NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Texas City “Y” Incident: Aftermath of the Oil Spill in Galveston Bay, Texas

photo of people cleaning up contaminated sand.

Task force members remove oil-contaminated sand from the beach on Matagorda Island, Texas, March 30, 2014. Cleanup operations are being directed by a unified command comprised of personnel from the Texas General Land Office, U.S. Coast Guard and Kirby Inland marine. (U.S. Coast Guard)

The March 22, 2014 vessel collision in Galveston Bay (see Kirby Barge Oil Spill, Houston/Texas City Ship Channel) resulted in an oil spill of approximately 168,000 gallons.

Although scattered and trace amounts of oil were found as far west as Mustang and Padre Islands, almost all of the oil is still thought to be stranded on shorelines between Galveston and Matagorda.  Some widely scattered floating tarballs and sheens may be possible, but no floating oil was observed on overflights today.

As of Monday, March 31, NOAA National Marine Fisheries Service teams report 21 dolphins and 4 turtles stranded. Most of these are in the Galveston area but reports from Matagorda Island are increasing.  All of the dolphins were dead, two turtles were captured alive and are being rehabilitated.  Most of the animals were not visibly oiled but necropsies are still underway.  Approximately 150 dead birds have been reported in the Galveston area and 30 in the Matagorda area.

Cleanup activities in the Galveston area are proceeding and the U.S. Coast Guard is beginning the process to downsize staffing and phase out response efforts.

Photo of two people locating oil on beach.

Two members of the Shoreline Assessment Team locate oiled impact points on Matagorda Island, March 29, 2014. The Unified Command in Port O’Connor is overcoming logistical challenges posed by the remote island in order to clean up the migrating oil from the Texas City collision. (U.S. Coast Guard)

Surveying Oiled Shorelines

After an oil spill like this one happens along the coast, spill responders need to figure out and document where oil has come ashore, what habitats have been affected, and how to clean up the shoreline.

NOAA helped develop a systematic method for surveying an affected shoreline after an oil spill. This method, known as Shoreline Cleanup and Assessment Technique (SCAT), is designed to support decision-making for shoreline cleanup. We have SCAT experts helping coordinate these shoreline surveying efforts for the oiled beaches in Texas.

In general, SCAT surveys begin early in the response to assess initial shoreline conditions (including even before oil comes ashore, as a reference) and ideally continue to work in advance of cleanup.

Surveys continue during the response to verify shoreline oiling, cleanup effectiveness, and eventually, to conduct final evaluations of shorelines to ensure they meet standards for ending cleanup.

SCAT teams include people trained in the techniques, procedures, and terminology of shoreline assessment. Members of a SCAT team may come from federal agencies (usually from the NOAA Scientific Support Team or U.S. Coast Guard), state agencies, a representative of the organization responsible for the spill, and possibly the landowner or other local stakeholders.

While out walking the shoreline, SCAT team members prepare field maps and forms detailing the area surveyed and make specific cleanup recommendations. Later, they go back to the areas surveyed to verify cleanup effectiveness, modifying guidelines as needed if conditions change.

The data they collect informs a shoreline cleanup plan that maximizes the recovery of oiled habitats and resources, while minimizing the risk of injury from cleanup efforts. This means, for example, determining whether active cleanup is necessary or whether certain limitations on cleanup are needed to protect ecological, economic, or cultural concerns.


Leave a comment

What Are Kids Reading About Oil Spills?

This is a post by Dr. Alan Mearns, NOAA Senior Staff Scientist.

Kids reading books in a book store.

Credit: Carolien Dekeersmaeker/Creative Commons Attribution-NonCommercial 2.0 Generic License

What are your children and their teachers reading? We might want to pay closer attention. The stories we tell our children are a reflection of how we see the world, and we want to make sure these stories have good information about our world.

I occasionally accompany my wife, a preschool teacher, to local children’s bookstores, and more often than not, find books about oil spills and other disasters.  Recently, I took a closer look at the quality of the information found in a sampling of children’s books on oil spills.

