NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


3 Comments

What Does the Sahara Desert Have to Do with Hurricanes?

This is a post by Charlie Henry, Director, NOAA’s Gulf of Mexico Disaster Response Center and Jeff Medlin, Meteorologist in Charge, National Weather Service Weather Forecast Office Mobile.

Sahara Desert dunes from space.

Sahara Desert dunes photographed from the International Space Station on July 7, 2007. This large desert has a surprising degree of influence on the frequency of hurricanes we see in the United States. (NASA)

What does the Sahara Desert in Africa have to do with hurricanes in the Atlantic, Gulf of Mexico, and Eastern Pacific Ocean? You might think this sounds a little crazy because hurricanes are very wet and deserts are very dry, but if it weren’t for this huge, hot, dry region in North Africa, we would see far fewer hurricanes in the United States.

The Sahara Desert is massive, covering 10 percent of the continent of Africa. It would be the largest desert on Earth, but based strictly on rainfall amounts, the continent of Antarctica qualifies as a desert and is even larger. Still, rainfall in the Sahara is very infrequent; some areas may not get rain for years and the average total rainfall is less than three inches per year. While not the largest or driest of the deserts, the Sahara has a major influence on weather across the Western Hemisphere.

How a Tropical Storm Starts A-Brewin’

The role the Sahara Desert plays in hurricane development is related to the easterly winds (coming from the east) generated from the differences between the hot, dry desert in north Africa and the cooler, wetter, and forested coastal environment directly south and surrounding the Gulf of Guinea in west Africa. The result is a strong area of high altitude winds commonly called the African Easterly Jet. If these winds were constant, we would also experience fewer hurricanes.

However, the African Easterly Jet is unstable, resulting in undulations in a north-south direction, often forming a corresponding north to south trough, or wave, that moves westward off the West African Coast. When these waves of air have enough moisture, lift, and instability, they readily form clusters of thunderstorms, sometimes becoming correlated with a center of air circulation. When this happens, a tropical cyclone may form as the areas of disturbed weather move westward across the Atlantic.

Throughout most of the year, these waves typically form every two to three days in a region near Cape Verde (due west of Africa), but it is the summer to early fall when conditions can become favorable for tropical cyclone development. Not all hurricanes that form in the Atlantic originate near Cape Verde, but this has been the case for most of the major hurricanes that have impacted the continental United States.

Map of North America with historical tracks of hurricanes in North Atlantic and Northeast Pacific Oceans.

All North Atlantic and Eastern North Pacific hurricanes
(at least Category 1 on the Saffir-Simpson Hurricane Scale). Note how many originate at the edge of Africa’s West Coast, where the desert meets the green forests to the south. (NOAA)

Wave of the Future (Weather)

In fact, just such a tropical wave formed off Cape Verde in mid-August of 1992. Up to that point, there had not been any significant tropical cyclone development in the Atlantic that year. However, the wave did intensify into a hurricane, and on August 24 Andrew came ashore in south Florida as a Category 5 hurricane, becoming one of the most costly and destructive natural disasters in U.S. history … until Sandy. Hurricane Sandy, which eventually struck the U.S. east coast as a post-tropical cyclone, also began as a similar tropical wave that formed off the coast of west Africa in October of 2012.

Some of these “waves” drift all the way to the Pacific Ocean by crossing Mexico and Central America. Many of the Eastern Pacific tropical cyclones originate, at least in part, from tropical waves coming off Cape Verde in Africa. Many of these waves traverse the entire Atlantic Ocean without generating storm development until after crossing Central America and entering the warm Eastern Pacific waters. Then, if the conditions are right, tropical cyclone formation is possible there. Hurricane Iselle, which hit the Big Island of Hawaii on August 8, 2014, was likely part of a wave that formed more than 8,000 miles away off of the West Coast of Africa and an example of the far-reaching influence the Sahara Desert has on our planet’s weather.

