NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


2 Comments

Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics

Ship breaking ice in Arctic waters.

The U.S. Coast Guard Cutter Healy breaks ice in Arctic waters. A ship like this would be the likely center of operations for an oil spill in this remote and harsh region. (NOAA)

August in the Arctic can mean balmy weather and sunny skies or, fifteen minutes later, relentless freezing rain and wind blowing off ice floes, chilling you to the core. If you were headed to an oil spill there, your suitcase might be carrying a dry suit, down parka, wool sweaters and socks, your heaviest winter hat and gloves, and even ice traction spikes for your boots. Transit could mean days of travel by planes, car, and helicopter to a ship overseeing operations at the edge of the oil spill. Meanwhile, the oil is being whipped by the wind and waves into the nooks and crannies on the underside of sea ice, where it could be frozen into place.

Even for an experienced oil spill responder like Jill Bodnar, the complexity of working in such conditions goes far beyond the usual response challenges of cleaning up the oil, gathering data about the spill, and minimizing the impacts to marine life and their sensitive habitats. Rather, in the Arctic, everything comes down to logistics.

The unique logistics of this extreme and remote environment drive to the heart of why Bodnar, a NOAA Geographic Information Systems (GIS) specialist, and her colleague Zachary Winters-Staszak are currently on board the U.S. Coast Guard Cutter Healy, at the edge of the sea ice north of Alaska. They are participating in an Arctic Technology Evaluation, an exercise conducted by the U.S. Coast Guard Research and Development Center (RDC) in support of the Coast Guard’s broader effort known as Arctic Shield 2014.

Building on what was learned during the previous year’s exercise, the advanced technologies being demonstrated in this evaluation could potentially supplement those tools and techniques responders normally would rely on during oil spills in more temperate and accessible locations. This Arctic Technology Evaluation provides multiple agencies and institutions, in addition to NOAA, the invaluable opportunity to untangle some of the region’s knotty logistical challenges on a state-of-the-art Coast Guard icebreaker in the actual Arctic environment.

Getting from A to B: Not as Easy as 1-2-3

Bodnar has been mapping data during oil spills for more than a decade, but this exercise is her first trip to the Arctic. While preparing for it, she found it sobering to learn just how many basic elements of a spill response can’t be taken for granted north of the Arctic Circle. In addition to the scarcity of roads, airports, and hotels, other critical functions such as communications are subject to the harsh Arctic conditions and limited radio towers and satellite coverage. Out at sea ships depend on satellites for phone calls and some Internet connectivity, but above the 77th parallel those satellites often drop calls and can only support basic text email.

The remoteness of the Arctic questions how hundreds of responders would get there, along with all the necessary equipment—such as boom, skimmers, and vessels—not already in the area. Once deployed to the spill, response equipment has the potential to ice-over, encounter high winds, or be grounded from dense fog. Communicating with responders and decision makers on other ships, on shore at a command post, or even farther away in the lower 48 states would be an enormous challenge.

For example, if an oil spill occurs in the Beaufort Sea, north of Alaska, the nearest and “largest” community is Barrow, population 4,429. However, Barrow has very limited accommodations. For comparison, 40,000 people, including Bodnar, responded to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. This was possible because of the spill’s proximity to large cities with hotel space and access to food and communications infrastructure.

This is not the case for small Arctic villages, where most of their food, fuel, and other resources have to be shipped in when the surrounding waters are relatively free of ice. But to respond to a spill in the Arctic, the likely center of operations would be on board a ship, yet another reason working with the Coast Guard during Arctic Shield is so important for NOAA.

NOAA’s Role in Arctic Shield 2014

During this August’s Arctic Technology Evaluation, the Coast Guard is leading tests of four key areas of Arctic preparedness. NOAA’s area focuses on how oil disperses at the edge of the sea ice and collects under the older, thicker ice packs. NOAA’s Office of Response and Restoration is working with NOAA’s Unmanned Aircraft Systems (UAS) program to develop techniques for quickly identifying and delineating a simulated oil spill in the Arctic waters near the ice edge. The Coast Guard will be using both an unreactive, green fluorescein dye and hundreds of oranges as “simulated oil” for the various tools and technologies to detect.

Normally during an oil spill, NOAA or the Coast Guard would send people up in a plane or helicopter to survey the ocean for the oil’s precise location, which NOAA also uses to improve its models of the oil’s expected behavior. However, responders can’t count on getting these aircraft to a spill in the Arctic in the first place—much less assume safe conditions for flying once there.

Instead, the UAS group is testing the feasibility of using unmanned, remote-controlled aircraft such as the Puma to collect this information and report back to responders on the ship. Bodnar and Winters-Staszak will be pulling these data streams from the Puma into Arctic ERMA®, NOAA’s mapping tool for environmental response data. They’ll be creating a data-rich picture of where the oil spill dye and oranges are moving in the water and how they are behaving, particularly among the various types of sea ice.

