NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Oil Spills, Seeps, and the Early Days of Drilling Oil Along California’s Coast

Black and white photo of early oil derricks and piers at Summerland, California, 1902

Some of the earliest offshore oil wells were located at Summerland in Santa Barbara County, California. Shown here in 1902, you can see the early wharves that extended from the shore out to derricks over the wells. (U.S. Geological Survey)

One of the challenges of the 2015 pipeline oil spill near Santa Barbara, California, was distinguishing between oil released from the pipeline and oil released naturally from the many seeps in the area. This challenge could become even more complicated when you consider the history of oil drilling in southern California [PDF] that dates back to the 1860s.

Unless you are a history buff or study environmental pollution, you probably didn’t realize that the beautiful sand beaches of southern California were once home to some of the earliest offshore oil rigs.

Oil seeps both on the shore and in the ocean were clues to the underground oil reservoirs in the Santa Barbara Channel. Even today, natural seeps in Santa Barbara’s Coal Oil Point area release an estimated 6,500-7,000 gallons of oil per day (Lorenson et al., 2011).

Drilling into History

The first offshore wells in the United States were drilled in 1896 in the Summerland region just east of Santa Barbara. Initial wells were built on piers sticking several hundred feet out into the ocean. Over the years, many more wells and offshore platforms were built in the region.

However, oil exploration and drilling was virtually unregulated at the time, and spills were common. California’s first out-of-control oil gusher occurred in February 1892 near Santa Paula, but since no one had a way to store so much oil (1,500 barrels were released per day), much of it eventually flowed into the ocean via the Santa Clara River.

Black and white photo of men building a pier over the ocean to reach oil derricks drilling offshore at Summerland, California, 1900.

A view looking down the Treadwell wharf toward shore and the central portion of the Summerland oil field in Santa Barbara County, California, in 1900. These early oil fields were essentially unregulated, resulting in spills and leaks back then as well as today. (U.S. Geological Survey)

In addition, many of these first flimsy piers and oil platforms at Summerland were destroyed by storms or fires or later abandoned without much thought about preventing spills in the future. The state’s first laws governing oil well abandonment came into place in 1915, in part to protect the oil and gas wells on neighboring properties. (Fortunately, the old and leaky Summerland wells were far enough away from the 2015 pipeline spill location that they didn’t add yet another possible source of oil in the area of the spill.)

By the 1960s offshore oil production began to take off in California, particularly along Santa Barbara County. That is, until January 1969, when Union Oil’s Platform A suffered a blowout six miles off the coast. The result was more than 3.2 million gallons of crude oil were released into the Santa Barbara Channel and on surrounding shorelines.

Public outcry was so great that not only did California ban new leases for offshore drilling in state-owned waters, but it helped catalyze a broader movement to protect the environment and prevent pollution in the United States. Still, natural seeps serve as a reminder of the area’s “Wild West” days of oil exploration.

Seep vs. Spill

Today, the region is much cleaner, but, as we saw after the 2015 pipeline spill at Refugio State Beach near Santa Barbara, that doesn’t mean it’s free of oil, either naturally released or spilled during extraction. While telling the two apart can be complicated, it isn’t impossible.

One clue for distinguishing seep oil from oil coming from production platforms is looking at how “weathered” the oil is. Oil being drilled by a platform is extracted directly from a deep underground reservoir and thus appears “fresher,” that is, less weathered by environmental processes.

The seep oil, on the other hand, generally appears more weathered, having migrated up through the seafloor and ocean depths. Seep oil is more weathered because many of its less stable compounds have been dissolved into the water column, oxidized by sunlight or evaporated into the atmosphere at the surface, or broken down by microbes that naturally metabolize hydrocarbon molecules.

Another method for distinguishing among oils is a process known as “fingerprinting,” which uses analytical chemistry to compare the relative quantities of hydrocarbons unique to petroleum in the spilled oil versus another oil.

Even though seeps release a lot of oil into the ocean, oil spills such as the 2015 pipeline spill near Santa Barbara have different and more significant impacts on the nearshore environment than the slower, steadier release of natural oil seeps. Spills often release relatively large volumes of oil suddenly into an area, which can overwhelm the ability of the environment (such as its oil-eating microbes) to adapt to the influx of oil.