While these waves with origins in the Sahara Desert might generate numerous thunderstorms and a pattern with the potential for developing into a tropical cyclone, often the conditions are not quite right. Hurricane Cristobal formed from a classic Cape Verde wave last week and currently is churning Atlantic waters, but is not expected to be a threat to the United States. The formation of these disturbances off the West Coast of Africa will remain a potential source of tropical storms through the end of Atlantic hurricane season in late November. Each wave is investigated by the NOAA National Hurricane Center and you can view these active disturbances on their website.

The Sahara Desert and You

When it comes to hurricanes and hurricane preparedness, it’s interesting to know how a desert half a world away can influence the formation of severe weather on our coasts—and even parts of the Pacific Ocean. And no matter where you live, the old rule of planning for the worst and hoping for the best remains the surest way to stay safe.

Learn more about how we at NOAA’s National Ocean Service are staying prepared for hurricanes [PDF], and how you can create your own hurricane plan [PDF].


2 Comments

Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics

Ship breaking ice in Arctic waters.

The U.S. Coast Guard Cutter Healy breaks ice in Arctic waters. A ship like this would be the likely center of operations for an oil spill in this remote and harsh region. (NOAA)

August in the Arctic can mean balmy weather and sunny skies or, fifteen minutes later, relentless freezing rain and wind blowing off ice floes, chilling you to the core. If you were headed to an oil spill there, your suitcase might be carrying a dry suit, down parka, wool sweaters and socks, your heaviest winter hat and gloves, and even ice traction spikes for your boots. Transit could mean days of travel by planes, car, and helicopter to a ship overseeing operations at the edge of the oil spill. Meanwhile, the oil is being whipped by the wind and waves into the nooks and crannies on the underside of sea ice, where it could be frozen into place.

Even for an experienced oil spill responder like Jill Bodnar, the complexity of working in such conditions goes far beyond the usual response challenges of cleaning up the oil, gathering data about the spill, and minimizing the impacts to marine life and their sensitive habitats. Rather, in the Arctic, everything comes down to logistics.

The unique logistics of this extreme and remote environment drive to the heart of why Bodnar, a NOAA Geographic Information Systems (GIS) specialist, and her colleague Zachary Winters-Staszak are currently on board the U.S. Coast Guard Cutter Healy, at the edge of the sea ice north of Alaska. They are participating in an Arctic Technology Evaluation, an exercise conducted by the U.S. Coast Guard Research and Development Center (RDC) in support of the Coast Guard’s broader effort known as Arctic Shield 2014.

Building on what was learned during the previous year’s exercise, the advanced technologies being demonstrated in this evaluation could potentially supplement those tools and techniques responders normally would rely on during oil spills in more temperate and accessible locations. This Arctic Technology Evaluation provides multiple agencies and institutions, in addition to NOAA, the invaluable opportunity to untangle some of the region’s knotty logistical challenges on a state-of-the-art Coast Guard icebreaker in the actual Arctic environment.

Getting from A to B: Not as Easy as 1-2-3

Bodnar has been mapping data during oil spills for more than a decade, but this exercise is her first trip to the Arctic. While preparing for it, she found it sobering to learn just how many basic elements of a spill response can’t be taken for granted north of the Arctic Circle. In addition to the scarcity of roads, airports, and hotels, other critical functions such as communications are subject to the harsh Arctic conditions and limited radio towers and satellite coverage. Out at sea ships depend on satellites for phone calls and some Internet connectivity, but above the 77th parallel those satellites often drop calls and can only support basic text email.

The remoteness of the Arctic questions how hundreds of responders would get there, along with all the necessary equipment—such as boom, skimmers, and vessels—not already in the area. Once deployed to the spill, response equipment has the potential to ice-over, encounter high winds, or be grounded from dense fog. Communicating with responders and decision makers on other ships, on shore at a command post, or even farther away in the lower 48 states would be an enormous challenge.

