucheuma. These thick, warty, plastic-like, and irregularly branching algae grow in tumbleweed-like clumps, often smothering coral beneath them. (Credit: State of Hawaii Division of Aquatic Resources)

Delivering a Double-Whammy to Invasive Algae

Around 2005, NOAA helped fund the development of the Super Sucker as part of a joint project between the State of Hawaii and the Nature Conservancy. The project was aimed at containing these invasive algae in Kaneohe Bay, a partnership that continues to the present day.

Today, NOAA is becoming involved once more by expanding this project and bringing the Super Sucker into new parts of Kaneohe Bay. NOAA will accomplish this by using part of the nearly $6 million available for restoration after the 2005 grounding of the ship M/V Cape Flattery. When the ship became lodged on coral reefs south of Oahu, efforts to refloat the vessel and avoid an oil spill caused extensive harm to coral habitat across approximately 20 acres, an area now recovering well on its own.

Sea urchins grazing on seaweed on a coral reef.

The native sea urchins eat away at any invasive algae left on the coral, keeping the algae’s growth in check. The State of Hawaii Division of Aquatic Resources is raising these urchins in captivity and releasing them into Kaneohe Bay. (Credit: State of Hawaii Division of Aquatic Resources)

This restoration project will not just involve the Super Sucker, however. Another key component in controlling invasive algae in Kaneohe Bay is reintroducing a native predator. While most plant-eating fish there prefer to graze on other, tastier algae, native sea urchins have shown they are happy to munch away at the tiniest scraps of Kappaphycus and Eucheuma found on reefs. But the number of sea urchins in Kaneohe Bay is unusually low.

Currently, the State of Hawaii Division of Aquatic Resources is raising native sea urchins and experimentally releasing them back into the bay. NOAA’s restoration project for the Cape Flattery coral grounding would greatly expand the combined use of the Super Sucker and reintroduced sea urchins to control the invasive algae.

Together, mechanically removing the algae with the Super Sucker and reintroducing sea urchins in the same area should be effective at curbing the regrowth and spread of invasive algae in the northern part of Kaneohe Bay. Making sure invasive algae do not spread outside the bay is an important part of this coral restoration project. This northern portion, near a major entrance to the bay, is a critical area for containing the algae and making sure it doesn’t escape from the bay to other near shore reefs.

Saving Corals and Creating Fertilizer

Top, coral reef with invasive algae. Bottom, same reef after algae was removed.

Top, coral reef before Super Sucker operations, and bottom, the same reef after the Super Sucker has cleared away the invasive algae. (Credit: State of Hawaii Division of Aquatic Resources)

Ultimately, the goal is to move toward natural controls (i.e., the sea urchins) taking over the containment of Kappaphycus and Eucheuma algae in Kaneohe Bay.

The benefits of removing the algae from the area’s coral reefs are two-fold. First, clearing away the carpets of algae saves the corals that are being smothered beneath them. Second, opening up other areas of the seafloor previously covered by algae creates space for young corals to settle and establish themselves, growing new reef habitat.

Another benefit of clearing the invasive algae in this project is that it provides a source of free fertilizer for local farmers. Not only does it offer a sustainable source of nutrients on agricultural fields but the algae breaks down more slowly and is therefore less susceptible than commercial fertilizer to leaching into nearby waterways.

Even so, a 2004 study confirmed that these algae do not survive in waters with low salt levels, meaning that any algae that do run off from farms into nearby streams will not eventually re-infect the marine environment. Another win.


Leave a comment

NOAA Assists with Response to Bakken Oil Train Derailment and Fire in West Virginia

Smoldering train cars derailed from the railroad tracks in snowy West Virginia.

On Feb. 18, 2015, response crews for the West Virginia train derailment were continuing to monitor the burning of the derailed rail cars near Mount Carbon next to the Kanawha River. The West Virginia Train Derailment Unified Command continues to work with federal, state and local agencies on the response efforts for the train derailment that occurred near Mount Carbon on February 15, 2015. (U.S. Coast Guard)

On February 16, 2015, a CSX oil train derailed and caught fire in West Virginia near the confluence of Armstrong Creek and the Kanawha River. The train was hauling 3.1 million gallons of Bakken crude oil from North Dakota to a facility in Virginia. Oil coming from the Bakken Shale oil fields in North Dakota and Montana is highly volatile, and according to an industry report [PDF] prepared for the U.S. Department of Transportation, it contains “higher amounts of dissolved flammable gases compared to some heavy crude oils.”