Once the oil spill simulation is complete, Bodnar and Winters-Staszak will be reporting back on how it went and what they have learned. Stay tuned for the expedition’s progress in overcoming the many logistical hurdles of a setting as severe as the Arctic here and at oceanservice.noaa.gov/arcticshield.


Leave a comment

NOAA Again Joins Coast Guard for Oil Spill Exercise in the Arctic

This is a post by NOAA Environmental Scientist Dr. Amy Merten.

Large ship offshore.

U.S. Coast Guard icebreaker Healy.

It is no mystery anymore that the Arctic is undergoing unprecedented change and the extent of summer sea ice continues to shrink. As the ice contracts, shipping within and across the Arctic, oil and gas exploration, and tourism likely will increase, as will fishing, if fisheries continue migrating north to cooler waters. With more oil-powered activity in the Arctic and potentially out-of-date nautical charts, the region also will see an increased risk of oil spills.

Although the Arctic may have “ice-free” summers, it will remain a difficult place to respond to spills, still facing conditions such as low visibility, mobilized icebergs, and extreme cold. Much of the increased activity exploits the longer amount of time between the sea ice breaking up in the spring and freezing up in the fall. Accidents on either end of this longer window could mean responding to oil spills complicated by sea ice.

Ready, Set, (Pretend to) Spill

With these challenging circumstances in mind, NOAA’s Office of Response and Restoration again will be sending spatial data specialists aboard the Coast Guard icebreaker Healy for an Arctic Technology Evaluation, a month-long scientific expedition to the Arctic Ocean to demonstrate and evaluate oil spill tools, technologies, and techniques as part of Arctic Shield 2014. The ship leaves for the edge of the sea ice from Seward, Alaska, on August 8. We will be working with the U.S. Coast Guard Research and Development Center (RDC) to operate Arctic ERMA, our mapping tool geared at oil spill response. Normally an online tool, a special internet-independent version of ERMA, known as Stand-alone ERMA, will serve as the common operational picture for scientific data during this Arctic Technology Evaluation.

NOAA provides scientific support to the Coast Guard during oil and chemical spills, and ERMA is an extension of that support. This Arctic Technology Evaluation is an opportunity to work with the Coast Guard in as realistic conditions as possible—on a ship in the Arctic Ocean. Once the Healy makes it far enough north, the Coast Guard RDC will deploy a simulated oil spill so they can test oil spill detection and recovery technologies in ice conditions. The team will test unmanned technology platforms (both airborne and underwater) to detect where the spilled “oil” is and to collect ocean condition data, such as sea temperature, currents, and the areas where oil is mixing and spreading in the water column. In this case the simulated oil will be fluorescein dye, an inert tracer used for other simulated spills and water transport studies in the ocean and rivers. (Other simulated spilled “oils” have included peat moss, rubber ducks, and oranges.)

Ship with small aircraft in front of it.

NOAA’s remote-controlled Puma aircraft. (NOAA)

One major objective is for NOAA’s Unmanned Aircraft Systems group to fly their 8.5 foot wingspan, remote-controlled Puma, instead of an airplane with a human observer, to delineate the extent of the “oil” plume. ERMA’s job will be to display the data from the Puma and other unmanned technologies so all of the team can see where measurements have been taken and identify insights into how they could hypothetically clean up a spill in the remote, icy environment.

Arriving at the Arctic

In many ways, our office is a newcomer to the Arctic, and we still have a lot to learn about past research and current ways of life in the region. As the NOAA co-director for the Coastal Response Research Center (a joint partnership with the University of New Hampshire), I worked with my co-director, UNH professor Nancy Kinner, to promote understanding of the risks the Arctic is facing. In 2007, we participated in a joint industry study which brought me to the Arctic at the SINTEF lab on Svalbard in Norway. Here, I saw firsthand how difficult it can be to find oil mixed in ice and then try to do something about it, such as burn it. The temperature extremes in the Arctic limit mobility and the amount of time one can be outside responding to a spill—if you can get to the spill in the first place.

At the same time, we were developing ERMA® (Environmental Response Management Application), a web-based mapping tool for environmental response, which is customized for various regions in the United States. As NOAA’s Office of Response and Restoration began developing strategies for working in the Arctic, support emerged for customizing ERMA for the Arctic region. We worked with several organizations, including Arctic communities, to develop Arctic ERMA, taking care to make connections and build relationships with the people who live in and know the region and its natural resources. ERMA also will use the Healy’s onboard satellite communications to relay data back to the live Arctic ERMA website, allowing people outside the vessel to stay up-to-date with the mission.

Responding to Reality

image of broken ice on the water's surface. (NOAA)I’m excited for my ERMA colleagues, Jill Bodnar and Zach Winters-Staszak, to experience this extreme and special environment firsthand. Academically, you can think through the challenges a spill in the Arctic would present, but actually experiencing it quickly reveals what will and will not work. Partnering with the Coast Guard is helping those of us at NOAA be proactive responders in general, and in particular, is teaching the ERMA team how to pull into this tool data from multiple platforms and improve response decision-making.