For example, if an oil spill occurs in the Beaufort Sea, north of Alaska, the nearest and “largest” community is Barrow, population 4,429. However, Barrow has very limited accommodations. For comparison, 40,000 people, including Bodnar, responded to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. This was possible because of the spill’s proximity to large cities with hotel space and access to food and communications infrastructure.

This is not the case for small Arctic villages, where most of their food, fuel, and other resources have to be shipped in when the surrounding waters are relatively free of ice. But to respond to a spill in the Arctic, the likely center of operations would be on board a ship, yet another reason working with the Coast Guard during Arctic Shield is so important for NOAA.

NOAA’s Role in Arctic Shield 2014

During this August’s Arctic Technology Evaluation, the Coast Guard is leading tests of four key areas of Arctic preparedness. NOAA’s area focuses on how oil disperses at the edge of the sea ice and collects under the older, thicker ice packs. NOAA’s Office of Response and Restoration is working with NOAA’s Unmanned Aircraft Systems (UAS) program to develop techniques for quickly identifying and delineating a simulated oil spill in the Arctic waters near the ice edge. The Coast Guard will be using both an unreactive, green fluorescein dye and hundreds of oranges as “simulated oil” for the various tools and technologies to detect.

Normally during an oil spill, NOAA or the Coast Guard would send people up in a plane or helicopter to survey the ocean for the oil’s precise location, which NOAA also uses to improve its models of the oil’s expected behavior. However, responders can’t count on getting these aircraft to a spill in the Arctic in the first place—much less assume safe conditions for flying once there.

Instead, the UAS group is testing the feasibility of using unmanned, remote-controlled aircraft such as the Puma to collect this information and report back to responders on the ship. Bodnar and Winters-Staszak will be pulling these data streams from the Puma into Arctic ERMA®, NOAA’s mapping tool for environmental response data. They’ll be creating a data-rich picture of where the oil spill dye and oranges are moving in the water and how they are behaving, particularly among the various types of sea ice.

Once the oil spill simulation is complete, Bodnar and Winters-Staszak will be reporting back on how it went and what they have learned. Stay tuned for the expedition’s progress in overcoming the many logistical hurdles of a setting as severe as the Arctic here and at oceanservice.noaa.gov/arcticshield.


Leave a comment

April Showers Bring … Marine Debris to Pacific Northwest Beaches?

This is a post by Amy MacFadyen, oceanographer and modeler in the Office of Response and Restoration’s Emergency Response Division.

Over the last few weeks, emergency managers in coastal Washington and Oregon have noted an increase in the marine debris arriving on our beaches. Of particular note, numerous skiffs potentially originating from the Japan tsunami in March 2011 have washed up. Four of these boats arrived in Washington over the Memorial Day weekend alone.

This seasonal arrival of marine debris—ranging from small boats and fishing floats to household cleaner bottles and sports balls—on West Coast shores seems to be lasting longer into the spring than last year. As a result, coastal managers dealing with the large volume of debris on their beaches are wondering if the end is in sight.

As an oceanographer at NOAA, I have been trying to answer this question by examining how patterns of wind and currents in the North Pacific Ocean change with the seasons and what that means for marine debris showing up on Pacific Northwest beaches.

What Does the Weather Have to Do with It?

Beachcombers know the best time to find treasure on the Pacific Northwest coast is often after winter storms. Winter in this region is characterized by frequent rainfall (hence, Seattle’s rainy reputation) and winds blowing up the coast from the south or southwest. These winds push water onshore and cause what oceanographers call “downwelling”—a time of lower growth and reproduction for marine life because offshore ocean waters with fewer nutrients are brought towards the coast. These conditions are also good for bringing marine debris from out in the ocean onto the beach, as was the case for this giant Japanese dock that came ashore in December 2012.