Of the 109 train cars, 27 of them derailed on the banks of the Kanawha River, but none of them entered the river. Much of the oil they were carrying was consumed in the fire, which affected 19 train cars, and an unknown amount of oil has reached the icy creek and river. Initially, the derailed train cars caused a huge fire, which burned down a nearby house, and resulted in the evacuation of several nearby towns. The evacuation order, which affected at least 100 residents, has now been lifted for all but five homes immediately next to the accident site.

The fires have been contained, and now the focus is on cleaning up the accident site, removing any remaining oil from the damaged train cars, and protecting drinking water intakes downstream. So far, responders have collected approximately 6,800 gallons of oily water from containment trenches dug along the river embankment.

Heavy equipment and oily boom on the edge of a frozen river.

Some oil from the derailed train cars has been observed frozen into the river ice, but no signs of oil appear downstream. (NOAA)

The area, near Mount Carbon, West Virginia, has been experiencing heavy snow and extremely cold temperatures, and the river is largely frozen. Some oil has been observed frozen into the river ice, but testing downstream water intakes for the presence of oil has so far shown negative results. NOAA has been assisting the response by providing custom weather and river forecasting, which includes modeling the potential fate of any oil that has reached the river.

The rapid growth of oil shipments by rail in the past few years has led to a number of high-profile train accidents. A similar incident in Lynchburg, Virginia, last year involved a train also headed to Yorktown, Virginia. In July 2013, 47 people were killed in the Canadian town of Lac-Mégantic, Quebec, after a train carrying Bakken crude oil derailed and exploded. NOAA continues to prepare for the emerging risks associated with this shift in oil transport in the United States.

Look for more updates on this incident from the U.S. Coast Guard News Room and the West Virginia Department of Environmental Protection.


Leave a comment

NOAA Experts Help Students Study up on Oil Spills and Ocean Science

Person on boat looking oiled sargassum in the ocean.

Mark Dodd, wildlife biologist from Georgia’s Department of Natural Resources, surveying oiled sargassum in the Gulf of Mexico. (Credit: Georgia Department of Natural Resources)

Every year high school students across the country compete in the National Ocean Sciences Bowl to test their knowledge of the marine sciences, ranging from biology and oceanography to policy and technology. This year’s competition will quiz students on “The Science of Oil in the Ocean.” As NOAA’s center for expertise on oil spills, the Office of Response and Restoration has been a natural study buddy for these aspiring ocean scientists.

In addition to providing some of our reports as study resources, three of our experts recently answered students’ questions about the science of oil spills in a live video Q&A. In an online event hosted by the National Ocean Sciences Bowl, NOAA environmental scientist Ken Finkelstein, oceanographer Amy MacFadyen, and policy analyst Meg Imholt fielded questions on oil-eating microbes, oil’s movement in the ocean, and much more.

Here is a sampling of the more than a dozen questions asked and answered, plus a bit of extra research to help you learn more. (You also can view the full hour-long video of the Q&A.)

What are the most important policies that relate to the oil industry?

There are lots of policies related to the oil industry. Here are a few that impact our work:

  • The Clean Water Act establishes rules about water pollution.
  • The Oil Pollution Act of 1990 establishes the Oil Spill Liability Trust Fund to support oil spill response and holds companies responsible for damages to natural resources caused by a spill.
  • The National Contingency Plan guides preparedness and response for oil and hazardous material spills. It also regulates the use of some response tools such as dispersants.
  • The Outer Continental Shelf Lands Act gives the Department of Interior authority to lease areas in federal waters for oil and gas development and to regulate offshore drilling.
  • The Endangered Species Act and the Marine Mammal Protection Act establish rules for protected species that companies must consider in their operations.

How do waves help transport oil?

Waves move oil in a few ways. First is surface transport. Waves move suspended particles in circles. If oil is floating on the surface, waves can move it toward the shore. However, ocean currents and winds blowing over the surface of the ocean are generally much more important in transporting surface oil. For example, tidal currents associated with rising and falling water levels can be very fast — these currents can move oil in the coastal zone at speeds of several miles per hour. Over time, all these processes act to spread oil out.

Waves are also important for a mixing process called dispersion. Most oils float on the surface because they are less dense than water. However, breaking waves can drive oil into the water column as droplets. Larger, buoyant droplets rise to the surface. Smaller droplets stay in the water column and move around in the subsurface until they are dissolved and degraded.