That doesn’t mean seeps don’t have any environmental impacts themselves. Oil from seeps can be toxic to marine life, including fish, sea stars, shrimp, and seabirds, with impacts largely concentrated in the immediate area around a seep. While our job is to use science to minimize and evaluate potential environmental impacts during oil spills (and not seeps), knowing the history of an area like Santa Barbara can go a long way to helping us do just that.

NOAA environmental scientist Greg Baker also contributed to this post.


Leave a comment

Science of Oil Spills Training: Apply for Fall 2016

Two men speaking on a beach with a ferry in the background.

Science of Oil Spills classes help new and mid-level spill responders better understand the scientific principles underlying oil’s fate, behavior, and movement, and how that relates to various aspects of cleanup. The classes also inform responders of considerations to minimize environmental harm and promote recovery during an oil spill. (NOAA)

Science of Oil Spills (SOS) classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions.

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled an autumn Science of Oil Spills (SOS) class in Portsmouth, New Hampshire, October 3-7, 2016.

OR&R will accept applications for this class through Monday, August 15, and will notify accepted participants by email no later than Monday, August 22.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

The trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please understand that classes are not filled on a first-come, first-served basis. We try to diversify the participant composition to ensure a variety of perspectives and experiences, to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

Washington Sea Grant Launches New Program to Prevent Small Oil Spills that Add Up

This is a guest post by Lauren Drakopulos of Washington Sea Grant.

Marina in Seattle with small boats.

Small recreational and commercial vessels account for 75 percent of the oil spilled in waters around Washington’s Puget Sound over the last 10 years. (NOAA)

To paraphrase an old saying, “There’s no use crying over spilled oil.” But many people in Washington worry a lot about oil pollution in Puget Sound and other coastal waters around the state.

What many don’t realize is that the biggest source of oil spills to date in Puget Sound isn’t tankers and freighters but small recreational and commercial vessels. Small oil spills from these types of vessels account for 75 percent of the oil spilled in local waters over the last 10 years.

How do these small oil spills happen? A common cause is when oil, along with water, builds up in the bottommost compartment of a boat, known as the bilge, which has a pump to keep rain and seawater from building up. Oil from broken oil lines in the engine area or spilled fuel on deck can get washed down into the bilge and then pumped into surrounding waters.

Taking Charge of Discharges

Aaron Barnett holds a bilge sock next to stacks of them.

Washington Sea Grant’s Aaron Barnett preparing to distribute small oil spill kits in 2015. (MaryAnn Wagner/Washington Sea Grant)

In the future, however, Washington boaters increasingly will have access to a simple remedy known as the Small Oil Spills Prevention Kit, which consists of a small absorbent pillow, or “bilge sock,” that is placed alongside bilge pumps to prevent oily discharges from entering the water. Washington boaters will be seeing and using a lot more of the kits.

The Clean Marina Program, a partnership of the Puget Soundkeeper Alliance, the Northwest Marine Trade Association, and Washington Sea Grant, has worked for 20 years to minimize small vessel spills. But the summer of 2016 marks a change: for the first time the campaigners are targeting private boaters rather than marina managers.

Washington Sea Grant, the Washington Department of Ecology, and Washington’s District 13 Coast Guard Auxiliary have launched the Small Spills Prevention Program to provide boaters with the knowledge and tools they need to stop oil pollution at the source. Last year, in a trial run, Washington Sea Grant Boating Program Specialist Aaron Barnett succeeded in distributing 1,000 oil spill prevention kits.

This year that labor is bearing fruit: according to Coast Guard Auxiliary Instructor Mike Brough, more and more boaters are requesting kits after seeing their friends and other boaters use them. As Barnett explains, the success of the program depends on first, getting the kits out to boaters, and second, word of mouth—with boaters educating each other about oil spills.