We’re all connected to the Arctic; weather and oceanographic patterns are changing world wide because of the rapidly changing Arctic. Oil and gas coming from the Arctic will fuel the U.S. economy and current way of life for the foreseeable future. We hope that Arctic Shield and other oil spill exercises will better prepare us for whatever happens next.  Follow along with NOAA’s efforts during Arctic Shield at http://oceanservice.noaa.gov/arcticshield/.

Amy Merten with kids from Kivalina, Alaska.

Dr. Amy Merten is pictured here with children from the Alaskan village of Kivalina. She was in Alaska for an oil spill workshop in the village of Kotzebue.

Amy Merten is the Spatial Data Branch Chief in NOAA’s Office of Response and Restoration. Amy developed the concept for the online mapping tool ERMA (Environmental Response Mapping Application). ERMA was developed in collaboration with the University of New Hampshire. She expanded the ERMA team at NOAA to fill response and natural resource trustee responsibilities during the 2010 Deepwater Horizon/BP oil spill. Amy oversees data management of the resulting oil spill damage assessment. She received her doctorate and master’s degrees from the University of Maryland.

 


Leave a comment

You Say Collision, I Say Allision; Let’s Sort the Whole Thing Out

Despite improved navigation aids, including charts and Global Positioning Systems (GPS), ships still have accidents in our nation’s waterways, and I regularly review notification reports of these accidents from the National Response Center. Sometimes I need to consult the old nautical dictionary I inherited from my grandfather (a lawyer and U.S. Navy captain) to figure out what they mean.

Nautical terms and marine salvage books.

Keeping it all straight. (NOAA)

The U.S. Coast Guard investigates ship accidents, but they use the terms “marine casualty or accident” interchangeably [PDF]. Mariners are required to report any occurrence involving a vessel that results in:

  • Grounding
  • Stranding
  • Foundering
  • Flooding
  • Collision
  • Allision
  • Explosion
  • Fire
  • Reduction or loss of a vessel’s electrical power, propulsion, or steering capabilities
  • Failures or occurrences, regardless of cause, which impair any aspect of a vessel’s operation, components, or cargo
  • Any other circumstance that might affect or impair a vessel’s seaworthiness, efficiency, or fitness for service or route
  • Any incident involving significant harm to the environment

Some of those terms are pretty straightforward, but what is the difference between grounding and stranding? Or foundering and flooding? And my favorite, collision and allision?

Here is my basic understanding of these terms, but I am sure that some of these could fill an admiralty law textbook.

Groundings and strandings are probably the most common types of marine casualties. A grounding is when a ship strikes the seabed, while a stranding is when the ship then remains there for some length of time. Both can damage a vessel and result in oil spills depending on the ocean bottom type (rocky, sandy, muddy?), sea conditions, and severity of the event (is the ship a little scraped or did it break open?).

Flooding means taking on excessive water in one or more of the spaces on a ship (e.g., the engine room), while foundering is basically taking on water to the point where the vessel becomes unstable and begins to sink or capsize. Note that “foundering” is different than “floundering,” which is to struggle or move aimlessly.

And collision and allision … These terms are sometimes used interchangeably, but technically, a collision is when two vessels strike each other, while an allision occurs when a vessel strikes a stationary object, such as a bridge or dock.

Close up of large damaged ship with Coast Guard boat.

A U.S. Coast Guard boat approaches the gash in the side of the M/V Cosco Busan after it allided (rather than collided) with San Francisco’s Bay Bridge on November 7, 2007, releasing 53,000 gallons of bunker oil into San Francisco Bay. (U.S. Coast Guard)

No matter the proper terminology, all of these incidents can result in spills, keeping us pollution responders on our toes because of the potential impacts to coasts, marine life, and habitats such as coral reefs and seagrass beds. But understanding these various nautical terms helps us understand the circumstances we’re dealing with in an emergency and better adapt our science-based recommendations as a result. And as my grandfather used to say, a collision at sea can ruin your entire day …


Leave a comment

Update on the Texas City “Y” Response in Galveston Bay

Photo of workers deploying boom.

Workers deploy boom around the site of the oil spill in the Houston Ship Channel near the Texas City Dike, March 24, 2014. More than 71,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S. Coast Guard)

 

POSTED MARCH 25, 2014 | UPDATED MARCH 27, 2014 –The Saturday vessel collision in Galveston Bay (see “Vessel Collision and Spill in Galveston Bay”) that resulted in an oil spill of approximately 168,000 gallons, caused the closure of the heavily trafficked Port of Houston for 3 days. The Houston Ship Channel is now open, with some restrictions. There is a safety zone in effect in cleanup areas.

Photo of absorbent material in spilled oil.