How widespread is the use of bacteria to remediate oil spills?

Some bacteria have evolved over millions of years to eat oil around natural oil seeps. In places without much of this bacteria, responders may boost existing populations by adding nutrients, rather than adding new bacteria.

This works best as a polishing tool. After an initial response, particles of oil are left behind.  Combined with wave movement, nutrient-boosted bacteria help clean up those particles.

Are oil dispersants such as Corexit proven to be poisonous, and if so, what are potential adverse effects as a result of its use?

Both oil and dispersants can have toxicological effects, and responders must weigh the trade-offs. Dispersants can help mitigate oil’s impacts to the shoreline. When oil reaches shore, it is difficult to remove and can create a domino effect in the ecosystem. Still, dispersants break oil into tiny droplets that enter the water column. This protects the shoreline, but has potential consequences for organisms that swim and live at the bottom of the sea.

To help answer questions like these, we partnered with the Coastal Response Research Center at the University of New Hampshire to fund research on dispersants and dispersed oil. Already, this research is being used to improve scientific support during spills.

What are the sources of oil in the ocean? How much comes from natural sources and how much comes from man-made sources?

Oil can come from natural seeps, oil spills, and also runoff from land, but total volumes are difficult to estimate. Natural seeps of oil account for approximately 60 percent of the estimated total load in North American waters and 40 percent worldwide, according to the National Academy of Sciences in a 2003 report. In 2014, NOAA provided scientific support to over 100 incidents involving oil, totaling more than 8 million gallons of oil potentially spilled. Scientists can identify the source of oil through a chemical technique known as oil fingerprinting. This provides evidence of where oil found in the ocean is from.

An important factor is not only how much oil is in the environment, but also the type of oil and how quickly it is released. Natural oil seeps release oil slowly over time, allowing ecosystems to adapt. In a spill, the amount of oil released in a short time can overwhelm the ecosystem.

What is the most effective order of oil spill procedure? What is currently the best method?

It depends on what happened, where it’s going, what’s at risk, and the chemistry of the oil.  Sometimes responders might skim oil off the surface, burn it, or use pads to absorb oil. The best response is determined by the experts at the incident.

Bag of oiled waste on a beach.

Oiled waste on the beach in Port Fourchon, Louisiana. On average, oil spill cleanups generate waste 10 times the amount of oil spilled. (NOAA)

What do you do with the oil once it is collected? Is there any way to use recovered oil for a later use?

Oil weathers in the environment, mixing with water and making it unusable in that state. Typically, collected oil has to be either processed before being recycled or sent to the landfill, along with some oiled equipment. Oil spill cleanups create a large amount of waste that is a separate issue from the oil spill itself.

Are the effects of oil spills as bad on plants as they are on animals?

Oil can have significant effects on plants, especially in coastal habitat. For example, mangroves and marshes are particularly sensitive to oil. Oil can be challenging to remove in these areas, and deploying responders and equipment can sometimes trample sensitive habitat, so responders need to consider how to minimize the potential unintended adverse impact of cleanup actions.

Does some of the crude oil settle on the seafloor? What effect does it have?

Oil usually floats, but can sometimes reach the seafloor. Oil can mix with sediment, separate into lighter and heavier components, or be ingested and excreted by plankton, all causing it to sink, with potential impacts for benthic (bottom-dwelling) creatures and other organisms.

When oil does reach the seafloor, removing it has trade-offs. In some cases, removing oil could require removing sediment, which is home to many important benthic (bottom-dwelling) organisms. Responders work with scientists to decide this on a case-by-case basis.

To what extent is the oil from the Deepwater Horizon oil spill still affecting the Gulf of Mexico ecosystem?

NOAA and our co-trustees have released a number of studies as part of the ongoing Natural Resource Damage Assessment for this spill and continue to release new research. Some public research has shown impacts on dolphins, deep sea ecosystems, and tuna. Other groups, like the Gulf of Mexico Research Initiative, are conducting research outside of the Natural Resource Damage Assessment.

How effective are materials such as saw dust and hair when soaking up oil from the ocean surface?

Oil spill responders use specialized products, such as sorbent materials, which are much more effective.


2 Comments

For Today’s Responders, 1937 Texas Tragedy Still Carries Lessons for Avoiding Disaster

Crowds of people and emergency vehicles surrounding damaged school.