Pollution Prevention, Pollution Management

Boaters understand the importance of keeping their waterways clean. As frequent users, they serve as the first line of defense against pollution. “Boaters want to do the right thing,” says Brough, “and these [kits] make it easier.” He recently handed out spill prevention kits at a local marina on National Marina Day. “It’s like handing out candy on Halloween. Anyone with a bilge and inboard engine will take one.”

Brough also got a chance to see the kits in action. “At the marina office, one boater was getting a bilge sock to replace his old one from some extras I had given the yacht club a few months earlier,” he recounts. “The guy had gotten a crack in the lubrication oil line during a trip on the Sound. The broken line dumped a significant amount of oil into the bilge. The bilge sock he was using caught all of the oil, and none went overboard.”

Small spills can be expensive for boaters to clean up, and often cost is the first question boaters ask. In Washington the kits are funded through state oil taxes and made available to boaters at no cost, as part of the Small Spills Prevention Program. This summer, Washington Sea Grant hopes to hand out another 1,000 kits to boaters.

Lauren Drakopulos.Lauren Drakopulos is a Science Communications Fellow with Washington Sea Grant and is pursuing her Ph.D. in geography at the University of Washington. Lauren has worked for the Florida Fish and Wildlife Conservation Commission and her current research looks at community engagement in fisheries science. Washington Sea Grant, based at the University of Washington, provides statewide marine research, outreach, and education services. The National Sea Grant College Program is part of the National Oceanic and Atmospheric Administration (NOAA) U.S. Department of Commerce. Visit www.wsg.washington.edu for more information or join the conversation with @WASeaGrant on Facebook, Twitter, and Instagram.

The views expressed in this post reflect those of the author and do not necessarily reflect the official views of NOAA or the U.S. federal government.


Leave a comment

In Florida, Rallying Citizen Scientists to Place an Ocean-Sized Problem Under the Microscope

This week, we’re exploring the problem of plastics in our ocean and the solutions that are making a difference. To learn more about #OceanPlastics this week, keep your eye on Facebook, Twitter, Instagram, NOAA’s Marine Debris Blog, and, of course, here.

Young woman filling a one liter bottle with water along a marshy beach.

Florida Sea Grant has been teaching volunteers how to sample and examine Florida’s coastal waters for microplastics and educating the public on reducing their contribution to microplastic pollution. (Credit: Tyler Jones, University of Florida, Institute of Food and Agricultural Sciences)

Have you ever looked under a microscope at what’s in a sample of ocean water? What do you think you would find?

These days, chances are you would spot tiny bits of plastic known as microplastics, which are less than 5 millimeters long (about the size of a sesame seed).

The Florida Microplastic Awareness Project is giving people the opportunity to glimpse into Florida’s waters and see a microscopic world of plastic pollution up close. This project integrates citizen science—when volunteers contribute to scientific research—with education about microplastics.

I recently spoke with Dr. Maia McGuire of Florida Sea Grant. She’s leading the Florida Microplastic Awareness Project, which is funded by a grant from the NOAA Marine Debris Program. NOAA’s Office of Response and Restoration, of which the Marine Debris Program is a part, has a long history of collaborating with Sea Grant programs across the nation on a range of issues, including marine debris.

The NOAA Marine Debris Program has funded more than a dozen marine debris removal and prevention projects involving Sea Grant, and has participated in other collaborations with regional Sea Grant offices on planning, outreach, education, and training efforts. Many of these efforts, including the Florida Microplastic Awareness Project, center on preventing marine debris by increasing people’s awareness of what contributes to this problem.

Combining Science with Action

Blue and white plastic fibers viewed under a microscope.

Volunteers record an average of eight pieces of microplastic per liter of water, with seven of those eight identified as plastic fibers (viewed here under a microscope). (Credit: Maia McGuire, University of Florida, Institute of Food and Agricultural Sciences)

This latest effort, the Florida Microplastic Awareness Project, involves building a network of volunteers and training them to collect one liter water samples from around coastal Florida, to examine those samples under the microscope, and then to assess and record how many and what kinds of microplastics they find.

“Everything is microscopic-sized,” explains McGuire. “We’re educating people about sources of these plastics. A lot of it is single-use plastic items, like bags, coffee cups, and drinking straws. But we’re finding a large number are fibers, which come from laundering synthetic clothes or from ropes and tarps.”