Absorbent material is deployed near the Texas City Dike, March 24, 2014. More than 71,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S. Coast Guard)

As predicted, strong southerly winds stranded much of the offshore oil overnight in the Matagorda region and these onshore winds are expected to bring ashore the remaining floating oil off Matagorda Island by Friday morning. Closer to the collision site, there have been very few new reports of remaining floating oil in Galveston Bay or offshore Galveston Island. However, new shoreline impacts may still be occurring in those areas due to re-mobilization of stranded oil or remaining scattered sheens and tarballs.

NOAA is providing scientific support to the U.S. Coast Guard, including trajectory forecasts of the floating oil movement, shoreline assessment, information management, overflight tracking of the oil, weather forecasts, and natural and economic resources at risk. Marine mammal and turtle stranding network personnel are responding. The NOAA Weather Service Incident Meteorologist is on-scene, as are additional NOAA personnel. Natural resource damage assessment personnel are at Galveston Bay and are initiating preassessment activities. The preassessment period is an on-scene evaluation of what the type of oil is, where it has gone, where it may be going and what resources are or may be at risk.

See the latest OR&R trajectory forecast map, showing the likely areas of oiling tomorrow.


2 Comments

Vessel Collision and Spill in Galveston Bay

photo of tugs and barge in water.

A Coast Guard response boat patrols the Kirby Barge 27706 during cleanup efforts near Texas City Dike, March 23, 2014. The oil spill occurred, Saturday, after a collision between a bulk carrier and the barge. (U.S. Coast Guard)

On March 22, 2014, at approximately 12:30 pm, the 585 foot bulk carrier M/V Summer Wind collided with the oil tank-barge Kirby 27706. The incident occurred in Galveston Bay near Texas City, Texas. The barge contained approximately 1,000,000 gallons of intermediate fuel oil in multiple tanks.

The #2 starboard tank was punctured, spilling approximately 168,000 gallons of oil. The barge is aground and the remaining oil was lightered (removed) late Sunday. The M/V Summer Wind is stable and not leaking oil. As of March 23, the Houston Ship Channel and Intracoastal Waterway was closed to traffic, including ferries and cruise ships. U.S. Coast Guard, NOAA, U.S. Fish and Wildlife Service, the Texas General Land Office and other agencies are responding.

NOAA is providing scientific support to the U.S. Coast Guard, including forecasts of the floating oil movement, shoreline assessment, information management, overflight tracking of the oil, weather forecasts, and natural and economic resources at risk. Marine mammal and turtle stranding network personnel are also standing by. The NOAA Weather Service Incident Meteorologist is on-scene, as are NOAA’s Office of Response and Restoration personnel. Natural resource damage assessment personnel will be at Galveston Bay to initiate studies that could be used to identify injured resource and restoration needs.

Workers load boom into the water.

Responders work together to load hundreds of feet of boom onto vessels at the Texas City Dike, March 23, 2014. More than 35,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S Coast Guard)

Expected Behavior of the Spilled Oil

Intermediate fuel oils are produced by blending heavy residual oils with a light oil to meet specifications for viscosity and pour point. Their behavior can be summarized as follows:

  • IFO-380 will usually spread into thick slicks which can contain large amounts of oil. Oil recovery by skimmers and vacuum pumps can be very effective, particularly early in the spill.
  • Very little of this is likely to mix into the water column. It can form thick streamers or, under strong wind conditions, break into patches and tarballs.
  • IFO-380 is a persistent oil; only a relatively small amount is expected to evaporate within the first hours of a spill. Thus, spilled oil can be carried long distances by winds and currents.
  • IFO-380 can be very viscous and sticky, meaning that stranded oil tends to remain on the surface rather than penetrate sediments. Light accumulations usually form a “bath-tub ring” at the high-water line; heavy accumulations can pool on the surface.
  • Floating oil could potentially sink once it strands on the shoreline, picks up sediment, and then is eroded by wave action.

The incident occurred just inside the entrance of Galveston Bay. Northeasterly winds are expected to carry the oil out of the Bay, but onshore winds expected midweek could bring the oil back along the ocean beaches. The oil, likely in the form of tarballs, could be spread over a large section of ocean beaches.

Find more updates on the oil spill response from the Unified Command.


Leave a comment

Mapping the Problem After Owners Abandon Ship

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division.

One of the largest vessel removal efforts in Washington history was a former Navy Liberty Ship, the Davy Crockett. In 2011 the Davy Crockett, previously abandoned by its owner on the Washington shore of the Columbia River, began leaking oil and sinking due to improper and unpermitted salvage operations. Its cleanup and removal cost $22 million dollars, and the owner was fined $405,000 by the Washington Department of Ecology and sentenced to four months in jail by the U.S. Attorney, Western District of Washington.

As I’ve mentioned before, derelict and abandoned vessels like the Davy Crockett are a nationwide problem that is expensive to deal with properly and, if the vessels are left to deteriorate, can cause significant environmental impacts. Unfortunately Washington’s Puget Sound is no exception to this issue.

Agency Collaboration

I’m part of the Derelict Vessel Task Force led by U.S. Coast Guard Sector Puget Sound. Made up of federal, state, and local agencies, this task force aims to identify and remove imminent pollution and hazard-to-navigation threats from derelict vessels and barges within Puget Sound. Among these agencies there are different jurisdictions and enforcement mechanisms related to derelict vessels.

