NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

A Delaware Salt Marsh Finds its way to Restoration by Channeling Success

This is a post by Simeon Hahn, Regional Resource Coordinator for the Office of Response and Restoration’s Assessment and Restoration Division.

You can find the Indian River Power Plant situated along the shores of Indian River Bay in southern Delaware. This shallow body of water is protected from the Atlantic Ocean by a narrow spit of land to the east and is downriver of the town of Millsboro to the west.

In December 1999, the power plant’s owner at the time, Delmarva Power and Light, discovered a leak in an underground fuel line that over a decade had released approximately 500,000 gallons of oil.  The fuel oil had leaked into the soil and groundwater beneath the plant. When the edge of the underground oil plume reached Indian River Bay, oil seeping from the shoreline impacted the fringe of salt marsh growing along the beach, as well as the shallow-water area a short distance offshore.

In the cleanup that followed, about 1,000 tons of oily sediment were excavated from these marshes and replaced with a similar sand quarried from nearby. As part of the restoration, Delmarva replanted the area with hundreds of seedlings of smooth cordgrass (Spartina alterniflora) and other native plants common to the shores of Delaware’s inland bays. But further restoration was needed to compensate for the environmental services lost during the period when the marshes were oiled.

When I took on this case in 2007 as a NOAA coordinator  for the subsequent Natural Resource Damage Assessment, Slough’s Gut Marsh had already been selected as the site of an additional restoration project on Indian River Bay. Slough’s Gut Marsh, east of the James Farm Ecological Preserve near Ocean View, Del., is located on land owned by Sussex County and managed by the Delaware Center for the Inland Bays. The area was described to me as 24 acres of eroded and degraded salt marsh. After a lot of hard work, some innovative thinking, and five years of monitoring the results, I’m pleased to report that Slough’s Gut Marsh has been successfully restored.

What Does it Take to Fix a Marsh?

Previously, however, Slough’s Gut was on the decline, with many of the plants growing in its salty waters either stunted or dying off. The overriding goal, as with many marsh restoration projects, was to reverse this trend and increase the vegetative cover. But does just revegetating a marsh really restore it? On the other hand, some folks, including a few at NOAA, asked whether Slough’s Gut should even be considered for “restoration” since it was already functionally a marsh and … wasn’t the ecosystem working OK? The answer on both accounts was: We were about to find out.

Although the cause of the marsh plant die-offs was not entirely clear, we suspected it had to do with changes to the natural water drainage systems associated with:

  1. Historical mosquito ditching.
  2. Sea level rise.
  3. The gradual sinking of the land.
  4. All of the above.

These suspicions were based on monitoring conducted before Slough’s Gut was ever slated for restoration. It appeared that water would not drain sufficiently off the marsh during the tidal cycle and this was suppressing the vegetation, in a phenomenon known as “waterlogging.”

I became involved as we began scoping the restoration project design. At this point, I suggested that although revegetating the marsh was a reasonable goal, the primary emphasis should be on restoring a more natural network of tidal channels, replacing the old mosquito ditches. Around the 1940s, this salt marsh had been dug up and filled in, creating a series of parallel ditches connecting at a straightened main river channel (a now-questionable practice known as “mosquito ditching” because it aimed to reduce mosquito populations). The current configuration of channels that was leading to the loss of vegetation in Slough’s Gut was likely also impacting the fish, crabs, and other aquatic life that would normally use the marsh.

Looking to a similar project on Washington, DC’s Anacostia River, the design team decided on a technique for restoring tidal channels that uses observations from relatively unimpacted marshes. This example helped us answer questions such as:

  • How big should the channels be?
  • What would a natural channel network look like? (e.g., how often would the channels split, how much would they wind)?

Next, Delmarva Power and Light hired the contractor Cardno ENTRIX to develop a restoration design that used the existing channels as much as possible but restored the channel network by creating new channels while plugging and filling others. The Delaware Department of Natural Resources and Environmental Control (DNREC), which has extensive experience working in wetlands, executed the design. Then, we watched and waited.

The End Game

The number of birds observed at Slough's Gut Marsh has doubled since 2008. Here, a heron perches at the site.

The number of birds observed at Slough’s Gut Marsh has doubled since 2008. Here, a heron perches at the site. (Cardno ENTRIX)

Cardno ENTRIX monitored the renovated marsh for five years and collected data on its recovery. This past summer, the natural resource agencies involved (NOAA, the Delaware DNREC, and the U.S. Fish and Wildlife Service) together with Delmarva Power and Light, Cardno ENTRIX, and the Center for Inland Bays (the project hosts) visited Slough’s Gut Marsh to view and discuss its progress.

Based on the past five years of data, the marsh is on a path toward successful restoration. There has been a 50 percent increase in the density of fish, shrimp, and crabs living in Slough’s Gut, compared with levels before we restored the natural tidal channels. With this extra food, the number of birds observed there has doubled since 2008.

Additional environmental sampling showed localized drainage improvements, indicating that the new channel network is stable yet adaptable, as it should be in natural marshes. This feature is particularly beneficial when confronted with issues like sea level rise and hurricanes. Protecting and restoring tidal wetlands is an important effort in adapting to climate change in coastal areas.