Volunteers (and everyone else McGuire’s team talks to) also choose from a list of eight actions to reduce their contribution to plastic pollution and make pledges that range from saying no to plastic drinking straws to bringing washable to-go containers to restaurants for leftovers. For those who opt-in, the project coordinators follow up every three months to find out which actions the pledgers have actually taken.

“It’s been encouraging,” McGuire says, “because with the pledge and follow up, what we’ve found is that they pledge to take 3.5 actions on average and actually take 3.5 actions when you follow up.”

She adds a caveat, “It’s all self-reported, so take that for what it’s worth. But people are coming up to me and saying, ‘I checked my face scrub and it had those microbeads.’ It’s definitely resonating with people.”

Microplastics Under the Microscope

The project has trained 16 regional coordinators, who are based all around coastal Florida. They in turn train the volunteer citizen scientists, who, as of June 1, 2016, have collected 459 water samples from 185 different locations, such as boat ramps, private docks, and county parks along the coast.

“Some folks are going out monthly to the same spot to sample,” McGuire says, “some are going out to one place once, and others are going out occasionally.”

After volunteers collect their one liter sample of water, they bring it into the nearest partner facility with filtration equipment, which are often offices or university laboratories close to the beach. In each lab, volunteers then filter the water sample, using a vacuum filter pump, through a funnel lined with filter paper. “The filter paper has grid lines printed on it so you’re not double counting or missing any pieces,” McGuire adds.

Once the entire sample has been filtered, volunteers place the filter paper with the sample’s contents into a petri dish under a microscope at 40 times magnification. “Because we’re collecting one liter water samples, everything we’re getting is teeny-tiny,” McGuire says. “Nothing really is visible with the naked eye.”

Letting the filter paper dry often makes identifying microplastics easier because microscopic plastic fibers spring up when dry. And they are finding a lot of plastic fibers. On average, volunteers record eight pieces of microplastic per liter of water, and of those, seven are fibers. They are discovering at least one piece of plastic in nearly all of the water samples.

“If they have questions about if something is plastic, we have a sewing needle they heat in a flame,” McGuire says, “and put it under the microscope next to the fiber, and if it’s plastic, it changes shape in response to the heat.”

Next, volunteers record their data, categorizing everything into four different types of plastic: plastic wrap and bags, fibers, beads, or fragments. They use online forms to send in their data and log their volunteer information. McGuire is the recipient of all that data, which she sorts and then uploads to an online map, where anyone can view the project’s progress.

A Learning Process

Tiny white and purple beads piled next to a dime.

These purple and white microbeads are what microplastics extracted from facial scrub looks like next to a dime. Microbeads are being phased out of personal care products thanks to federal law. (Credit: Dave Graff)

“When I first wrote the grant proposal—a year and a half ago or more—I was expecting to find a lot more of the microbeads, because we were starting to hear more in the news about toothpaste and facial scrubs and the quantity of microbeads,” McGuire relates. “It was a little surprising at first to find so many [plastic] fibers. We have some sites near effluent outfalls from water treatment plants.”

However, McGuire points out that what they’re finding is comparable to what other researchers are turning up in the ocean and Great Lakes, except for one important point. Many of those researchers take water samples using nets with a 0.3 millimeter mesh size. By filtering through paper rather than a net, McGuire’s volunteers are able to detect much smaller microplastics, like the fibers, which otherwise would pass through a net.

“I think one big take-home message is there’s still so much we don’t know,” McGuire says. “We don’t have a lot of knowledge or research about what the impacts [of microplastics] actually are. We need a lot more research on this topic.”

Learn more about what you can do to reduce your contribution to plastic pollution, take the pledge with the Florida Microplastic Awareness Project, and dive into the research projects supported by the NOAA Marine Debris Program, which are exploring:


3 Comments

What You Can Do to Keep Plastic out of the Ocean

This week, we’re exploring the problem of plastics in our ocean and the solutions that are making a difference. To learn more about #OceanPlastics this week, keep your eye on Facebook, Twitter, Instagram, NOAA’s Marine Debris Blog, and, of course, here.