An Oil Spill Ecologist Dives into Kids’ Books

So far, the eight or so books I’ve looked at focus on one of the two major oil spills in the American mind: the 1989 Exxon Valdez oil spill in Alaska or the 2010 Deepwater Horizon spill in the Gulf of Mexico.

A number are heart-warming stories about wildlife speaking about their experience in oil and the nice people who captured, cleaned, and released them. Birds, especially pelicans, and sea otters often play a starring role in telling these stories. Several present case histories of the oil spills, their causes, and cleanup. Some books place oil spills in the context of our heavy reliance on oil, but many ignore why there’s so much oil being transported in the first place.

One book’s color drawings show oil spill cleanup methods so well you can actually see how they work—and which I think could even be used in trainings on oil spill science.

Something that may not be top-of-mind for many parents but which I appreciate is the presence of glossaries, indices, and citations for further reading. These resources can help adults and kids evaluate whether statements about these oil spills are supported by reliable information or not.

Reading Recommendations

When reading a book—whether it is about oil spills or not—with kids you know, keep the following recommendations in mind:

  • Make sure the story informs, as well as entertains.
  • Ask where the “facts” in the story came from.
  • Look for reputable, original sources of information.
  • Ask why different sources might be motivated to show information the way they do.
  • Talk to kids about thinking critically about where information comes from.

Learn more about the ocean, pollution, and creatures that live there from our list of resources for teachers and students.

Dr. Alan Mearns.Dr. Alan Mearns is Ecologist and Senior Staff Scientist with the Office of Response and Restoration’s Emergency Response Division in Seattle. He has over 40 years of experience in ecology and pollution assessment and response, with a focus on wastewater discharges and oil spills along the Pacific Coast and Alaska. He has worked in locations as varied as the Arctic Ocean, southern California, Israel, and Australia, and has participated in spill responses around the U.S. and abroad.


1 Comment

After an Oil Spill, Why Does NOAA Count Recreational Fishing Trips People Never Take?

Families fish off the edge of a seawall.

A perhaps less obvious impact of an oil spill is that people become unable to enjoy the benefits of the affected natural areas. For example, this could be recreational fishing, boating, swimming, or hiking. (NOAA)

From oil-coated birds to oil-covered marshes, the impacts of oil spills can be extremely visual. Our job here at NOAA is to document not only these easy-to-see damages to natural areas and the birds, fish, and wildlife that live there. We also do this for the many impacts of oil spills which may not be as obvious.

For example, after spilled oil washes on shore, people often can no longer swim, picnic, or play at that beach. Or you may see fewer or no recreational fishers on a nearby pier.

Restoring Nature’s Benefits to People

After a spill, these public lands, waters, and wildlife become cut off from people. At NOAA, we have the responsibility to make sure those lost trips to the beach for fishing or swimming are documented—and made up for—along with the oil spill’s direct harm to nature.

Why do we collect the number of fishing trips or days of swimming that don’t occur during a spill? It’s simple. Our job is to work with the organization or person responsible for the oil spill to make sure projects are completed that compensate the public for the time during the spill they could not enjoy nature’s benefits. If people did not fish recreationally in the wake of a spill because a fishery was closed or inaccessible, opportunities for them to fish—and the quality of their fishing experience—after the spill need to be increased. These opportunities may come in the form of building more boat ramps or new public access points to the water or creating healthier waters for fish.

Working with our partners, NOAA develops restoration plans that recommend possible projects that increase opportunities for and public access to activities such as fishing, swimming, or hiking. We then seek public input to make sure these projects are supported by the affected community. The funding for these finalized restoration projects comes from those responsible for the spill.

What Does This Look Like in Practice?

On April 7, 2000, a leak was detected in a 12-inch underground pipeline that supplies oil to the Potomac Electric Power Company’s (PEPCO) Chalk Point generating station in Aquasco, Md. Approximately 140,000 gallons of fuel oil leaked into Swanson Creek, a small tributary of the Patuxent River. About 40 miles of vulnerable downstream creeks and shorelines were coated in oil as a result.