This project demonstrates that ecological impacts in tidal marshes from historical ditching and diking can be restored by reconstructing a more natural tidal channel network. But don’t take my word for it. Next time you’re in the area, go see the success at Slough’s Gut yourself and leave time to visit the Center for the Inland Bays to learn more about other great environmental efforts going on in Delaware’s inland bays. The center is easily accessible and the view is tremendous.

The natural resource trustees celebrate the restoration of Slough's Gut Marsh in August 2013. Simeon Hahn is at the far right.

The natural resource trustees celebrate the restoration of Slough’s Gut Marsh in August 2013. Simeon Hahn is at the far right. (Cardno ENTRIX)

Simeon Hahn is an Office of Response and Restoration Regional Resource Coordinator in the Mid-Atlantic Region for the NOAA Damage Assessment, Remediation, and Restoration Program. He is located in EPA Region 3 in Philadelphia, Pa., and works on Superfund and state remedial projects and Natural Resource Damage Assessment cases. He has been an environmental scientist with expertise in ecological risk assessment, site remediation, and habitat restoration at NOAA for 15 years and 10 years before that with the Department of Defense.


Leave a comment

As NOAA Damage Assessment Rules Turn 18, Restoration Trumps Arguing Over the Price Tag of a Turtle

Kemp's Ridley sea turtle on beach in Texas.

How do you put a price tag on natural resources like this endangered Kemp’s Ridley sea turtle? (U.S. Environmental Protection Agency)

What is a fish or sea turtle or day of sailing worth?  Some resources may be easily valued, such as a pound of lobsters, but other natural resources may not be assigned values as easily, such as injured habitats or non-game wildlife. And what about the value of a lobster in nature rather than in a soup pot? In 1989, under the paradigm in place at the time of the Exxon Valdez oil spill, damage assessments were based on the economic value of natural resources and their uses lost as a result of a spill.

Eighteen years ago, on January 6, 1996, NOAA issued its final rules for conducting Natural Resource Damage Assessments (NRDA) for oil spills. The Oil Pollution Act of 1990, prompted by the Exxon Valdez spill, changed many aspects of the U.S. response to oil spills, including the approach to damage assessments.

One of the lessons learned from the Exxon Valdez and other incidents was that restoration became delayed when the focus was on arguing over the monetary value of natural resource damages. This was because once government agencies reached a dollar-based settlement with the organization responsible for the spill, we still had to conduct studies to figure out what restoration was really necessary. Furthermore, since the process focused on calculating monetary damages rather than restoration costs, the trustees did not always receive sufficient funds to conduct restoration (the economic value of a fish or acre of wetland may not represent the costs to restore that resource).

NOAA's Doug Helton during the response to the August 10, 1993, Tampa Bay oil spill.

NOAA’s Doug Helton during the response to the August 10, 1993, Tampa Bay oil spill. A collision between a freighter and two fuel barges resulted in hundreds of thousands of gallons of oil spilled into the Bay. The damage assessment that evaluated injuries to birds, sea turtles, mangrove habitat, seagrasses, salt marshes, and recreational uses was an early example of a restoration-based claim, and NOAA used this experience in developing the damage assessment rules. A number of ecological and recreational restoration projects were conducted to address or compensate for these injuries. For more information, see http://www.darrp.noaa.gov/southeast/tampabay/

To reform this issue, the Oil Pollution Act of 1990 required that NOAA promulgate new damage assessment regulations, and I was assigned to work with a team of attorneys and scientists to help develop a rule that made sense legally and scientifically. In response to the lessons learned from the Exxon Valdez and other recent oil spills, we developed a new approach, focusing on the ultimate goal of restoration rather than attempting to establish a price tag for each fish, bird, or marine mammal injured by a spill. In other words, the damage claim submitted to the responsible party is based on the cost to conduct restoration projects for the damages rather than the value of the injured resource.

The Oil Pollution Act regulations also turned Natural Resource Damage Assessment into a more open process through three major changes:

  • Making assessment results and critical documents available to the public in an administrative record.
  • Requiring that the public have a chance to review and comment on restoration plans.
  • Inviting the organizations responsible for the spill to actively cooperate in the assessment and restoration planning.

The rulemaking process took several years, and we had lots of comments from the public, nongovernmental organizations, and the marine insurance, shipping, and oil industries. Finally, after incorporating all of the comments and developing a series of guidance documents, we published the final rule on January 6, 1996.

We had little time to relax, however. The first test of those cooperative, restoration-based regulations came a couple weeks later when the Barge North Cape and Tug Scandia ran aground in Rhode Island on January 19.  Stay tuned for the story of how that grounding off of a former nudist beach inspired an unexpected career for a young college student.


5 Comments

In New Jersey, Celebrating a Revived Marsh and the Man who Made it Possible

This is a post by the NOAA Restoration Center’s Carl Alderson.

Ernie Oros speaking next to Woodbridge marsh.

Former State Assemblyman and champion of open space, Ernie Oros at the Woodbridge marsh dedication ceremony on Oct 16, 2007. (New York New Jersey Baykeeper/Greg Remaud)

Ernie Oros, former New Jersey State Assemblyman and octogenarian, stood next to me on the bank of a newly created tributary to the Woodbridge River and looked out across an expanse of restored tidal marsh. It was May 2008 and the marsh that he had long championed was now lush and green and teeming with fish. This inspiring sight before us was the result of a marsh restoration project undertaken by NOAA, the Army Corps of Engineers, New Jersey Department of Environmental Protection, and the Port Authority of New York and New Jersey.