A Starbucks coffee cup on a sandy beach by a seabird and people picking up trash.

Keeping a reusable mug in your bag or car can help you remember to opt out of much of the single-use plastic waste that inundates our lives. This coffee cup ended up on a beach in the Northwestern Hawaiian Islands, thousands of miles from the nearest city. (NOAA)

“Plastic doesn’t go away.” This point was really driven home for me after watching the video, “Open Your Eyes,” which is narrated by Jeff Bridges and produced by the Plastic Pollution Coalition. It serves to remind us how much single-use, disposable plastic we can go through in an average day—and the impacts of all that plastic on the natural world.

The majority of marine debris found around the world is made of plastic. The world’s more industrialized nations, including the United States, create a huge amount of plastic, and unfortunately too much of it ends up in earth’s waters and along its coastlines. The United Nations Environment Programme (UNEP) predicts [PDF] that in the future, as more countries become industrialized, the amount of plastic waste in the ocean will increase as well.

Reflecting on the pervasiveness of single-use disposable plastics, which are manufactured to be used once and thrown away, has forced me to look at my own behavior and ask myself, What types of plastic do I personally use in my daily life? How could we all use less plastic? And what could we do to keep the plastic we do use out of the ocean?

Here are a few areas to get started:

  1. Snacks. I tend to dash out of the house with grapes or apple slices in a plastic bag to eat while driving to work or the gym. A logical alternative would be to eat at home and skip the bag (eating in the car is a bad habit anyway!) or pack snacks in a reusable container.
  2. Coffee. On my way to work, I stop for a latte, complete with plastic lid so it won’t spill while I’m drinking it in the car. It would be better to drink it at the coffee shop in their ceramic mugs—it doesn’t take that long and doesn’t require a plastic lid. Better yet is to bring your own to-go mug.
  3. Grocery shopping. When I buy fresh fruits and vegetables, I could skip the provided plastic bags, or opt for paper or reusable mesh produce bags. Other things to consider at the supermarket: Buying foods like yogurt, cereal, and oatmeal in bulk, rather than single-serving packages; choosing a product packaged in cardboard or glass rather than plastic, such as cleaning products, ice cream, milk, condiments, and soda; and bringing your own grocery bags or boxes to get everything home.
  4. Eating out and on the go. At lunch I frequently buy salads to go in those plastic “clamshell” containers; better to bring food from home in a non-disposable container or buy something that doesn’t come encased in plastic. A lot of restaurants automatically include a straw in your iced tea or soda, so asking the wait staff to skip the straw when ordering makes sense (or bring your own glass or metal straw). Opt to drink water and other refreshing beverages out of a reusable glass or bottle, but if necessary, reuse and then recycle any plastic bottles and cups you do use. When taking food home or to-go, bring your own resusable containers and utensils, and skip the plastic forks, spoons, and to-go containers.
  5. Dry cleaning. Let your dry cleaners know you’d prefer to pick up your clean clothes without the plastic coverings.
  6. Cosmetics. Cosmetics and personal care manufacturers are phasing out polyethylene microbeads from cosmetics, cleansers, and toothpastes, which have been banned in the United States, but until the phase-out is complete, check labels and avoid products with “polyethylene” in the ingredients. Because of their tiny size, microplastics which are usually added to products as an abrasive (like exfoliants) pass through water treatment systems and end up in the ocean and Great Lakes.
  7. Trash cans. Open and overflowing trash cans (or recycling bins) don’t do much to keep trash off the street and out of our waterways. Use waste containers with a lid, and never toss trash on top of an overflowing trash can. Take it with you instead and recycle what you can.
  8. Beaches. When you visit the beach, pack out all your trash and pick up any trash you do see there (and report it with our Marine Debris Tracker smartphone app). Better yet, join beach cleanups to help remove trash from our waterways and coasts (which helps keep bigger plastics from breaking down into microplastics).
  9. Science. Join citizen scientists around the country and adopt a shoreline to help monitor how much and what kinds of plastic and other marine debris wash up each month. You can check out an existing project near you, such as the Florida Microplastic Awareness Project and the projects in National Marine Sanctuaries up and down the West Coast. Or start your own dedicated effort using these tools and resources and report your data to our national database.
  10. Community. We can all talk to our friends, family, students, or coworkers about the issue of plastics in the ocean and share this list of actions they can take too.