A key player is Washington’s Department of Natural Resources (WA DNR), which manages the state Derelict Vessel Removal Program (DVRP). The DVRP has limited funding for removal of priority vessels. Unfortunately, according to WA DNR [PDF], with the growing number and size of problem vessels, program funding can’t keep up with the rising removal and disposal costs. The backlog of vessels in need of removal continues to grow.

Keeping Track

I’m working with the NOAA Office of Response and Restoration’s Spatial Data Branch to enter this list of derelict vessels into ERMA®. ERMA is a NOAA online mapping tool that integrates both static and real-time data to support environmental planning and response operations. Right now the vessels are primarily tracked in the WA DNR DVRP database. By pulling this data into ERMA, the task force will not only be able to see the vessels displayed on a map but also make use of the various layers of environmental sensitivity data already within ERMA. The hope is that this can help with the prioritizing process and possibly eventually be used as a tool to raise awareness.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington's Puget Sound as well as the colors indicating the shoreline's characteristics and vulnerability to oil.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington’s Puget Sound as well as the colors indicating the shoreline’s characteristics and vulnerability to oil. (NOAA)

However, there aren’t enough resources within the Derelict Vessel Task Force to gather and continue to track (as the vessels can move) all the data needed in order to map the vessels accurately in ERMA. As a result, the task force is turning to local partners in order to help capture data.

Reaching Out

One such partner is the local Coast Guard Auxiliary Flotillas, a group of dedicated civilians helping the Coast Guard promote safety and security for citizens, ports, and waterways. In order to garner support for data-gathering, I recently attended the USCG Auxiliary Flotilla Seattle-Elliott Bay meeting, along with members of the local Coast Guard Incident Management Division who head the Puget Sound Derelict Vessel Task Force.

I spoke about a few local derelict vessel incidents and their impacts to the environment. I also showed how ERMA can be a powerful tool for displaying and prioritizing this information—if we can get the basic data that’s missing. As a result, this Flotilla will follow up with my Coast Guard colleagues and start collecting missing information on derelict and abandoned vessels on behalf of the Coast Guard and WA DNR.

Gathering data and displaying derelict vessels graphically is a small, but important, step on the way to solving the massive problem of derelict vessels. Once complete I hope that ERMA will be a powerful aid in displaying the issue and helping make decisions regarding derelict vessels in the Puget Sound. Stay tuned.

[Editor's Note: You can see a U.S. Coast Guard video of the start-to-finish process of removing the Davy Crockett from the Columbia River along with the Washington Department of Ecology's photos documenting the response.]

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


Leave a comment

How Do You Solve a Problem Like Abandoned Ships?

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division.

Two rusted ships partially sunk in water and surrounded by containment boom.

The old fishing vessel Helena Star has been allowed to become derelict, leaking oil and pulling down its neighboring vessel, the Golden West. (NOAA)

A rusted green hull, punched full of holes and tilted on its side, sits forlornly in the Hylebos Waterway of Tacoma, Washington. The dilapidated boat’s name, Helena Star, is partially obscured because the vessel is half sunk. The boat it is chained to, the equally rusted ship Golden West, is being drawn down into the waters with it. Bright yellow boom and a light sheen of oil surround the vessels. Meanwhile, the owners are nowhere in sight.

This is just one example of the nationwide problem of derelict vessels. These neglected ships often pose significant threats to fish, wildlife, and nearby habitat, in addition to becoming eyesores and hazards to navigation. Derelict vessels are a challenge to deal with properly because of ownership accountability issues, potential chemical and oil contamination, and the high cost of salvage and disposal. Only limited funds are available to deal with these types of vessels before they start sinking. In Washington’s Puget Sound alone, the NOAA Office of Response and Restoration’s Emergency Response Division has had several recent responses to derelict vessels that either sank or broke free of their moorings.

Many of these recent responses have come with colorful backstories, including a pair of retired Royal Canadian Navy vessels, a fishing boat that at one time housed the largest marijuana seizure by the U.S. Coast Guard (F/V Helena Star), the first American-designed and –built diesel tugboat (Tug Chickamauga), and the boat that carried author John Steinbeck and biologist Ed Ricketts on their famous trip through the Sea of Cortez (Western Flyer).

Unfortunately, all these vessels have met the end of their floating lives either through the deliberate action or negligence of their owners. Had the owners taken responsibility for maintaining them, the environmental impacts from leaked fuel, hazardous waste, and crushing impacts to the seabed could have been avoided, as well as the costly multi-agency response and removal operations that resulted.

heavy machinery is brought in to raise a sunken vessel from the sea floor.