Years ago a tall berm was raised between the Woodbridge River and this marshland, effectively walling it off from the reach of the tides that replenished it. Reeds that grow in damaged marshes choked off the tides even further.

He gave a pause, drew a breath and was on to the next subject before I had finished marveling at the sea of grass standing before us. “When can you get the observation walkway back up?” Ernie asked me. “Soon,” I replied, “we have a plan.” “Good,” he said, “I’m not getting any younger.”

That’s how the conversation went until August 2012 when Ernie passed away at the age of 88. The construction of the tidal marsh itself—with all the complexities of hydrology, chemistry, biology, logistical twists and turns, negotiations, permits, and contract discussions—seemed to go up in a snap. In two years it went from design contract to dedication ceremony. Yet, the observation boardwalks—there were now two—seemed to lag behind in a mire of contract disputes, tight budgets, two hurricanes, and extension after extension of funding agreements.

A Vision to Restore

I never wondered why Ernie was so anxious to move forward; he was after all in his 80s and by his own account in failing health. In his knock-around clothes, he looked like an old clam digger, but in his best suit, like the one he wore the day of the marsh dedication ceremony, he still cut the figure of the State Assemblyman he once was. Ernie had a vision for this place, and he was now on a roll. He had long ago established Woodbridge River Watch, a community organization to advocate for open space in Woodbridge, N.J.; he had guided the town through major acquisition and conservation efforts; he gathered momentum for his butterfly garden; planned to landscape the perimeter with local historic artifacts; and now he could add the marsh restoration to his list of achievements.

Among all of his accomplishments, nothing could be more dramatic than having blown life into this dying marshland. It linked the past and the future to a community that blossomed at the cross roads of the American colonial experience in the 17th century, soared to the peak of industrialization beginning in the 18th and 19th centuries, then boomed and at last came to rest upon the suburbanization movement of the 20th century. For myself, I could live with the simple sweet note of this being an urban habitat: a rebirth for colonial wading birds, ribbed mussels, fiddler crabs, and young juvenile bluefish called “snappers.” But for Ernie, the marsh was the opening hymn to a chorus of American history.

It took me a long time to realize what Ernie was up to. The marsh wasn’t just a host for the history garden; it itself was an artifact. The marsh represented every century that came before the first European settlers arrived. Better than any artifact, the marsh was living history as far as Ernie was concerned.

An interpretative sign displaying the flora and fauna found in Woodbridge Marsh.

An interpretative sign displaying the flora and fauna found in Woodbridge Marsh. (Illustrations: Jorge Cotto. Design: Ann Folli)

The observation boardwalks were the last piece of the plan. Both Ernie and I viewed the future boardwalks and their brightly designed story panels as a means of drawing in the citizens of Woodbridge. Boardwalks send a signal of welcome where a marsh alone often does not. The signs would interpret for them the plants, the animals, the natural processes unfolding in the marsh around them.

That is why Ernie was so anxious to see this vision through to completion. Despite the town’s position on the waterfront of three major bodies of water—the Raritan River, Raritan Bay, and Arthur Kill (a tidal straight separating the township from New York City)—very little of it was accessible to the public. Ernie hoped to change that by inviting people into a renewed Woodbridge Marsh.

A Day to Remember

Greg Remaud is the Deputy Director for the New York/New Jersey Baykeeper. The Baykeeper, a long-time partner of NOAA and advocate for open space in New York Harbor, is a non-profit organization committed to the conservation and restoration of the Hudson-Raritan Estuary. For Remaud, it had become increasingly apparent that the post-industrial age presented opportunities to create New Jersey’s waterfront in a new image.

Greg had met up with Ernie Oros years before. With the help of many others, this pair championed a new way forward for the Woodbridge River. Eventually, they were able to draw the attention of key agencies and help these dreams take the shape of Spartina grasses, High Tide bush, and killifish.

Then, earlier this year, I learned of the Baykeeper’s plan to honor Ernie’s memory with a day-long celebration.

One of the sons and great-grandsons of Ernie Oros canoeing on the banks of the Woodbridge River on Ernie Oros Celebration Day, September 28, 2013.

Ernie’s son Richard Oros and Michael Kohler, Ernie’s great-grandson, canoeing on the banks of the Woodbridge River on Ernie Oros Celebration Day, September 28, 2013. (Carl Alderson/all rights reserved)

On the astonishingly beautiful Saturday morning of September 28, 2013, the NOAA Restoration Center was on hand to be part of a very special event to honor Ernie’s life. To honor his legacy, the New York/New Jersey Baykeeper held a family-friendly event right next to what I consider Ernie’s greatest environmental achievement: the 67-acre Woodbridge River Wetland Restoration Project.

In a day that featured music, games, picnics, and face painting, the most popular event was the free kayak tours with the very capable staff of the Baykeeper, who led citizens through a seeming maze of restored marshes and tidal creeks. Several of Ernie’s family members were present. His sons, granddaughters, and great-grandkids jumped into canoes and kayaks to venture a ride through Ernie’s great achievement.

A Role for NOAA

NOAA’s involvement with the Woodbridge River Wetland Restoration Project began to take shape sometime in the late 1990s. We provided funds from natural resource damage settlements for two local oil spills to conduct feasibility studies, design, and permitting in 2000. Under a partnership of federal and state agencies, the project was designed and constructed between 2006 and 2007. NOAA and New Jersey Department of Environmental Protection provided $2.3 million, combining it with funds from the Army Corps of Engineers Harbor Deepening Program to make the full project come together for the Woodbridge River.