These steps are just a start, but they’re all things we can do with minimum impact to our daily lives. Even incorporating one of these actions into your life can make a difference in the amount of plastic pollution in our ocean.

As the lead federal agency for addressing this problem, the NOAA Marine Debris Program funds research on the harmful effects of debris, such as plastics, to the marine environment and efforts to clean up our nation’s coastal waters. They have lots of education and outreach materials with more information about the many ways we, as individuals, can help remedy this growing problem of plastics in our ocean.


1 Comment

Innovative Solutions to Tackling Plastic Pollution in the Ocean

This week, we’re exploring the problem of plastics in our ocean and the solutions that are making a difference. To learn more about #OceanPlastics this week, keep your eye on Facebook, Twitter, Instagram, NOAA’s Marine Debris Blog, and, of course, here.

Washed Ashore founder Angela Haseltine Pozzi with a giant marlin statue made of marine debris.

Washed Ashore Executive Director Angela Haseltine Pozzi leads a lesson on how marine debris can be used as a powerful art medium to engage students on the topic while at the Smithsonian’s National Zoo. Behind her is one of her organization’s marine life sculptures crafted entirely from trash retrieved from the ocean and coasts. (NOAA)

You don’t have to get too fancy in order to help keep plastic and other marine debris out of the ocean. Solutions can be pretty simple: Reducing your use of single-use, “disposable” plastic items; picking up a plastic wrapper littered on the sidewalk; participating in a beach cleanup. (Stay tuned: we’ll get deeper into ways you can help later this week.)

Sometimes, however, the particulars of this problem can be more complex. Sometimes just getting people’s attention and encouraging them to take those simple actions require more creative approaches. We’ve rounded up a few projects that have our attention, projects which are aimed at making a dent in the many problems associated with ocean plastics.

Know of another notable ocean plastics project? Let us know in the comments or on social media using #OceanPlastics.

Turning what’s Washed Ashore into powerful pieces of art

A large, bright orange fish sculpture made from ocean trash, mostly plastic.

Washed Ashore rallies volunteers to clean beaches, using the collected debris to create larger-than-life sculptures of the marine life affected by ocean trash. Here, Henry the Fish stands outside Washed Ashore’s gallery in Bandon, Oregon. (NOAA)

Walking southern Oregon’s otherwise beautiful beaches, artist Angela Haseltine Pozzi began despairing how much plastic pollution seemed to appear on its shores. Inspired to turn that pollution into something more positive, she rallied volunteers to clean the beaches and turn the trash into sculptures of the marine life affected by plastic pollution. That’s how Washed Ashore was born. In addition to creating these larger-than-life recycled sculptures, Washed Ashore’s latest project, funded by the NOAA Marine Debris Program, incorporates theater, movement, and creative writing into a curriculum for teaching students about marine debris.

From a sleek marlin to an inquisitive puffin, Washed Ashore’s mostly plastic, often massive sculptures serve as dramatic backdrops—and powerful ocean ambassadors—for these educational programs in zoos, aquariums, and museums around the country. According to Washed Ashore, since its inception in 2010, the program has processed 38,000 pounds of marine debris, turning it into more than 60 sculptures.

Transforming lost fishing nets into energy

Man using a forklift to place old fishing nets in a collection dumpster.

Since begun in 2008, the Fishing for Energy partnership has removed and diverted 3 million pounds of fishing gear from the ocean. (Credit: National Fish and Wildlife Foundation)

The Fishing for Energy partnership helps fishermen properly dispose of old and abandoned fishing nets and other gear—much of it plastic—at no cost to the fishermen. In addition to donating their own worn-out nets, some fishermen also directly retrieve lost fishing gear out of the ocean. After being collected and sorted, any metal parts are recycled, and everything else is converted into electricity, with roughly one ton of old nets producing enough electricity to power a house for 25 days.