Accident site at the school in New London, Texas, soon after the explosion that occurred at 3:05 in the afternoon on March 18, 1937. (Used with permission from the London Museum in New London/AP)

On March 18, 1937, a gas explosion occurred in a school in New London, Texas, killing almost 300 of the 500 students and 40 teachers in the building. The brand new, steel-and-concrete school, located in the East Texas Oilfield, was one of the wealthiest in the country. Yet it was reduced to rubble in part because no one could smell the danger building in the basement.

While the building originally had been designed for a different heat distribution system, school officials had recently approved tapping into a residue gas line of the local Parade Gasoline Company, a common money-saving practice in the oilfield at the time. Unfortunately, on that March afternoon, a faulty pipe connection caused the gas (methane mixed with some liquid hydrocarbons) to leak into a closed space beneath the building. Just before class dismissal, when a maintenance employee turned on an electric sander, the odorless gas ignited. The resulting explosion caused the building to collapse, burying victims. (Watch a video of a news reel covering the event from March 1937.)

By standards employed today, a gas leak could be detected in advance by its odor. The odorless gas in the New London disaster was able to accumulate in the space before anyone was aware of it. As a direct result of this incident, a Texas law mandated that malodorants be added to all natural gas for commercial and industrial use, a practice that is now an industry standard. Mercaptan, a harmless chemical, gives gas its distinctive rotten egg odor. It is added to natural gas to make it quickly recognizable and to prevent accidents like this from happening.

As a firefighter at the beginning of his career in Beaumont, Texas, Derwin Daniels worked for the same fire company that responded many years ago to the 1937 explosion. His personal connection to this particular incident sparked a desire to further his career in the fields of emergency management and fire protection technology.

Derwin Daniels brought his expertise to the NOAA Gulf of Mexico Disaster Response Center to coordinate training activities in emergency response. Daniels has been developing a “First Responder Awareness Level Training” that will provide NOAA staff with better understanding of potential hazards that they might encounter during post-disaster emergency response and recovery activities.

The training will help staff better assess an emergency situation so they can notify appropriate authorities. As part of this training, students consider real scenarios such as the New London explosion to learn important lessons about responding to disasters, a technique Daniels likes to use whenever possible.

For example, a section of this course covers “Odor Thresholds” and “Dimensions of Odor.” This involves human senses as it relates to hazardous materials. Taste, touch, smell, sight, and sound are all valuable tools for detecting the presence of harmful materials. The New London school explosion and the changes that resulted illustrate to students the role of odor in assessing possible causes of a disaster, such as a chemical release or explosion. Drawing on lessons from past incidents brings context to modern practices.

Coast Guard staff standing at tables during a training in the Disaster Response Center.

The Disaster Response Center brings together NOAA-wide resources to improve preparedness, planning, and response capacity for natural and human-caused disasters along the Gulf Coast. As part of that mission, the center regularly provides training on a variety of emergency response-related topics throughout the year. (NOAA)

One of the DRC’s many roles is developing and delivering training to NOAA personnel as well as federal, state, and local partners to promote better disaster preparedness in the Gulf region. Learn more about the NOAA Gulf of Mexico Disaster Response Center.


1 Comment

How NOAA Oil Spill Experts Got Involved With Chemical Spill Software

Fire and smoke on a container ship carrying hazardous materials at sea.

The aftermath of a March 2006 explosion of hazardous cargo on the container ship M/V Hyundai Fortune. The risks of transporting hazardous chemicals on ships at sea sparked the inspiration for NOAA oil spill responders to start designing chemical spill software. (Credit: Royal Netherlands Navy)

It was late February of 1979, and the Italian container ship Maria Costa [PDF] had sprung a leak. Rough seas had damaged its hull and the ship now was heading to Chesapeake Bay for repairs. Water was flooding the Maria Costa’s cargo holds.

This was a particular problem not because of its loads of carpets and tobacco, but because the vessel was also carrying 65 tons of pesticide. Stored in thick brown paper bags, this unregulated insecticide was being released from the clay it was transported with into the waters now flooding the cargo holds.

Ethoprop, the major ingredient of this organophosphate insecticide, was not only poisonous to humans but also to marine life at very low concentrations (50 parts per billion in water). Waters around Norfolk, Virginia, had recently suffered another pesticide spill affecting crabs and shrimp, and the leaking Maria Costa was denied entry to Chesapeake Bay because of the risk of polluting its waters again.