The project removed berms and obstructions that had sealed the former wetland from the Woodbridge River for decades and reunited two large tracts of land with the tides via created tidal creeks and planted marsh grasses. Today, the site is once again the home of wading birds, waterfowl, fiddler crabs, ribbed mussels, and seemingly hundreds of thousands of killifish. Ernie had tirelessly dedicated much of his adult life to campaign for the acquisition, protection, and restoration of his beloved Woodbridge River wetlands and his achievements will live on in their vibrant waters.

Carl Alderson.

Carl Alderson (left, NOAA) and Greg Remaud (right, NY/NJ Baykeeper) on the banks of the Woodbridge River on Ernie Oros Celebration Day, Sept. 28, 2013. Credit: Susan Alderson.

Carl Alderson is a Marine Resource Specialist with the NOAA Restoration Center, located at the JJ Howard Marine Science Lab in Highlands, N.J. Carl provides oversight of coastal habitat restoration projects and marine debris programs through NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) and Community-based Restoration Grants Program (CRP) in the mid-Atlantic region. He is a graduate of Rutgers University and is a Licensed Landscape Architect. Before joining NOAA, Carl worked for the City of New York and led a decade long effort to restore tidal wetlands, marine bird, and fish habitat as compensation for natural resources damages resulting from oil spills in New York Harbor. Carl is recognized as a national leader in restoration of coastal wetlands and bay habitats.


Leave a comment

Above, Under, and Through the Ice: Demonstrating Technologies for Oil Spill Response in the Arctic

This is the third in a series of posts about Arctic Shield 2013 by the Office of Response and Restoration’s Zach Winters-Staszak. Read his first post, “Arctic-bound” and his second post, “Breaking Ice.”

76° N, 158° W marks the spot. The wind chill has dropped the mercury below zero as the U.S. Coast Guard Cutter Healy, an icebreaker, sits idly, anchored by the sea ice that dominates the landscape. All eyes are fixed on the brilliant orange of the Coast Guard zodiac, the small boat’s color contrasted against the cobalt blue water off the icebreaker’s port side. A faint hum of a motor gets louder and louder overhead as the “Puma” comes into view. Then, just as the miniature, remote-controlled aircraft is positioned exactly over a nearby patch of open water, the operator kills the motor and the Puma splashes down safely.

The Puma operator  aboard the Coast Guard zodiak recovers the small unmanned aircraft after demonstrating its capabilities for detecting oil from the air. (NOAA)

The Puma operator aboard the U.S. Coast Guard zodiak recovers the small unmanned aircraft after demonstrating its capabilities for detecting oil from the air during Arctic Shield 2013. (NOAA)

During the exercise Arctic Shield 2013, the U.S. Coast Guard Research and Development Center (RDC) brought a group of scientists and specialists together to demonstrate technologies that potentially could be used for oil spill response in the Arctic Ocean’s severe conditions. This is my third and final post detailing my experiences and involvement in the mission aboard the Healy; you can read the previous posts, “Arctic-bound” and “Breaking Ice.”

Existing Technology, New Applications

The Arctic Ocean remains a difficult to access and often dangerous environment.

The Arctic Ocean remains a difficult to access and often dangerous environment. (NOAA)

Increased marine transportation and oil exploration in the Arctic increases the likelihood of, along with the responsibility to be prepared for, potential oil spills. Operating in an area as remote and ice-filled as the Arctic poses new logistical and tactical challenges for safe ship transit, search and rescue efforts, resource extraction, and oil spill response. For those of us working in oil spill response, this means developing new methods and technologies for surveying, assessing, and responding in these settings.

The RDC, coordinating efforts by the Unmanned Aircraft Systems (UAS) programs at the National Oceanic and Atmospheric Administration (NOAA) and the University of Alaska Fairbanks, demonstrated the Puma as one method to survey, identify, and monitor oil on and around the ice floes from above. The Puma is a battery-powered, aerial survey technology with military roots that is now being used for a variety of environmental applications.

The Puma’s advantages for oil spill response in the Arctic are many. With its capacity for high resolution and infrared imagery, the Puma could help identify and monitor oiled environments and wildlife during response efforts, while simultaneously creating a visual record of environmental injury that could be used during a Natural Resource Damage Assessment.

The NOAA Office of Response and Restoration’s Emergency Response Division has a long history of recording aerial imagery of oil spills by using trained observers aboard helicopters or airplanes to find and photograph oil on the water’s surface. Using a UAS like the Puma removes the risk to human safety, requires batteries and not fuel, and has been shown to have little-to-no influence on the behavior of wildlife. In fact, NOAA has already used Pumas to great effect during marine mammal and sea bird surveys.

This last point is especially important when you consider an animal like the Pacific walrus. With recent, dramatic summer losses in sea ice, Pacific walruses have been seen congregating en masse on the shoreline of Alaska, a behavior happening earlier and earlier in the year. Disturbance of these large groups of walruses, which could be caused by noisy surveying techniques, creates panic in the animals, causing a stampede that could end up trampling and killing young walruses.