The National Fish and Wildlife Foundation works with the NOAA Marine Debris Program, Covanta, and Schnitzer Steel Industries, Inc. to carry out this partnership, which has expanded to include funding other projects that seek to prevent or remove lost fishing gear in U.S. coastal waters.  Since it started in 2008, the Fishing for Energy partnership has removed and kept 3 million pounds of fishing gear out of the ocean.

Rethinking “disposable” plastic at dinner time

Left: Salad in a to-go container with plastic fork and dressing cup. Right: Salad in a ceramic bowl with metal fork and dressing cup.

The Clean Water Fund’s ReThink Disposable campaign works with San Francisco Bay-area food businesses and institutional food services to help them find more sustainable alternatives to disposable plastic food and beverage packaging. (Credit: Clean Water Fund)

Plastic straws, cups, plates, bags, forks, and spoons turn up among the most frequently found items at beach cleanups year after year. Eating with these so-called “disposable” plastics creates huge amounts of waste, and the Clean Water Fund, with the support of the NOAA Marine Debris Program, is working to stem this flow of food-related plastics coming from restaurants in California’s San Francisco Bay region.

Through their ReThink Disposable campaign, Clean Water Fund is collaborating with local food businesses and institutional food services by auditing their waste and helping to find more sustainable alternatives to disposable plastic food and beverage packaging. They’re also working with the businesses to communicate to the public the benefits of cutting down on this type of waste and how it impacts the environment.

One of them, El Metate Restaurant, a fast-casual Mexican restaurant, swapped plastic cutlery and salsa cups, previously provided to both dine-in and take-out customers, for reusable metal cutlery and ceramic salsa bowls. After implementing these changes, not only did El Metate manage to keep 493,711 disposable food ware items out of the landfill (and coastal waters) each year, but the changes improved the dining experience, increased dine-in customers, and is saving nearly $9,000 a year.

Diving deep into the belly of a whale to see impacts to wildlife

A circle of students and teachers with trash in the middle and the inflatable whale in the back of the gymnasium.

The University of North Carolina Wilmington MarineQuest’s Traveling Through Trash program takes students inside the belly of a 58-foot-long inflatable whale, Watson, to teach about the impacts of ocean trash on marine life. (Credit: University of North Carolina Wilmington)

Few things can communicate the scale of plastic’s impacts on wildlife like walking inside a life-sized inflatable whale and “dissecting” its organs to uncover the marine debris it’s swallowed. That’s exactly what middle and elementary school kids in rural North and South Carolina have the opportunity to do through the University of North Carolina Wilmington MarineQuest’s Traveling Through Trash program, which received funding from the NOAA Marine Debris Program.

People have found plastic bags, rope, juice packs, broken CD cases, and much more inside dead whales. Watson, the 58-foot-long inflatable right whale, offers students the chance to experience this reality close up and learn how they can take responsibility for keeping trash, no matter where it comes from, far away from the ocean and marine life. During the 2015-2016 school year, Watson the Whale traveled more than 8,000 miles and taught more than 9,500 students about how trash affects migrating marine species.


Leave a comment

Improving Currents Predictions for Washington Waters Will Help Efforts to Prevent and Respond to Oil Spills

Front of a kayak pushing through floating wood in the Strait of Juan de Fuca.

Kayakers and oil spill responders alike will appreciate the updated currents predictions NOAA is producing from a survey of Washington’s Puget Sound, San Juan Islands, and Strait of Juan de Fuca. (Courtesy of Amy MacFadyen)

This is a post by Amy MacFadyen, NOAA oceanographer and modeler in the Office of Response and Restoration’s Emergency Response Division.

As a sea kayaking enthusiast who enjoys paddling the waters of Washington’s Puget Sound, I need to have up-to-date information about the currents I’m passing through. Accurate predictions of the strong tidal currents in the sound are critical to safe navigation, and kayak trips in particular need to be timed carefully to ensure safe passage of certain regions.

As a NOAA oceanographer and modeler, I also depend on accurate information about ocean currents to predict where spilled pollutants may travel in the marine environment.