These winter storms are associated with the weather phenomenon known as the “Aleutian Low,” a low pressure system of air rotating counter-clockwise, which is usually located near Alaska’s Aleutian Islands. In winter, the Aleutian Low intensifies and moves southward from Alaska, bringing wind and rain to the Pacific Northwest. During late spring, the Aleutian Low retreats to the northwest and becomes less intense. Around the same time, a high pressure system located off California known as the “North Pacific High” advances north up the West Coast, generating drier summer weather and winds from the northwest.

Graphic showing the typical summer and winter locations of pressure systems in the North Pacific Ocean.

The typical location of the pressure systems in the North Pacific Ocean in winter and summer. “AL” refers to the low-pressure “Aleutian Low” and “NPH” refers to the high-pressure “North Pacific High” system. Used with permission of Jennifer Galloway, Marine Micropaleontology (2010). *See full credit below.

This summer change to winds coming from the northwest also brings a transition from “downwelling” to “upwelling” conditions in the ocean. Upwelling occurs when surface water near the shore is moved offshore and replaced by nutrient-rich water moving to the surface from the ocean depths, which fuels an increase in growth and reproduction of marine life.

The switch from a winter downwelling state to a summer upwelling state is known as the “spring transition” and can occur anytime between March and June. Oceanographers and fisheries managers are often particularly interested in the timing of this spring transition because, in general, the earlier the transition occurs, the greater the ecosystem productivity will be that year—see what this means for Pacific Northwest salmon. As we have seen this spring, the timing may also affect the volume of marine debris reaching Pacific Northwest beaches.

Why Is More Marine Debris Washing up This Year?

NOAA has been involved in modeling the movement of marine debris generated by the March 2011 Japan tsunami for several years. We began this modeling to answer questions about when the tsunami debris would first reach the West Coast of the United States and which regions might be impacted. The various types of debris are modeled as “particles” originating in the coastal waters of Japan, which are moved under the influence of winds and ocean currents. For more details on the modeling, visit the NOAA Marine Debris website.

The estimated arrival of modeled "particles" (representing Japanese tsunami marine debris) on the West Coast of the United States between May 2011 and May 2014.

The estimated arrival of modeled “particles” (representing Japanese tsunami marine debris) on Washington and Oregon shores between May 2011 and May 2014. (NOAA)

The figure here shows the percentage of particles representing Japan tsunami debris reaching the shores of Washington and Oregon over the last two years. The first of the model’s particles reached this region’s shores in late fall and early winter of 2011–2012. This is consistent with the first observations of tsunami debris reaching the coast, which were primarily light, buoyant objects such as large plastic floats, which “feel” the winds more than objects that float lower in the water, and hence move faster. The largest increases in model particles reaching the Pacific Northwest occur in late winter and spring (the big jumps in vertical height on the graph). After the spring transition and the switch to predominantly northwesterly winds and upwelling conditions, very few particles come ashore (where the graph flattens off).

Interestingly, the model shows many fewer particles came ashore in the spring of 2013 than in the other two years. This may be related to the timing of the spring transition. According to researchers at Oregon State University, the transition to summer’s upwelling conditions occurred approximately one month earlier in 2013 (early April). Their timing of the spring transition for the past three years, estimated using a time series of wind measured offshore of Newport, Oregon, is shown by the black vertical lines in the figure.

The good news for coastal managers—and those of us who enjoy clean beaches—is that according to this indicator, we are finally transitioning from one of the soggiest springs on record into the upwelling season. This should soon bring a drop in the volume of marine debris on our beaches, hopefully along with some sunny skies to get out there and enjoy our beautiful Pacific Northwest coast.

*Pressure system graphic originally found in: Favorite, F.A., et al., 1976. Oceanography of the subarctic Pacific region, 1960–1971. International North Pacific Fisheries Commission Bulletin 33, 1–187. Referenced in and with permission of: Galloway, J.M., et al., 2010. A high-resolution marine palynological record from the central mainland coast of British Columbia, Canada: Evidence for a mid-late Holocene dry climate interval. Marine Micropaleontology 75, 62–78.