Pumas Fly but Jaguars Swim

While the Pumas were busy scanning the ice and sea from the sky, scientists from Woods Hole Oceanographic Institute were fast at work deploying their “Jaguar” beneath the water. The Jaguar is an Autonomous Underwater Vehicle (AUV) designed to map the Arctic sea floor, but during Arctic Shield 2013, the science team instead used it to map the curves and channels on the underside of the sea ice.

For example, if an oil spill occurred near an ice floe, responders would need to know where oil could pool up or be funneled in the curves or channels beneath the sea ice. The Jaguar uses acoustic technology to map the differences in sea ice thickness or “draft” as it travels along its programmed path under the ice. A suite of oceanographic sensors are also installed that measure water temperature, conductivity, pressure, and salinity along the way. In addition, scientists can install an optical back-scatter sensor that can detect oil in the water column.

To top things off, the Jaguar’s footprint is relatively low. The entire system is easily shipped, only requires a three-person team to operate, and doesn’t need a large vessel like the Healy to be deployed. Having a highly functional, low-impact tool is a major advantage out on the Arctic Ocean.

A Mapping Tool Made for the Arctic

It was with remote environments like the Arctic in mind that the Office of Response and Restoration developed Stand-alone ERMA, an internet-independent version of our Arctic ERMA online mapping tool used in response efforts for oil spills, hazardous waste spills, and ship groundings. My role in Arctic Shield was to integrate and display the data collected by the technologies I just described into Stand-alone ERMA. ERMA integrates multiple data sources and displays them in a single interactive map. With the resulting data-rich map, I could demonstrate the advantage of establishing a common operational picture during an oil spill response scenario—all without an internet connection.

A view from Arctic ERMA, NOAA's online mapping tool for environmental disasters. You can see the path of the icebreaker Healy, the Puma's flight, and the photos and their location taken by the Puma.

A view from Arctic ERMA, NOAA’s online mapping tool for environmental disasters. You can see the path of the icebreaker Healy, the Puma’s flight, and the photos and their location taken by the Puma. (NOAA)

During Arctic Shield 2013, Stand-alone ERMA was integrated into the ship’s local network, and as new data were recorded and displayed, everyone on the ship, from the bridge to the science decks, could view the same results on their computer screens.

In a typical oil spill response, you can have decision makers from federal, state, and local governments; private industry; and a multitude of scientists and technicians all working together. Everyone needs access to the same information, especially when it is constantly changing, in order to make the most informed decisions. But if internet availability is sporadic or nonexistent (not unusual in the Alaskan Arctic), most common operational pictures are rendered inoperable. Stand-alone ERMA bridges that gap, while providing the same experience and tools found with the online version. Demonstrating the utility of Stand-alone ERMA aboard the Healy made the advantages of a flexible common operational picture very clear.

Mind the Gaps (and Bridge Them)

The purpose of these demonstrations during Arctic Shield 2013 was to identify technologies that could improve oil spill response capabilities in the Arctic environment. Not all of the technologies being demonstrated were recently developed or even developed specifically for oil spill response. The Coast Guard Research and Development Center, which organized the demonstration, has taken a critical look at the difficulties and challenges associated with operating in an icy ocean environment. As a result they have identified a wide variety of technologies—some of which we demonstrated on this trip—that could potentially improve response during an actual oil spill. Still, a great deal of work remains as we work to better understand Arctic ecosystems and overcome the challenges of stewardship in a new and uncertain period in our history.

The only trace of a polar bear were these tracks in the snow and ice as the Healy plowed past.

The only trace of a polar bear were these tracks in the snow and ice as the Healy plowed past. (NOAA)

Looking over the bow of the Healy as the ship fractured the ice beneath, I caught a brief glimpse of polar bear tracks in the snow. The animal itself was nowhere to be seen, but as I watched the tracks fade into the distance, I was reminded of why I was there. When you’re out on the ice, breathing in the frigid air, knowing that polar bears are out there hunting and raising cubs, you realize what is right in front of you is the only place like it in the world. Being a part of Arctic Shield 2013 was an incredibly rewarding and humbling experience, one that is helping me figure out what data we still need and develop the tools to strengthen our ability to respond to an oil spill.

Zach Winters-StaszakZach Winters-Staszak is a GIS Specialist with OR&R’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


Leave a comment

When Oil Spills, School Kids Take Note

The impacts of an oil spill can be varied: closed beaches, dead fish, oiled birds and wildlife—just to name a few. But the impacts can also be emotional, often drawing out of people feelings like anger, sadness, frustration, or an eagerness to help. Those of us at NOAA who work to minimize the impacts of oil spills on America’s water, coasts, plants, and animals are not immune to these impacts either. But we are glad to know that people care.

Here a few examples of letters written by school kids after they learned about oil spills in Alaska and California—and how these spills affected them.

On April 13, 1989, second grader Kelli Middlestead of the Franklin School in Burlingame, Calif., let her feelings be known after hearing about the Exxon Valdez oil spill in Prince William Sound, Alaska. She addressed her letter, illustrated with her beloved sea otters, to Walter Stieglitz, Alaskan Regional Director of the U.S. Fish and Wildlife Service. (Hat tip to the National Archive’s excellent Tumblr.)

In November of 2007, middle school students on a science camp field trip to a San Francisco beach were upset instead to find oil on the water, beach, and even the birds. Days earlier, the cargo ship Cosco Busan had crashed into the San Francisco-Oakland Bay Bridge and spilled 53,000 gallons of thick fuel oil into the marine waters nearby.