Sound Information

These are two reasons I was excited to learn that NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) is performing a scientific survey of currents in the marine waters of the Puget Sound, the San Juan Islands, and the Strait of Juan de Fuca. They began in the south sound in the summer of 2015, deploying almost 50 devices known as Acoustic Doppler Current Profilers to measure ocean currents at various depths throughout the water column.

Work is getting underway this summer to continue gathering data. The observations collected during this survey will enable NOAA to provide improved tidal current predictions to commercial and recreational mariners. But these updated predictions will also help my line of work with oil spill response.

When oil spills occur at sea, NOAA’s Office of Response and Restoration provides scientific support to the Coast Guard, including predictions of the movement and fate of the oil. Accurate predictions of the oil trajectory may help responders protect sensitive shorelines and direct cleanup operations.

Spills Closer to Home

U.S. Coast Survey nautical chart of Washington's Puget Sound in 1867.

A U.S. Coast Survey nautical chart showing the complex channels of Puget Sound when Washington was just a territory in 1867. (NOAA)

In the last few years, I’ve modeled oil movement for numerous spills and traveled on scene to assist in the oil spill response.

Seeing oil on the water and shorelines of places ranging from Santa Barbara, California, to Matagorda Island, Texas, I can’t help but think about both the possibility of a spill closer to my home in Puget Sound and our ability to model the movement of the oil there.

When oil spills in the marine environment, it spreads quickly, forming thin slicks on the ocean surface that are transported by winds and currents.

Puget Sound is a glacially carved fjord system of interconnected marine waterways and deep basins separated by shallower regions called sills.

Tidal currents in these narrow, silled connection channels can reach fairly swift speeds of up to 5-6 mph, whereas in the deep basins the currents are much slower (typically less than 1-2 mph).

Accurate predictions of currents within the sound will be critical to forecasting oil movement. Today’s predictions for this region rely on limited amounts of data gathered from the 1930s-1960s. Thanks to both these current surveys and modern technological advances, we can expect significant progress in the accuracy of these predictions.

The information collected on the NOAA current surveys will also be used to support the creation of an Operational Forecast System for Puget Sound, a numerical model which will provide short-term forecasts of water level, currents, water temperature, and salinity—information that is critical to oil spill trajectory forecasting.

Making Safer Moves

A fuel barge in Puget Sound on a cloudy day.

With the methods for transporting oil through Washington rapidly shifting and the number of vessels carrying oil increasing, the risks for oil spills are changing as well. Here, a fuel barge passes through Puget Sound. (NOAA)

More accurate current and water level predictions are good for oil spill modeling, but they are even better for oil spill prevention by making navigating through our waterways safer.

Until fairly recently, 90% of the oil moving through Washington (mainly to and from refineries) traveled by ship. But by 2014, that number dropped to less than 60%, with rail and pipelines making up the difference.

Because the methods for transporting oil through Washington are shifting, the risks for oil spills shift as well. However, even with the recent increase in crude oil being delivered by train, the number of vessels transporting oil through state waters has gone up as well, increasing the risk of a large oil spill in Puget Sound.

With such a dynamic oil transportation system and last December’s repeal of a decades-long ban on exporting U.S. crude oil, the Washington Department of Ecology has decided to update its vessel traffic risk assessment for the Puget Sound. Results from the risk assessment will ultimately be used to inform spill prevention measures and help us become even better prepared to respond to a spill.

The takeaway? Both state and federal agencies are working to make Washington waters safer.

Amy MacFadyenAmy MacFadyen is a physical oceanographer at the Emergency Response Division of the Office of Response and Restoration (NOAA). The Emergency Response Division provides scientific support for oil and chemical spill response — a key part of which is trajectory forecasting to predict the movement of spills. During the Deepwater Horizon oil spill in the Gulf of Mexico, Amy helped provide daily trajectories to the incident command. Before moving to NOAA, Amy was at the University of Washington, first as a graduate student, then as a postdoctoral researcher. Her research examined transport of harmful algal blooms from offshore initiation sites to the Washington coast.

Follow

Get every new post delivered to your Inbox.

Join 702 other followers