Amy MacFadyenAmy MacFadyen is a physical oceanographer at the Emergency Response Division of the Office of Response and Restoration (NOAA). The Emergency Response Division provides scientific support for oil and chemical spill response — a key part of which is trajectory forecasting to predict the movement of spills. During the Deepwater Horizon/BP oil spill in the Gulf of Mexico, Amy helped provide daily trajectories to the incident command. Before moving to NOAA, Amy was at the University of Washington, first as a graduate student then as a postdoctoral researcher. Her research examined transport of harmful algal blooms from offshore initiation sites to the Washington coast.


Leave a comment

A Bird’s Eye View: Looking for Oil Spills from the Sky

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division, with input from David Wesley and Meg Imholt.

View over a pilot's shoulder out of a plane to ocean and islands.

View over the pilot’s shoulder on the first visit to the Chandeleur Islands in the Gulf of Mexico after Hurricane Katrina to see how much the shoreline had been altered. (NOAA)

During an oil spill, responders need to answer a number of questions in order to protect coastal resources: What happened? Where is the oil going? What will it hit? How will it cause harm?

Not all of these questions can be answered adequately from the ground or even from a boat. Often, experts take to the skies to answer these questions.

Aerial overflights are surveys from airplanes or helicopters which help responders find oil slicks as they move and break up across a potentially wide expanse of water. Our oceanographers make predictions about where a spill might go, but each spill presents a unique combination of weather conditions, ocean currents, and even oil chemistry that adds uncertainty due to natural variability. Overflights give snapshots of where the oil is located and how it is behaving at a specific date and time, which we use to compare to our oceanographic models. By visually confirming an oil slick’s location, we can provide even more accurate forecasts of where the oil is expected to go, which is a key component of response operations.

Trained aerial overflight experts serve as the “eyes” for the command post of spill responders. They report critical information like location, size, shape, color, and orientation of an oil slick. They can also make wildlife observations, monitor cleanup operations, and spot oceanographic features like convergence zones and eddies, which impact where oil might go. All of these details help inform decisions for appropriate cleanup strategies.

Easier Said Than Done

Finding and identifying oil from the air is tricky. Oil slicks move, which can make them hard to pin down. In addition, they may be difficult to classify from visual observation because different oils vary in appearance, and oil slick appearance is affected by weather conditions and how long the oil has been out on the water.

False positives add even another challenge. When viewed from the air, algal blooms, boat wakes, seagrass, and many other things can look like oil. Important clues, such as if heavy pollen or algal blooms are common in the area, help aerial observers make the determination between false positives and the real deal. If the determination cannot be made from air, however, it is worth investigating further.

During an overflight, it takes concentration to capture the right information. Many things can distract the observer from the main mission of spotting oil, including taking notes in a notebook, technology, and other people. Even an item meant to help, such as a camera or GPS, can lose value if more time is spent fiddling with it rather than taking observations. The important thing is to look out the window!

Safety is paramount on an overflight. An observer must always pay close attention to the pilot’s instructions for getting on and off the aircraft, and not speak over the pilot if they are talking on the radio. While it’s not a problem to ask, a pilot may not be able to do certain maneuvers an observer requests due to safety concerns.

The Experts—And Becoming One Yourself

The Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R) has overflight specialists ready for quick deployment to do this job. These specialists have extensive training and expertise in aerial overflights.

View of airplane wing, clouds, and water.

Looking out of an observer window on a Coast Guard C-130 airplane during the Hurricane Katrina pollution response. (NOAA)

When I joined OR&R in 2011, I learned from the best before doing real-life observations myself. One of the first things I did was take a Helicopter Emergency Egress course to make sure I could safely exit an aircraft that had made an emergency landing over water. Then I took the Science of Oil Spills course, where I learned more about observing oil from the air. In preparation for my first overflight I also had one-on-one conversations with our trained aerial observers. Since then, I have done aerial observations for oil spills including a sunken vessel in Washington’s Penn Cove, the Post-Tropical Cyclone Sandy pollution response, and the Texas City “Y” oil spill in Galveston Bay.