We and our partners assessed the impacts to recreational fishing, boating, and shoreline use (such as swimming, picnicking, and wildlife viewing). We found that 10 acres of beaches were lightly, moderately, or heavily oiled and 125,000 trips on the river were affected. In order to compensate the public for these lost days of enjoying the river, we worked with our partners to implement the following projects:

  • Two new canoe and kayak paddle-in campsites on the Patuxent River.
  • Boat ramp and fishing pier improvements at Forest Landing.
  • Boat launch improvements to an existing fishing pier at Nan’s Cove.
  • Recreational improvements at Maxwell Hall Natural Resource Management Area.
  • An Americans with Disabilities Act (ADA)-accessible kayak and canoe launch at Greenwell State Park.

For more detail, you can learn how NOAA economists count and calculate the amount of restoration needed after pollution is released and also watch a short video lesson in economics and value from NOAA’s National Ocean Service.


1 Comment

What Restoration Is in Store for Massachusetts and Rhode Island after 2003 Bouchard Barge 120 Oil Spill?

A large barge is being offloaded next to a tugboat in the ocean.

On April 27, 2003, Bouchard Barge 120 was being offloaded after initial impact with a submerged object, causing 98,000 gallons of oil to spill into Massachusett’s Buzzards Bay. (NOAA)

The Natural Resource Damages Trustee Council for the Bouchard Barge 120 oil spill have released a draft restoration plan (RP) and environmental assessment (EA) [PDF] for shoreline, aquatic, and recreational use resources impacted by the 2003 spill in Massachusetts and Rhode Island.

It is the second of three anticipated plans to restore natural resources injured and uses affected by the 98,000-gallon spill that oiled roughly 100 miles of shoreline in Buzzards Bay. A $6 million natural resource damages settlement with the Bouchard Transportation Co., Inc. is funding development and implementation of restoration, with $4,827,393 awarded to restore shoreline and aquatic resources and lost recreational uses.

The draft plan evaluates alternatives to restore resources in the following categories of injuries resulting from the spill:

  • Shoreline resources, including tidal marshes, sand beaches, rocky coast, and gravel and boulder shorelines;
  • Aquatic resources, including benthic organisms such as American lobster, bivalves, and their habitats, and finfish such as river herring and their habitats; and
  • Lost uses, including public coastal access, recreational shell-fishing, and recreational boating.

The plan considers various alternatives to restore these resources and recommends funding for more than 20 projects throughout Buzzards Bay in Massachusetts and Rhode Island.

Shoreline and aquatic habitats are proposed to be restored at Round Hill Marsh and Allens Pond Marsh in Dartmouth, as well as in the Weweantic River in Wareham. Populations of shellfish, including quahog, bay scallop, and oyster will be enhanced through transplanting and seeding programs in numerous towns in both states. These shellfish restoration areas will be managed to improve recreational shell-fishing opportunities.

Public access opportunities will be created through a variety of projects, including trail improvements at several coastal parks, amenities for universal access, a handicapped accessible fishing platform in Fairhaven, Mass., and acquisition of additional land to increase the Nasketucket Bay State Reservation in Fairhaven and Mattapoisett. New and improved public boat ramps are proposed for Clarks Cove in Dartmouth and for Onset Harbor in Wareham.

A map of the preferred restoration projects for the Bouchard Barge 120 spill, as identified in the second draft restoration plan.

A map of the preferred restoration projects for the Bouchard Barge 120 spill, as identified in the second draft restoration plan. (NOAA)

The draft plan also identifies Tier 2 preferred projects; these are projects that may be funded, if settlement funds remain following the selection and implementation of Tier 1 and/or other restoration projects that will be identified in the Final RP/EA to be prepared and released by the Trustee Council following receipt and consideration of input from the public.

“We continue to make progress, together with our federal and state partners, in restoring this bay and estuary where I have spent so much of my life,” said John Bullard, National Oceanic and Atmospheric Administration (NOAA) Fisheries Northeast Regional administrator. “And, we’re eager to hear what members of the public think of the ideas in this plan, which are intended to further this work. We hope to improve habitats like salt marshes and eelgrass beds in the bay. These will benefit river herring, shellfish and other species and support recreational activities for the thousands of people who use the bay.”