An example of the thoughtfully crafted thank you cards sent to oil spill responders by seventh graders in California after the 2007 Cosco Busan oil spill.

An example of the thoughtfully crafted thank you cards sent to oil spill responders by seventh graders in California after the 2007 Cosco Busan oil spill.

While they were saddened by the events, the seventh grade students from Old Orchard Middle School in Campbell, Calif., decided to help by writing hand-written and illustrated thank you cards to the people cleaning up the oil spill. According to a press release about their efforts [PDF]:

“Everyone started pitching in and we came up with the idea to write cards,” said seventh grade student Erin.

“We felt helpless that we couldn’t go and help the animals or clean up the beach,” said Alex, another seventh grader from Old Orchard School. “We saw birds staggering and people trying to catch them.”

“These cards did a lot for the morale of our cleanup crew,” said Barry McFarland of the response company O’Brien’s Group, which worked to clean up the spill at Muir Beach and received the students’ cards. “Some of our crew were actually moved to tears.”

You can read more of the thank you notes from the concerned students [PDF].


Leave a comment

Transforming an Oregon Watershed, Once Marred by a Gasoline Spill, into Fish-Friendly Habitat

This is a post by the NOAA Restoration Center’s Lauren Senkyr.

The Warm Springs Reservation in central Oregon is a vast, solitary, and beautiful place. Stretching out from the southeastern flanks of Mt. Hood, the reservation is home to members of the Confederated Tribes of the Warm Springs Reservation of Oregon. The reservation is bisected by one of Oregon’s most scenic roads, Highway 26. Driving down this road on a hot and dry summer day, you’ll see the rich, dark forest transition to sagebrush steppe and high desert. You’ll see hazy mountains in the distance, with creeks meandering across the foreground. Today, you’d never know a tanker truck ran off this idyllic road in 1999, spilling more than 5,000 gallons of gasoline into Beaver Butte Creek, just above where it meets Beaver Creek.

The spill impacted Chinook salmon, steelhead trout, and other fish and wildlife that lived in or downstream of Beaver Butte Creek. It killed the plants and contaminated the soil around the creek as well. Cleanup efforts began immediately. A trustee council was formed to assess the environmental damages and plan for restoration. The council included representatives of the Confederated Tribes of the Warm Springs Reservation of Oregon, the National Oceanic and Atmospheric Administration (NOAA), and U.S. Fish and Wildlife Service.

Using funds from the settlement with the company responsible for the spill, the Trustees have chosen a range of restoration projects to improve conditions for steelhead trout and Chinook salmon throughout the Beaver Creek watershed. The restoration plan focuses on steelhead in particular because they are an endangered species, already on the brink of extinction.

In addition to the gasoline spill, there are a variety of other factors that have degraded the once-abundant natural resources on the Warm Springs Reservation. Logging and human-caused changes to the natural regime of wildfires have transformed the forests. Roads and development have relocated, and in some cases, blocked streams. Wild horses and cattle have packed down the soils and reduced vegetative cover, increasing erosion along the stream banks.

The first restoration project to offset impacts from the gasoline spill took shape in 2011. Since then, four more projects have been built, ranging from riparian fencing to road removal. There are more to come. With a creative and thoughtful approach, the Confederated Tribes of the Warm Springs Reservation of Oregon and the other trustees are stretching the settlement dollars by leveraging them with other funding sources to provide the greatest benefit to injured fish and wildlife.  Here are some of the highlights:

Red Lake, Happy Valley, and Quartz Creek Riparian Fencing Projects

The problem: Wild horses and free-roaming cattle. These large animals eat plants along the creeks and stomp down the dirt on the stream banks and floodplains, increasing erosion and degrading water quality.

The solution: Fencing. So far we have installed four miles of fence along stream banks, protecting 150 acres of riparian (stream-side) habitat throughout the Beaver Creek Watershed while also helping ranchers manage their livestock. An added benefit of the fencing projects?  Providing employment to 15 tribal members. That’s what we call a win-win.

S512 Large Wood Project and S501 Road Removal Project

The problem: Simplified streams that don’t provide good habitat for fish. Logging, road building, and other types of development have removed trees from the areas near streams, where the trees normally would fall into the creeks and provide nooks and crannies for fish to hide in and eat bugs.

The solution: Adding large wood to the stream to give fish places to hide, rest, and eat. In some cases we have also decommissioned old, abandoned logging roads and planted them with native trees and shrubs so that, eventually, nature can take over the work.

Quartz Creek Stream Restoration

The problem: Streams that have eroded so badly they now have 20-foot-high banks that are completely disconnected from the floodplain. The eroding stream banks release small landslides of fine dirt into the stream, making the water cloudy and covering the gravel that salmon need to spawn.

The solution: Think like a beaver. This year the Tribe plans to install two beaver dam–mimicking structures on Quartz Creek to help dam up the water and catch eroding dirt as it is moving downstream. Hopefully, actual beavers eventually will move back into the creek and continue this work.

Lauren SenkyrLauren Senkyr is a Habitat Restoration Specialist with NOAA’s Restoration Center.  Based out of Portland, Ore., she works on restoration planning and community outreach for the Portland Harbor Superfund site as well as other habitat restoration efforts throughout the state of Oregon.