In May 2012, the derelict fishing boat Deep Sea caught fire and sank near Washington’s Whidbey Island. The boat ended up leaking diesel fuel into waters near a Penn Cove Shellfish Company mussel farm, and the company took the precautionary measure of stopping the harvest. NOAA worked with them to sample mussels in the area for diesel contamination. Here, heavy machinery is brought in to raise the sunken vessel from the sea floor. (NOAA)

Yet there is hope that we can prevent these problems before they start. In Washington state there is momentum to combat the derelict vessel issue through measures to prevent boats from becoming derelict or environmental hazards, and by holding vessel owners accountable for what they own.

Washington State House bill 2457 is currently in the Washington State Legislature. Among other measures, the proposed bill:

  • “Establishes a fee on commercial moorage to fund the state’s derelict and abandoned vessel program.”
  • “Creates new penalties for failure to register a vessel.”

Additionally, Washington’s San Juan County is developing a new Derelict Vessel Prevention program, using a grant from the Puget Sound Partnership. San Juan County, a county composed of small rural Pacific Northwest islands, has a high number of derelict vessels [PDF]. This program is going to be used not only in San Juan County but throughout counties bordering Puget Sound.

On January 15, 2014, Washington’s Attorney General Bob Ferguson and Commissioner of Public Lands Peter Goldmark (who leads the Department of Natural Resources) announced the state was pursuing criminal charges against the owners of the Helena Star, which sank in Tacoma’s Hylebos Waterway, and the Tugboat Chickamauga, which sank in Eagle Harbor. Both vessels released oil and other pollutants when they sank.

It is an ongoing battle to hold accountable the owners of derelict and abandoned vessels and prevent them from causing problems in our nation’s waterways. Yet with cooperation, prevention, and increased accountability we can help manage the problem, and in the end reduce impacts to Washington’s cherished Puget Sound.

Editor’s note: Stay tuned for more information about how LTJG Drury is working with Washington’s Derelict Vessel Task Force to tackle this growing problem in Puget Sound. Update: Mapping the Problem After Owners Abandon Ship.

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


Leave a comment

Protecting the Great Lakes After a Coal Ship Hits Ground in Lake Erie

The coal ship CSL Niagara got stuck in Lake Erie's soft, muddy bottom at the entrance to Sandusky Bay in November 2013.

The coal ship CSL Niagara got stuck in Lake Erie’s soft, muddy bottom at the entrance to Sandusky Bay in November 2013. (U.S. Coast Guard)

In the course of a year, from October 2012 to October 2013, the Emergency Response Division of NOAA’s Office of Response and Restoration responded to 138 oil spills, chemical accidents, and various other threats to coastal environments and communities. Many of these responses required considerable time from the scientific team to estimate where spills might spread, analyze chemical hazards, and assess whether natural resources are at risk. Sometimes, however, we’re called into some incidents that end well, with minimum help needed on our part and no oil spilled.

Last November, LCDR John Lomnicky received a call from the U.S. Coast Guard with an example of an accident that had the potential to be much worse. LCDR Lomnicky is our Scientific Support Coordinator for the Great Lakes region and is based in Cleveland, Ohio.

When Staying Grounded Is a Bad Thing

On November 17, just after 10:00 in the morning, the vessel master of the CSL Niagara reported to the U.S. Coast Guard that his ship had run aground while leaving Sandusky Bay through Moseley Channel to Lake Erie. Aboard the ship were 33,000 metric tons (36,376 U.S. tons) of coal, headed to Hamilton, Ontario, and about 193 metric tons of intermediate fuel oil (a blend of gasoil and heavy fuel oil) and marine diesel. The concern in a situation like this would be that the grounded ship might leak oil. Its stern was stuck in the soft mud at the bottom of Lake Erie. At the time, the vessel master reported there were no injuries, flooding, or visible pollution.

This ship, the CSL Niagara, has a long history of transporting coal in Lake Erie. Launched in April of 1972 for Canada Steamship Lines, Ltd., the new ship was 730 feet long and even then was carrying coal to Hamilton, Ontario. During over 40 years of sailing in the Great Lakes, the Niagara has also carried cargos of grain, coke, stone, and iron ore.

NOAA chart of Lake Erie.

Lake Erie has an average depth of 62 feet, but its western basin, where the CSL Niagara grounded, averages only 24 feet deep. (NOAA Chart)

Even though the vessel hadn’t released any oil, the Coast Guard Marine Safety Unit, who had responders at the scene very shortly after the accident, put in a call to the Office of Response and Restoration’s LCDR Lomnicky for scientific support. As a precaution, they requested that we model the trajectory of oil in a worst case scenario if 145 metric tons of intermediate fuel oil and 48 metric tons of diesel fuel were released all at once into the water. We also provided a prediction of when the lake’s lower-than-usual water level would return to normal so a salvage team could refloat the stuck vessel. After gathering all of this information for the Coast Guard, LCDR Lomnicky continued to stand by for further requests.