OR&R provides training opportunities for others who may need to do an overflight during a response. Throughout the year, OR&R offers Science of Oil Spill classes across the country. In March 2014, more than 50 oil spill responders learned about aerial observing, and many other spill response skills, at OR&R’s Science of Oil Spills class at NOAA’s Disaster Response Center in the Gulf of Mexico. For those interested in becoming an overflight specialist themselves, OR&R even offers a one-day, in-person course on the topic throughout the country a few times per year.

OR&R has also created the online module, “Introduction to Observing oil from Helicopters and Planes,” to make training even more accessible. We even have a job aid for aerial observation of oil, a reference booklet conveniently sized to take on an overflight!

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


Leave a comment

Oil Seeps, Shipwrecks, and Surfers Ride the Waves in California

This is a post by Jordan Stout, the Office of Response and Restoration’s Scientific Support Coordinator based in Alameda, Calif.

Tarball on the beach with a ruler.

A tarball which washed up near California’s Half Moon Bay in mid-February 2014. (Credit: Beach Watch volunteers with the Farallones Marine Sanctuary Association)

What do natural oil seeps, shipwrecks, and surfers have in common? The quick answer: tarballs and oceanography. The long answer: Let me tell you a story …

A rash of tarballs, which are thick, sticky, and small pieces of partially broken-down oil, washed ashore at Half Moon Bay, Calif., south of San Francisco back in mid-February. This isn’t an unusual occurrence this time of year, but several of us involved in spill response still received phone calls about them, so some of us checked things out.

Winds and ocean currents are the primary movers of floating oil. A quick look at conditions around that time indicated that floating stuff (like oil) would have generally been moving northwards up the coast. Off of Monterey Bay, there had been prolonged winds out of the south several times since December, including just prior to the tarballs’ arrival. Coastal currents at the time also showed the ocean’s surface waters moving generally up the coast. Then, just hours before their arrival, winds switched direction and started coming out of the west-northwest, pushing the tarballs ashore.

Seeps and Shipwrecks

It’s common winter conditions like that, combined with the many natural oil seeps of southern California, that often result in tarballs naturally coming ashore in central and northern California. Like I said, wintertime tarballs are not unheard of in this area and people weren’t terribly concerned. Even so, some of the tarballs were relatively “fresh” and heavy weather and seas had rolled through during a storm the previous weekend. This got some people thinking about the shipwreck S/S Jacob Luckenbach, a freighter which sank near San Francisco in 1953 and began leaking oil since at least 1992.

When salvage divers were removing oil from the Luckenbach back in 2002, they reported feeling surges along the bottom under some wave conditions. The wreck is 468 feet long, lying in about 175 feet of water and is roughly 20 miles northwest of Half Moon Bay. Could this or another nearby wreck have been jostled by the previous weekend’s storm and produced some of the tarballs now coming ashore?

Making Waves

Discussions with the oceanographers in NOAA’s Office of Response and Restoration provided me with some key kernels of wisdom about what might have happened. First, the height of a wave influences the degree of effects beneath the ocean surface, but the wave length determines how deep those effects go. So, big waves with long wavelengths have greater influence at greater depths than smaller waves with shorter wavelengths.

Graphic describing and showing wave length, height, frequency, and period.

Credit: NOAA’s Ocean Service

Second, waves in deep water cause effects at depths half their length. This means that a wave with a length of 100 meters can be felt to a depth of 50 meters. That was great stuff, I thought. But the data buoys off of California, if they collect any wave data at all, only collect wave height and period (the time it takes a wave to move from one high or low point to the next) but not wave length. So, now what?