The public is invited to review the Draft RP/EA and submit comments during a 45-day period, extending through Sunday, March 23, 2014. The electronic version of this Draft RP/EA document is available for public review at the following website:

http://www.darrp.noaa.gov/northeast/buzzard/index.html

Comments on the Draft RP/EA should be submitted in writing to:

NOAA Restoration Center
Attention: Buzzards Bay RP/EA Review Coordinator
28 Tarzwell Drive
Narragansett, R.I. 02882
BuzzardsBay.RP.EA.Review@noaa.gov


Leave a comment

NOAA, U.S. Fish and Wildlife Service Correct GE’s Misinformation in Latest Hudson River Pollution Report

A manufacturing facility on the banks of a dammed river.

General Electric plant on the Hudson River in New York. (Hudson River Natural Resource Trustees)

The Federal Hudson River Natural Resource Trustees sent a letter to General Electric (GE) today, addressing misinformation and correcting the public record in regard to the recently released Hudson River Project Report, submitted by GE to the New York Office of the State Comptroller. Trustees are engaged in a natural resource damage assessment and restoration (NRDAR) of the Hudson River, which is extensively contaminated with polychlorinated biphenyls (PCBs) released by GE.

“We take our responsibility to keep the public informed throughout the damage assessment process seriously,” said Wendi Weber, Northeast Regional Director of the U.S. Fish and Wildlife Service, one of the Trustees engaged in the NRDAR process. “An informed public is key to the conservation and restoration of our treasured natural resources.”

“The extensive PCB contamination of the Hudson River by General Electric has clearly injured natural resources and the services those resources provide to the people of New York State,” said Robert Haddad, Assessment and Restoration Division Chief of NOAA’s Office of Response and Restoration, a Federal Trustee in the Hudson River NRDAR process.

The Federal Trustees affirm these five facts in the letter [PDF]:

(1) Trustees have documented injuries to natural resources that the Report does not acknowledge.

Trustees have published injury determination reports for three categories of the Hudson River’s natural resources that GE does not mention in the report. Trustees anticipate that GE will be liable for the restoration of these injured natural resources.

  • Fishery injury: For more than 30 years, PCB levels in fish throughout the 200 mile Hudson River Superfund Site have exceeded the Food and Drug Administration’s (FDA) limit for PCBs in fish. Fish consumption advisories for PCB-contaminated fish have existed since 1975.
  • Waterfowl injury: In the upper Hudson River, over 90 percent of the mallard ducks tested had PCB levels higher than the FDA limit for PCBs in poultry. The bodies of mallard ducks in the Upper Hudson River have PCB levels approximately 100 times greater than those from a reference area.
  • Surface and ground water injury: Both surface water in the Hudson River itself and groundwater in the Towns of Fort Edward, Hudson Falls and Stillwater have PCB contamination in excess of New York’s water quality criteria. PCBs levels higher than these standards count as injuries. Additionally, the injuries to surface water have resulted in a loss of navigational services on the Hudson River.

(2) GE has been advised that additional dredging would reduce their NRD liability.

Federal trustees have urged GE to remove additional contaminated sediments to lessen the injuries caused by GE’s PCB contamination. Federal trustees publicly released maps showing hot spots that could be targeted for sediment removal over and above that called for in the U.S. Environmental Protection Agency remedy, and calculated the acreage to be dredged based on specific surface cleanup triggers. Information on these recommendations is publicly and explicitly available. Therefore, GE’s statement that they have “no basis to guess how much additional dredging the trustee agencies might want, in which locations, and applying which engineering or other performance standards” is incorrect.

(3) GE’s very large discharges of PCBs prior to 1975 were not authorized by any permit.

Two GE manufacturing facilities began discharging PCBs into the river in the late 1940s, resulting in extensive contamination of the Hudson River environment. In its report, GE states that “GE held the proper government permits to discharge PCBs to the river at all times required,” suggesting that all of GE’s PCB releases were made pursuant to a permit.