During the Maria Costa incident, two NOAA spill responders boarded the ship to take samples of the contaminated water and assess the environmental threat. Even though this event predated the current organization of NOAA’s Office of Response and Restoration, NOAA had been providing direct support to oil spills and marine accidents since showing up as hazardous materials (hazmat) researchers during the Argo Merchant oil spill in 1976.

Blood and Water

The NOAA scientists had blood samples taken before and after spending an hour and a half aboard the damaged vessel taking samples of their own. The results indicated that water in the ship’s tanks had 130 parts per million of ethoprop and the two men’s blood showed tell-tale signs of organophosphate poisoning.

After the resolution of that incident and an ensuing hospital visit by the two NOAA scientists, the head of the NOAA Hazardous Materials Response Program, John Robinson, realized that responding to releases of chemicals other than oil would take a very different kind of response. And that would take a different set of tools than currently existed.

From Book Stacks to Computer Code

John Robinson leaning on the edge of a boat.

John Robinson led the NOAA Hazardous Materials Response Program in its early years and helped guide the team’s pioneering development of chemical spill software tools for emergency responders. (NOAA)

Following the Maria Costa, Robinson got to work with the Seattle Fire Department’s newly formed hazmat team, allowing NOAA to observe how local chemical incidents were managed. Then, he initiated four large-scale exercises around the nation to test how the scientific coordination of a federal response would integrate with local first responder activities during larger-scale chemical incidents.

It didn’t take long to understand how important it was for first responders to have the right tools for applying science in a chemical response. During the first exercise, responders laid out several reference books on the hoods of cars in an attempt to assess the threat from the chemicals involved.

Researching and synthesizing complex information from multiple sources during a stressful situation proved to be the main challenge. Because the threat from chemical spills can evolve so much more rapidly than oil spills—a toxic cloud of chemical vapor can move and disappear within minutes—it was very clear that local efforts would always be front and center during these responses.

Meanwhile, NOAA scientists created a computer program employing a simple set of equations to predict how a toxic chemical gas would move and disperse and started examining how to synthesize chemical information from multiple sources into a resource first responders could trust and use quickly.

Learning from Tragedy

Then, in December of 1984, tragedy struck Bhopal, India, when a deadly chemical cloud released from a Union Carbide plant killed more than 2,000 people. This accidental release of methyl isocyanate, a toxic chemical used to produce pesticides, and its impact on the unprepared surrounding community led the U.S. government to examine how communities in the United States would have been prepared for such an accident.

By 1986, Congress, motivated by the Bhopal accident, passed the Emergency Planning and Community Right-to-Know Act (EPCRA). As a result, certain facilities dealing with hazardous chemicals must report these chemicals and any spills each year to the U.S. Environmental Protection Agency (EPA).

Apple II+ computer hooked up to Apple graphics tablet, color TV, and printer.

In the late 1970s and early 1980s, NOAA’s hazmat team wrote the first version of the ALOHA chemical plume modeling program, now part of the CAMEO software suite for hazardous material response, for this Apple II+ computer. (NOAA)

Because NOAA had already started working with first responders to address the science of chemical spill response, EPA turned to NOAA as a partner in developing tools for first responders and community awareness. From those efforts, CAMEO was born. CAMEO, which stands for Computer-Aided Management of Emergency Operations, is a suite of software products for hazardous materials response and planning.

Getting the Right Information, Right Now

The goal was to consolidate chemical information customized for each community and be able to model potential scenarios. In addition, that information needed to be readily available to the public and to first responders.

In 1986, attempting to do this on a computer was a big deal. At that time, the Internet was in its infancy and not readily accessible. Computers were large desktop affairs, but Apple had just come out with a “portable” computer. NOAA’s Robinson was convinced that with a computer on board first response vehicles, science-based decisions would become the norm for chemical preparedness and response. Today, responders can access that information from their smartphone.

NOAA and EPA still partner on the CAMEO program, which is used by tens of thousands of planners and responders around the world. Almost 30 years later, the program and technology have evolved—and continue to do so—but the vision and goal are the same: providing timely and critical science-based information and tools to people dealing with chemical accidents. Learn more about the CAMEO suite of chemical planning and response products.

Follow

Get every new post delivered to your Inbox.

Join 504 other followers