As it turns out, our office’s excellent oceanographers also have a rule of thumb for calculating wave length from this information: a wave with a 10-second period has a wave length of about 100 meters in deep water. So, that same 10-second wave would be felt at 50 meters, which is similar to the depth of the shipwreck Jacob Luckenbach (54 meters or 175 feet).

Looking at nearby data buoys, significant wave heights during the previous weekend’s storm topped out at 2.8 meters (about 9 feet) with a 9-second period. So, the sunken Luckenbach may have actually “felt” the storm a little bit, but probably not enough to cause a spill of any oil remaining on board it.

Riding Waves

Even so, just two weeks before the tarballs came ashore, waves in the area were much, much bigger. The biggest waves the area had seen so far in 2014, in fact: more than 4 meters (13 feet) high, with a 24-second period. If the Luckenbach had been jostled by any waves at all in 2014, you would think it would have been from those waves in late January, and yet there were no reports of tarballs (fresh or otherwise) even though winds were blowing towards shore for about a week afterwards. This leads me to conclude that the recent increase in tarballs came from somewhere other than a nearby shipwreck.

Where do surfers fit in all this? That day in late January when the shipwreck S/S Jacob Luckenbach was being knocked around by the biggest waves of 2014 was the day of the Mavericks Invitational surf contest in Half Moon Bay. People came from all over to ride those big waves—and it was amazing!

Jordan StoutJordan Stout currently serves as the NOAA Scientific Support Coordinator in California where he provides scientific and technical support to the U.S. Coast Guard and Environmental Protection Agency in preparing for and responding to oil spills and hazardous material releases. He has been involved in supporting many significant incidents and responses in California and throughout the nation.


Leave a comment

Why Are Tropical Storms and Hurricanes Named?

This is a post by NOAA Office of Response and Restoration’s Katie Krushinski.

The 2013 Atlantic hurricane season's first named storm was Tropical Storm Andrea, pictured here on June 8 crossing over Florida and up the East Coast. (NASA)

The 2013 Atlantic hurricane season’s first named storm was Tropical Storm Andrea, pictured here on June 8 crossing over Florida and heading up the East Coast. (NASA)

Have you ever wondered why storms are named? Up until the early 1950s, tropical storms and hurricanes were tracked by year and the order in which each one occurred during that year.

In time, it was recognized that people remembered shorter names more easily. In 1953, a new approach was taken and storms were named in alphabetical order by female name. The process of naming storms helps differentiate between multiple storms that may be active at the same time.

By 1978, both male and female names were being used to identify Northern Pacific storms. This was adopted in 1979 for the Atlantic storms and is what we use today.

The World Meteorological Organization came up with the lists of names, male and female, which are used on a six-year rotation. In the event a hurricane causes a large amount of damage or numerous deaths, that name will be retired. Since the 1950s, when it became normal to name storms, there have been 77 names retired, including Fran (1996), Katrina (2005), Rita (2005), and Sandy (2012).

To find out this year’s storm names and for a complete list of retired names, visit the National Weather Service’s website. And if you haven’t started your own severe-weather preparations, don’t delay; the 2013 Atlantic hurricane season (predicted to be more active than usual) has already begun.

The Gulf of Mexico region, in particular, experiences frequent natural and human-caused disasters such as hurricanes, tornadoes, and oil spills.

NOAA’s Gulf of Mexico Disaster Response Center aims to reduce the resulting impacts by helping to prepare federal, state, and local decision makers for a variety of threats, creating more adaptive and resilient coastal communities. Learn more about this valuable resource and center of NOAA expertise on the Gulf Coast.

Katie Krushinski

Katie Krushinski

Katie Krushinski works at NOAA’s Gulf of Mexico Disaster Response Center in Mobile, Ala., where she is responsible for coordinating training events, producing external communications, and writing and editing. Katie has a background in emergency response and management. NOAA’s Disaster Response Center serves as a one-stop shop, streamlining the delivery of NOAA services that help the Gulf region prepare for and deal with disasters.