The implication that all of GE’s PCB releases were permitted is inaccurate. In fact, the company had no permit to discharge PCBs between 1947 and the mid-1970s, and thus GE discharged and released massive, unpermitted amounts of PCBs to the Hudson River from point sources (engineered wastewater outfalls) and non-point sources (soil and groundwater) at the Fort Edward and Hudson Falls facilities. After GE obtained discharge permits in the mid-1970s, the company at times released PCBs directly to the River in violation of the permits that it did hold. Not all of GE’s releases were permitted, and regardless, GE is not absolved of natural resource damage liability for their PCB releases.

(4) GE’s characterization of inconclusive studies on belted kingfisher and spotted sandpiper is misleading.

Trustees hold the scientific process in high regard. In its report, GE inaccurately states that studies on spotted sandpiper and belted kingfisher demonstrate no harm to those species from exposure to PCBs. In truth, those studies were simply unable to show an association between PCBs and impacts to these species. Both studies make a point of stating that the lack of association may have resulted from the sample size being too small. The studies are therefore inconclusive.

(5) The Trustees value public input and seek to ensure the public is informed and engaged.

The Trustees are stewards of the public’s natural resources and place high value in engaging with the public. GE incorrectly implies in the report that the Trustees have been secretive with respect to their NRDAR assessment. The Trustees strive to keep the public informed of progress by presenting at Hudson River Community Advisory Group meetings and at events organized by scientific, educational, and nonprofit organizations, as well as releasing documents for public review and providing information through web sites and a list serve.

To access the letter to GE and for more information, visit the Hudson River NRDAR Trustee websites:

www.fws.gov/contaminants/restorationplans/hudsonriver/index.html

www.darrp.noaa.gov/northeast/hudson/index.html

www.dec.ny.gov/lands/25609.html

The Hudson River Natural Resource Trustees agencies are the U.S. Department of Commerce (DOC), the U.S. Department of the Interior (DOI) and the state of New York. These entities have each designated representatives that possess the technical knowledge and authority to perform Natural Resource Damage Assessments. For the Hudson River, the designees are the National Oceanic and Atmospheric Administration (NOAA), which represents DOC; the U.S. Fish and Wildlife Service (FWS), which represents DOI bureaus (FWS and the National Park Service) and the New York State Department of Environmental Conservation, which represents the State of New York.


Leave a comment

A Delaware Salt Marsh Finds its way to Restoration by Channeling Success

This is a post by Simeon Hahn, Regional Resource Coordinator for the Office of Response and Restoration’s Assessment and Restoration Division.

You can find the Indian River Power Plant situated along the shores of Indian River Bay in southern Delaware. This shallow body of water is protected from the Atlantic Ocean by a narrow spit of land to the east and is downriver of the town of Millsboro to the west.

In December 1999, the power plant’s owner at the time, Delmarva Power and Light, discovered a leak in an underground fuel line that over a decade had released approximately 500,000 gallons of oil.  The fuel oil had leaked into the soil and groundwater beneath the plant. When the edge of the underground oil plume reached Indian River Bay, oil seeping from the shoreline impacted the fringe of salt marsh growing along the beach, as well as the shallow-water area a short distance offshore.

In the cleanup that followed, about 1,000 tons of oily sediment were excavated from these marshes and replaced with a similar sand quarried from nearby. As part of the restoration, Delmarva replanted the area with hundreds of seedlings of smooth cordgrass (Spartina alterniflora) and other native plants common to the shores of Delaware’s inland bays. But further restoration was needed to compensate for the environmental services lost during the period when the marshes were oiled.

When I took on this case in 2007 as a NOAA coordinator  for the subsequent Natural Resource Damage Assessment, Slough’s Gut Marsh had already been selected as the site of an additional restoration project on Indian River Bay. Slough’s Gut Marsh, east of the James Farm Ecological Preserve near Ocean View, Del., is located on land owned by Sussex County and managed by the Delaware Center for the Inland Bays. The area was described to me as 24 acres of eroded and degraded salt marsh. After a lot of hard work, some innovative thinking, and five years of monitoring the results, I’m pleased to report that Slough’s Gut Marsh has been successfully restored.