In the hours that followed the ship’s grounding, the winds grew stronger, hampering efforts to free the vessel. The wind was causing the water level in the lake to drop and NOAA’s National Weather Service in Detroit predicted a 7.5 foot drop in levels for western Lake Erie. By 8:30 p.m., with 30 knot winds in two-to-three foot seas, the three tugboats contracted by the ship’s owner to dislodge the Niagara were making some progress. By midnight, however, with weather conditions worsening, salvage operations were suspended and scheduled to resume at first light.

But the next morning, November 18, the water level had dropped another two feet, and the three tugs still had had no luck freeing the stern of the Niagara from the lake bottom. The ship’s owner was now working on plans for lightering (removing the fuel) and containing any potentially spilled oil. Fortunately, there were still no reports of damage to the vessel or oil discharged into the water. The ship was just stuck.

By 4:00 that afternoon the water conditions had improved and another attempt to free the vessel was planned. Also, a combined tug-barge was en route should lightering become necessary.

Later that evening, shortly after 10:00, the ship was pulled free by two of the tugs and was back on its way early the next morning.

The location where the CSL Niagara grounded in Lake Erie is indicated with a red diamond, along with a window of information and photo of the grounded ship. It is mapped in Great Lakes ERMA, NOAA's online mapping tool for coastal pollution cleanup, restoration, and response.

The location where the CSL Niagara grounded in Lake Erie is indicated with a red diamond, along with a window of information and photo of the grounded ship. It is mapped in Great Lakes ERMA, NOAA’s online mapping tool for coastal pollution cleanup, restoration, and response. (NOAA)

Keeping the Great Lakes Great

Lake Erie is the shallowest of the five Great Lakes, with an average depth of 62 feet. Yet its western basin, where this ship grounding occurred, has an average depth of only 24 feet. The lake is an important source of commerce for both the U.S and Canada, who depend on it for shipping, fishing, and hydroelectric power. These industries place environmental pressure on the lake’s ecosystems, which  are also threatened by urban and agricultural runoff.

Happily, quick responders, sound information, and a break in the weather may have prevented this incident from becoming something much worse. A spill into Lake Erie could be devastating, especially considering its shallow waters, but this time, like many other times along the nation’s coasts, an oil spill was avoided.

Didn’t know that NOAA works in the Great Lakes? Nicknamed “the third coast,” the Great Lakes are a major U.S. water body, with a shoreline that stretches longer than the East Coast and Gulf Coast combined. Learn more about the Great Lakes and NOAA’s efforts there in this Great Lakes regional snapshot.


Leave a comment

How Do Oil Spills Affect Coral Reefs?

Coral habitat in the Hawaiian Islands.

Coral habitat in the Hawaiian Islands. (NOAA)

A warming, more acidic ocean. Grounded ships and heavy fishing nets. Coral reefs face a lot of threats from humans. For these tiny animals that build their own limestone homes underwater, oil spills may add insult to injury.

But how does spilled oil reach coral reefs? And what are the effects?

How an oil spill affects corals depends on the species and maturity of the coral (e.g., early stages of life are very sensitive to oil) as well as the means and level of exposure to oil. Exposing corals to small amounts of oil for an extended period can be just as harmful as large amounts of oil for a brief time.

Coral reefs can come in contact with oil in three major ways:

  1. Oil floating on the water’s surface can be deposited directly on corals in an intertidal zone when the water level drops at low tide.
  2. Rough seas can mix lighter oil products into the water column (like shaking up a bottle of salad dressing), where they can drift down to coral reefs.
  3. As heavy oil weathers or gets mixed with sand or sediment, it can become dense enough to sink below the ocean surface and smother corals below.

 

Oil slicks moving onto coral reefs at Galeta at low tide after the Bahia las Minas refinery spill, Panama, in April 1986.

Oil slicks moving onto coral reefs at Galeta at low tide after the Bahia las Minas refinery spill, Panama, in April 1986. (NOAA)

Once oil comes into contact with corals, it can kill them or impede their reproduction, growth, behavior, and development. The entire reef ecosystem can suffer from an oil spill, affecting the many species of fish, crabs, and other marine invertebrates that live in and around coral reefs.

As oil spill responders, NOAA’s Office of Response and Restoration has to take these and many other factors into account during an oil spill near coral reefs. For example, if the spill resulted from a ship running aground on a reef, we need to consider the environmental impacts of the options for removing the ship. Or, if an oil spill occurred offshore but near coral reefs, we would advise the U.S. Coast Guard and other pollution responders to avoid using chemical dispersants to break up the oil spill because corals can be harmed by dispersed oil.

We also provide reports and information for responders and natural resource managers dealing with oil spills and coral reefs:

You can learn more about coral reefs, such as the basic biology of corals, how damaged coral reefs can recover from an oil spill or be restored after a ship grounding, and what we’ve learned about oil spills in tropical reefs.

For lessons a little closer to home, be sure to find out five more things you should know about coral reefs and listen to this podcast about threats to coral health from NOAA’s National Ocean Service.


Leave a comment

At the Coast Guard Academy, Students Get a Dose of Real-World Response Tools

This is a post by the Office of Response and Restoration’s GIS Specialists Kari Sheets and Jay Coady.