1 Comment

NOAA Likes Rivers Too

A view of the Hudson River in the fall.

A view of the Hudson River in the fall. NOAA is involved with assessing the environmental impacts to the Hudson River due to industrial pollution from two General Electric plants. (Photo: Roy Saplin, Creative Commons Attribution-NonCommercial 2.0 Generic License)

June is National Rivers Month. You might think those of us at the National Oceanic and Atmospheric Administration (NOAA) are concerned only with water in the ocean or sky. But we’re actually big fans of rivers too. Many rivers flow out to the ocean, creating areas where fresh and saltwater mix called estuaries. These important and unique ecosystems are where many animal species, especially fish and birds, eat, nest, and breed.

NOAA also keeps an eye on rivers when they get polluted, either from oil spills or industrial pollution, and looks out in particular for the interests of aquatic species that spend time both in the ocean and rivers. Just take a look at a few examples of how NOAA protects and preserves America’s rivers:

You can hear more about the importance of rivers—and keeping them healthy—from the U.S. Fish and Wildlife Service’s Margaret Byrne, an environmental health scientist involved in the Hudson River Natural Resource Damage Assessment:

My work on the Hudson River has taught me about the incredibly diverse and important habitats found in this unique place. The Hudson River has been called “the river that flows in two directions” because the tides of the Atlantic Ocean push water back upstream twice a day. These tides help to create homes for many different kinds of plants and animals …

This month, I celebrate National Rivers Month with a solemn knowledge that the incredible ecological resources of the Hudson River have been extensively contaminated with chemicals called polychlorinated biphenyls, or PCBs.

These toxic chemicals have been found in the water, fish and other wildlife, and sediment of the Hudson River below General Electric Company’s plants at Hudson Falls and Fort Edward in New York.

We know that PCBs can cause serious harm to wildlife and other natural resources and we are in the process of determining the scope of the injuries caused by this contamination. (Read my colleague’s blog post about studies on Hudson River mink and learn about the difference between the EPA’s Superfund cleanup and the Natural Resource Damage Assessment process.)

Read the rest of Byrne’s post over at the U.S. Fish and Wildlife Service Northeast Region blog, and let us know in the comments how you help keep rivers and their inhabitants safe and healthy.


Leave a comment

Wildlife Webcams Bring NOAA Restoration Projects Live to You

This is a post by Gabrielle Dorr, NOAA/Montrose Settlements Restoration Program Outreach Coordinator.

A photo of A-49, also known as "Princess Cruz," in her nest on Santa Cruz Island. She was the first Bald Eagle chick hatched naturally on California’s Santa Cruz Island in over 50 years. (Photo Credit: Peter Sharpe, Institute for Wildlife Studies)

A-49, also known as “Princess Cruz,” in her nest on Santa Cruz Island. She was the first Bald Eagle chick hatched naturally on California’s Santa Cruz Island in over 50 years. (Photo Credit: Peter Sharpe, Institute for Wildlife Studies)

We want you to take a bird’s eye view of restoration with our wildlife webcams.  In 2006, NOAA’s Montrose Settlements Restoration Program, established to make up for a toxic DDT and PCB legacy in southern California, installed a live webcam with a close-up view of the first Bald Eagle nest to hatch a chick naturally on California’s Santa Cruz Island in over 50 years. Thousands watched as the eagle parents tended to their chick, affectionately named “Princess Cruz” by webcam watchers. Today, there are a total of five webcams on other nests around the California Channel Islands, highlighting the success of our Bald Eagle Restoration Program.

We also wanted to connect the public to the underwater world of wetlands with an underwater fish webcam. In 2010, our program installed a live webcam in Huntington Beach wetlands, where we completed one of our fish habitat restoration projects. This underwater camera demonstrates the importance of wetlands as a fish nursery and feeding area.

Watch Bald Eagles Live

A photo of a Bald Eagle adult and chicks in the Pelican Harbor nest on Santa Cruz Island. (Photo Credit: Kevin White, Full Frame Productions)

A Bald Eagle adult and chicks in the Pelican Harbor nest on Santa Cruz Island. (Photo Credit: Kevin White, Full Frame Productions)

What is cute and cuddly and has wings?  You guessed it … a Bald Eagle chick! What is even better is that you can watch these adorable birds on live webcams that are placed near Bald Eagle nests located on Catalina and Santa Cruz Islands in the California Channel Islands right now. Viewers can watch daily as both male and female adults attend to their chicks by feeding them and keeping them warm. One of the most popular nests to watch is the West End nest on Catalina Island that has triplets for the third year in a row.

For eagle enthusiasts, there is a Channel Islands Eaglecam discussion forum where you can post or read daily nest observations, chat with other enthusiasts, or read updates from the Bald Eagle restoration team. With over 1 million hits each year, the Bald Eagle webcams have captivated audiences all over the world from January to June as these regal birds raise their young.

Diving with the Fish

If you are more interested in what lurks beneath the ocean then you should check out the live fish webcam that is broadcast from Talbert Marsh in the Huntington Beach wetlands. Since the fish webcam has been live, we have observed over 20 species of fish, diving seabirds, an octopus, nudibranchs (colorful sea slugs), and numerous other cool invertebrates.  We have also seen fish spawning events, territorial displays of fish, and even sharks.