What Does it Take to Fix a Marsh?

Previously, however, Slough’s Gut was on the decline, with many of the plants growing in its salty waters either stunted or dying off. The overriding goal, as with many marsh restoration projects, was to reverse this trend and increase the vegetative cover. But does just revegetating a marsh really restore it? On the other hand, some folks, including a few at NOAA, asked whether Slough’s Gut should even be considered for “restoration” since it was already functionally a marsh and … wasn’t the ecosystem working OK? The answer on both accounts was: We were about to find out.

Although the cause of the marsh plant die-offs was not entirely clear, we suspected it had to do with changes to the natural water drainage systems associated with:

  1. Historical mosquito ditching.
  2. Sea level rise.
  3. The gradual sinking of the land.
  4. All of the above.

These suspicions were based on monitoring conducted before Slough’s Gut was ever slated for restoration. It appeared that water would not drain sufficiently off the marsh during the tidal cycle and this was suppressing the vegetation, in a phenomenon known as “waterlogging.”

I became involved as we began scoping the restoration project design. At this point, I suggested that although revegetating the marsh was a reasonable goal, the primary emphasis should be on restoring a more natural network of tidal channels, replacing the old mosquito ditches. Around the 1940s, this salt marsh had been dug up and filled in, creating a series of parallel ditches connecting at a straightened main river channel (a now-questionable practice known as “mosquito ditching” because it aimed to reduce mosquito populations). The current configuration of channels that was leading to the loss of vegetation in Slough’s Gut was likely also impacting the fish, crabs, and other aquatic life that would normally use the marsh.

Looking to a similar project on Washington, DC’s Anacostia River, the design team decided on a technique for restoring tidal channels that uses observations from relatively unimpacted marshes. This example helped us answer questions such as:

  • How big should the channels be?
  • What would a natural channel network look like? (e.g., how often would the channels split, how much would they wind)?

Next, Delmarva Power and Light hired the contractor Cardno ENTRIX to develop a restoration design that used the existing channels as much as possible but restored the channel network by creating new channels while plugging and filling others. The Delaware Department of Natural Resources and Environmental Control (DNREC), which has extensive experience working in wetlands, executed the design. Then, we watched and waited.

The End Game

The number of birds observed at Slough's Gut Marsh has doubled since 2008. Here, a heron perches at the site.

The number of birds observed at Slough’s Gut Marsh has doubled since 2008. Here, a heron perches at the site. (Cardno ENTRIX)

Cardno ENTRIX monitored the renovated marsh for five years and collected data on its recovery. This past summer, the natural resource agencies involved (NOAA, the Delaware DNREC, and the U.S. Fish and Wildlife Service) together with Delmarva Power and Light, Cardno ENTRIX, and the Center for Inland Bays (the project hosts) visited Slough’s Gut Marsh to view and discuss its progress.

Based on the past five years of data, the marsh is on a path toward successful restoration. There has been a 50 percent increase in the density of fish, shrimp, and crabs living in Slough’s Gut, compared with levels before we restored the natural tidal channels. With this extra food, the number of birds observed there has doubled since 2008.

Additional environmental sampling showed localized drainage improvements, indicating that the new channel network is stable yet adaptable, as it should be in natural marshes. This feature is particularly beneficial when confronted with issues like sea level rise and hurricanes. Protecting and restoring tidal wetlands is an important effort in adapting to climate change in coastal areas.

This project demonstrates that ecological impacts in tidal marshes from historical ditching and diking can be restored by reconstructing a more natural tidal channel network. But don’t take my word for it. Next time you’re in the area, go see the success at Slough’s Gut yourself and leave time to visit the Center for the Inland Bays to learn more about other great environmental efforts going on in Delaware’s inland bays. The center is easily accessible and the view is tremendous.

The natural resource trustees celebrate the restoration of Slough's Gut Marsh in August 2013. Simeon Hahn is at the far right.