The Office of Response and Restoration's Spatial Data Team introduces U.S. Coast Guard Academy cadets to ERMA, NOAA's online mapping tool for environmental response.

The Office of Response and Restoration’s Spatial Data Team introduces U.S. Coast Guard Academy cadets to ERMA, NOAA’s online mapping tool for environmental response. (U.S. Coast Guard Academy)

Students wearing crisp, blue uniforms lean in to get a better look at the map of the Gulf of Mexico being projected at the front of the small classroom.

Their normal Friday GIS class at the United States Coast Guard Academy in New London, Conn., has been taken over by two mapping specialists from NOAA’s Office of Response and Restoration. Kari Sheets and Jay Coady are standing in front of the classroom of cadets to introduce these future U.S. Coast Guard responders to an important tool they may use one day in the midst of a hurricane or oil spill response.

The tool is NOAA’s Environmental Response Management Application (ERMA®). ERMA is an online mapping tool that integrates both static and real-time data, such as ship locations, weather, and ocean currents, in a centralized, interactive map for environmental disaster response. Having all the latest information in an easy-to-use format provides environmental resource managers with the data they need to make informed decisions about where and how to deal with a pollution threat when it happens.  NOAA and the University of New Hampshire developed ERMA with the U.S. Coast Guard, U.S. Environmental Protection Agency, and the Department of Interior.

To the Classroom and Beyond

By offering training and collaboration opportunities like this early in cadets’ careers, NOAA and the Academy are providing future Coast Guard responders with the real-world knowledge and tools that they might encounter when addressing future pollution events.

One day this fall, Sheets and Coady taught three GIS classes that focused on ERMA, its capabilities, and how to use it once the cadets graduate from the Academy. The classes covered a general overview of the ERMA platform, how it fits in the Incident Command System structure, how it enables users to see and access data. They also included a live demonstration of the tool that highlighted recent data used in the response to Post Tropical Cyclone Sandy in 2012.

From Training to Explaining

The lesson also integrated data from a training exercise held from September 17-19, which simulated a tug-and-barge grounding and potential oil spill in Long Island Sound as part of the National Preparedness for Response Exercise Program (PREP).

The September 2013 training exercise, PREP, simulated a vessel grounding and oil spill in Long Island Sound. In the foreground, NOAA's Kari Sheets is checking metadata in ERMA while to her left, LT Sabrina Bateman and Cadet Jaimie Chicoine of the U.S. Coast Guard Academy look at spill trajectories in ERMA. ERMA is being projected on the wall, with Jay Coady of NOAA and Tom Marquette of the training facilitation firm PPS reviewing how ERMA is functioning at the drill.

The September 2013 training exercise, PREP, simulated a vessel grounding and oil spill in Long Island Sound. In the foreground, NOAA’s Kari Sheets is checking metadata in ERMA while to her left, LT Sabrina Bateman and Cadet Jaimie Chicoine of the U.S. Coast Guard Academy look at spill trajectories in ERMA. ERMA is being projected on the wall, with Jay Coady of NOAA and Tom Marquette of the training facilitation firm PPS reviewing how ERMA is functioning at the drill. (NOAA)

NOAA’s Sheets and Coady began working with the Academy over the summer in preparation for this exercise in Long Island Sound. Coast Guard Academy GIS instructor LT Sabrina Bateman and Cadet Jaimie Chicoine helped provide and add data and information into ERMA for the PREP exercise, where ERMA was designated the common operational picture (COP). As the COP during an incident, ERMA brings together various types of information, providing a single place to display up-to-date information that is also accessible to all individuals involved in incident response operations. This consistency and accessibility helps improve communication and coordination among responders and stakeholders.

The Academy was able to use ERMA to load selected data from their internal databases.  As a result of these early collaborations preparing for the drill, Sheets and Coady were invited to the Academy to guest lecture on ERMA for the GIS classes. The classes they taught went well, solidifying the Office of Response and Restoration’s connections with the Academy and resulting in an invitation back to teach again in the future.

In the meantime, LT Bateman plans on using ERMA in several of her GIS lectures and labs at the Academy to get cadets more accustomed to using it once they receive their assignments and enter Coast Guard stations around the country after graduation. This relationship has continued growing as the two organizations explore further opportunities for collaboration.

Kari Sheets.

Kari Sheets

Kari Sheets is a GIS specialist with the Office of Response and Restoration’s Spatial Data Branch in Silver Spring, Md., where she works on GIS strategic planning and leads ERMA projects. Previously, she worked at NOAA’s National Weather Service, where she coordinated GIS activities throughout the office.

Jay Coady

Jay Coady

Jay Coady is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch in Charleston, S.C. He has been working on the Deepwater Horizon incident since July 2010 and has been involved in a number of other responses, including Post Tropical Cyclone Sandy. Jay is a co-lead for the Gulf of Mexico regional ERMA.

Follow

Get every new post delivered to your Inbox.

Join 388 other followers