If you want to let us know what you have seen on our webcam, you can fill out our online fish webcam observation sheet. In case our solar-powered camera is down, you can check out this 10 minute clip recorded from the webcam for a snapshot of what you might normally see. The eelgrass swaying side to side is mesmerizing and you can always catch a glimpse of a fish when you log onto the fish webcam. Test your fish identification skills now!

Gabrielle Dorr

Gabrielle Dorr.

Gabrielle Dorr is the Outreach Coordinator for the Montrose Settlements Restoration Program as part of NOAA’s Restoration Center. She lives and works in Long Beach, California where she is always interacting with the local community through outreach events, public meetings, and fishing education programs.


Leave a comment

Baby Mink Jeopardized by Toxic Chemicals in New York’s Hudson River

This is a guest post by U.S. Fish and Wildlife Service biologist Kathryn Jahn, case manager for the Hudson River Natural Resource Damage Assessment. This originally appeared in full on the U.S. Fish and Wildlife Service Northeast Region blog.

Mink at Bombay Hook National Wildlife Refuge.

Mink at Bombay Hook National Wildlife Refuge. (Don Cooper)

In the early 1970s, toxic compounds known as polychlorinated biphenyls, or PCBs, were discovered in the water, fish, and sediment of the Hudson River below General Electric Company’s plants at Hudson Falls and Fort Edward in New York.

Those PCBs have contaminated the surface water, groundwater, sediments, and floodplains of the Hudson River. We find that living resources at every level of the Hudson River’s food chains are contaminated with PCBs. We believe that serious adverse effects are likely to be occurring to wildlife exposed to this PCB contamination in the Hudson River.

A whole team of people are using their individual and collective expertise to address the problem of PCB contamination in the Hudson River and its effect on wildlife. My favorite part of this job is the teamwork among all the people working on this issue, and the interactions with our experts and the public.

We know that PCBs can cause serious harm to wildlife and other natural resources. Although a cleanup funded by GE is underway for certain sections of the Hudson River, the dredging GE is doing will leave some areas still contaminated with PCBs.

The dredging also cannot compensate for past effects of this PCB contamination on the Hudson River’s natural resources. For example, dredging will not make up for all the years that public use of the Hudson River fishery has been impaired by fish consumption advisories. Dredging will not return that lost use to the public.

In our planning to determine the effects of PCBs on wildlife, we identified mink health as one area to investigate. Mink are vulnerable to the effects of PCBs. Hudson River mink eat PCB-contaminated fish and other small creatures, and they ingest contaminated water, soil, and sediments as they look for food and build their dens. This led us to suspect that Hudson River mink might be harmed by PCBs in their environment.

Read more to find out how PCB contamination might be affecting mink offspring.

[Editor's note: And learn about a past report from the Hudson River Natural Resource Trustees, including NOAA, which found that PCBs permeate nearly every part of the Hudson River.]


Leave a comment

$2 Million in Aquatic Restoration Projects Proposed for Polluted Housatonic River in Connecticut

Housatonic River with covered bridge.

The latest round of aquatic restoration projects for the Housatonic River will also indirectly improve water quality, increase buffering during coastal storms, and reduce runoff pollution into the river. (NOAA)

NOAA, the U.S. Fish and Wildlife Service, and the State of Connecticut released a proposal to use approximately $2 million from a 1999 settlement with General Electric Company (GE) to fund projects to increase fish habitat and restore marshes on the Housatonic River. Between 1932 and 1977, GE discharged polychlorinated biphenyls (PCBs) and other chemical wastes from its facility in Pittsfield, Mass, into the Housatonic River, which runs through western Massachusetts and Connecticut. As a result, the Housatonic’s fish, wildlife, and their habitats suffered from the effects of these highly toxic compounds.

Part of an amendment to the 2009 restoration plan [PDF] for the Housatonic site, these latest projects highlight aquatic restoration because the original plan primarily focused on recreational and riparian restoration, with more than half of those projects already complete. The amendment identifies seven preferred restoration projects and three non-preferred alternatives to increase restoration of injured aquatic natural resources and services. These projects aim to more fully compensate the public for the full suite of environmental injuries resulting from GE’s decades of PCB contamination by:

  • Enhancing wetland habitat for birds, fish, and other wildlife.
  • Supporting native salt marsh restoration by eradicating nonnative reeds and removing large debris (e.g., plywood and lumber).
  • Restoring migratory fish and wildlife passages by removing dams and constructing bypass channels.
  • Promoting recreational fishing, other outdoor activities, and natural resource conservation.

The 1999 legal settlement with GE included $7.75 million for projects in Connecticut aimed at restoring, rehabilitating, or acquiring the equivalent of the natural resources and recreational uses of the Housatonic River injured by GE’s Pittsfield facility pollution. Settlement funds grew to more than $9 million in an interest-bearing fund. NOAA and its co-trustees are using the majority of the remaining $2,423,328 of those funds to implement these additional aquatic natural resources projects.

Public comments and additional project proposals for this draft amendment to the restoration plan will be accepted through March 11, 2013. Comments should be sent to Robin Adamcewicz, Department of Energy and Environmental Protection, Eastern District Headquarters, 209 Hebron Road, Marlborough, CT 06447, or emailed to robin.adamcewicz@ct.gov

Learn more about Restoring Natural Resources in Connecticut’s Housatonic River Watershed [PDF].

Follow

Get every new post delivered to your Inbox.

Join 371 other followers