Leave a comment

Are You Ready for this Summer’s Hurricane Season?

On August 28, 2005, Hurricane Katrina was in the Gulf of Mexico, where it powered up to a Category 5 storm on the Saffir-Simpson hurricane scale, packing winds estimated at 175 mph. (NOAA)

On August 28, 2005, Hurricane Katrina was in the Gulf of Mexico, where it powered up to a Category 5 storm on the Saffir-Simpson hurricane scale, packing winds estimated at 175 mph. (NOAA)

June is here, and with it comes the start of the 2013 Atlantic hurricane season.

Last week I was at a regional emergency response meeting in Addison, Texas, and sat next to Greg Pollock, Deputy Commissioner for the Texas General Land Office. During the meeting, Greg nudged my shoulder, showing me an email alerting him of the potential for Hurricane Barbara to cross from the Pacific Ocean into the Bay of Campeche—making it a potential threat to the Gulf of Mexico.

We were in the last week of May and threats to the Gulf of Mexico are rare this early. I hadn’t even started my hurricane season routine of checking the NOAA National Hurricane Center’s website every morning before even driving to my office at NOAA’s Gulf of Mexico Disaster Response Center.

Following Greg’s prompt, I went online and read the updated forecast from NOAA. Hurricane Barbara would impact southern Mexico but likely dissipate crossing it (which is exactly what happened to this tropical storm). At the time, the threat to the Gulf of Mexico was low, but still something to keep an eye on.

Ready to Help Before, During, and After a Disaster

On the front line is NOAA’s National Weather Service, the trusted, round-the-clock source of information about severe weather threats. Emergency managers and the public alike depend on them to provide accurate and timely storm predictions and forecasts. I use their online information daily to stay up-to-speed on what storms may be developing for the Gulf of Mexico.  The Disaster Response Center provides NOAA with additional support and coordination during natural and manmade disasters. We put our effort into being prepared to respond.

This year, NOAA predicts a worse-than-normal year for tropical storms. “Worse” is my personal way of stating the official forecast of a more-active-than-average or extremely active season, as predicted by NOAA’s Climate Prediction Center. Yet, it only takes one storm to bring significant destruction to the coast. For example, in 1992, Hurricane Andrew, a category 5 hurricane, blew in during a less active tropical storm season and struck Florida and Louisiana. The result was 65 people killed (both directly and indirectly) and some $26 billion in damage, mostly in Florida. Only three other hurricanes in U.S. history have cost more in damages: Katrina (2005), Ike (2008), and Sandy (2012).

Living in or on the edge of the coastal zone in Louisiana and Alabama most of my life, I do not take hurricane season lightly. This weekend, I’ll spend time checking on the status of my hurricane supplies (find out what you should have in your disaster supply kit) and ensuring my daughter, who attends college in New Orleans, has thought through her plans of when and where to evacuate should a storm threaten southeast Louisiana. Coming home to be with her dad in Mobile, Ala., may not be her best option. The many other NOAA emergency response staff and I likely would not be evacuating, but rather positioning ourselves and our resources to help with the consequences of a severe tropical storm or hurricane. Every year, we hope for the best and plan for the worst. We can’t control nature, but we can control how prepared we are for what it throws at us.

Are You Prepared?

If you haven’t made your hurricane preparedness plans yet, you shouldn’t wait any longer now that the 2013 Atlantic hurricane season has officially started.

The National Hurricane Center recently hosted National Hurricane Preparedness Week, and their website has a wealth of resources to help you get ready for this summer’s hurricane season. You can also watch a NOAA video on how to increase your chances of surviving a hurricane and learn more about how to prepare for all types of hazards on the NOAAWatch website.

Follow

Get every new post delivered to your Inbox.

Join 433 other followers