The natural resource trustees celebrate the restoration of Slough’s Gut Marsh in August 2013. Simeon Hahn is at the far right. (Cardno ENTRIX)

Simeon Hahn is an Office of Response and Restoration Regional Resource Coordinator in the Mid-Atlantic Region for the NOAA Damage Assessment, Remediation, and Restoration Program. He is located in EPA Region 3 in Philadelphia, Pa., and works on Superfund and state remedial projects and Natural Resource Damage Assessment cases. He has been an environmental scientist with expertise in ecological risk assessment, site remediation, and habitat restoration at NOAA for 15 years and 10 years before that with the Department of Defense.


Leave a comment

As NOAA Damage Assessment Rules Turn 18, Restoration Trumps Arguing Over the Price Tag of a Turtle

Kemp's Ridley sea turtle on beach in Texas.

How do you put a price tag on natural resources like this endangered Kemp’s Ridley sea turtle? (U.S. Environmental Protection Agency)

What is a fish or sea turtle or day of sailing worth?  Some resources may be easily valued, such as a pound of lobsters, but other natural resources may not be assigned values as easily, such as injured habitats or non-game wildlife. And what about the value of a lobster in nature rather than in a soup pot? In 1989, under the paradigm in place at the time of the Exxon Valdez oil spill, damage assessments were based on the economic value of natural resources and their uses lost as a result of a spill.

Eighteen years ago, on January 6, 1996, NOAA issued its final rules for conducting Natural Resource Damage Assessments (NRDA) for oil spills. The Oil Pollution Act of 1990, prompted by the Exxon Valdez spill, changed many aspects of the U.S. response to oil spills, including the approach to damage assessments.

One of the lessons learned from the Exxon Valdez and other incidents was that restoration became delayed when the focus was on arguing over the monetary value of natural resource damages. This was because once government agencies reached a dollar-based settlement with the organization responsible for the spill, we still had to conduct studies to figure out what restoration was really necessary. Furthermore, since the process focused on calculating monetary damages rather than restoration costs, the trustees did not always receive sufficient funds to conduct restoration (the economic value of a fish or acre of wetland may not represent the costs to restore that resource).

NOAA's Doug Helton during the response to the August 10, 1993, Tampa Bay oil spill.

NOAA’s Doug Helton during the response to the August 10, 1993, Tampa Bay oil spill. A collision between a freighter and two fuel barges resulted in hundreds of thousands of gallons of oil spilled into the Bay. The damage assessment that evaluated injuries to birds, sea turtles, mangrove habitat, seagrasses, salt marshes, and recreational uses was an early example of a restoration-based claim, and NOAA used this experience in developing the damage assessment rules. A number of ecological and recreational restoration projects were conducted to address or compensate for these injuries. For more information, see http://www.darrp.noaa.gov/southeast/tampabay/

To reform this issue, the Oil Pollution Act of 1990 required that NOAA promulgate new damage assessment regulations, and I was assigned to work with a team of attorneys and scientists to help develop a rule that made sense legally and scientifically. In response to the lessons learned from the Exxon Valdez and other recent oil spills, we developed a new approach, focusing on the ultimate goal of restoration rather than attempting to establish a price tag for each fish, bird, or marine mammal injured by a spill. In other words, the damage claim submitted to the responsible party is based on the cost to conduct restoration projects for the damages rather than the value of the injured resource.

The Oil Pollution Act regulations also turned Natural Resource Damage Assessment into a more open process through three major changes:

  • Making assessment results and critical documents available to the public in an administrative record.
  • Requiring that the public have a chance to review and comment on restoration plans.
  • Inviting the organizations responsible for the spill to actively cooperate in the assessment and restoration planning.

The rulemaking process took several years, and we had lots of comments from the public, nongovernmental organizations, and the marine insurance, shipping, and oil industries. Finally, after incorporating all of the comments and developing a series of guidance documents, we published the final rule on January 6, 1996.

We had little time to relax, however. The first test of those cooperative, restoration-based regulations came a couple weeks later when the Barge North Cape and Tug Scandia ran aground in Rhode Island on January 19.  Stay tuned for the story of how that grounding off of a former nudist beach inspired an unexpected career for a young college student.

Follow

Get every new post delivered to your Inbox.

Join 409 other followers