NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Adventures in Developing Tools for Oil Spill Response in the Arctic

This is a post by the Office of Response and Restoration’s Zachary Winters-Staszak. This is the third in a series of posts about the Arctic Technology Evaluation supporting Arctic Shield 2014. Read the first post, “NOAA Again Joins Coast Guard for Oil Spill Exercise in the Arctic” and the second post, “Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics.”

People in a boat lowering orange ball into icy waters.

The crew of the icebreaker Healy lowering an iSphere onto an ice floe to simulate tracking oil in ice. (NOAA/Jill Bodnar)

The Arctic Ocean, sea ice, climate change, polar bears—each evokes a vivid image in the mind. Now what is the most vivid image that comes to mind as you read the word “interoperability”? It might be the backs of your now-drooping eyelids, but framed in the context of oil spill response, “interoperability” couldn’t be more important.

If you’ve been following our latest posts from the field, you know Jill Bodnar and I have just finished working with the U.S. Coast Guard Research and Development Center on an Arctic Technology Evaluation during Arctic Shield 2014. We were investigating the interoperability of potential oil spill response technologies while aboard the Coast Guard icebreaker Healy on the Arctic Ocean.

Putting Square Pegs in Round Holes

As Geographic Information Systems (GIS) map specialists for NOAA’s Office of Response and Restoration, a great deal of our time is spent transforming raw data into a visual map product that can quickly be understood. Our team achieves this in large part by developing a versatile quiver of tools tailored to meet specific needs.

For example, think of a toddler steadfastly—and vainly—trying to shove that toy blue cylinder into a yellow box through a triangular hole. This would be even more difficult if there were no circular hole on that box, but imagine if instead you could create a tool to change those cylinders to fit through any hole you needed. With computer programming languages we can create interoperability between technologies, allowing them to work together more easily. That cylinder can now go through the triangular hole.

New School, New Tools

Different technologies are demonstrated each year during Arctic Shield’s Technology Evaluations and it is common for each technology to have a different format or output, requiring them to be standardized before we can use them in a GIS program like our Environmental Response Management Application, Arctic ERMA.

Taking lessons learned from Arctic Shield 2013’s Technology Evaluation, we came prepared with tools in ERMA that would allow us to automate the process and increase our efficiency. We demonstrated these tools during the “oil spill in ice” component of the evaluation. Here, fluorescein dye simulated an oil plume drifting across the water surface and oranges bobbed along as simulated oiled targets.

The first new tool allowed us to convert data recorded by the Puma, a remote-controlled aircraft run by NOAA’s Unmanned Aircraft Systems Program. This allowed us to associate the Puma’s location with the images it was taking precisely at those coordinates and display them together in ERMA. The Puma proved useful in capturing high resolution imagery during the demonstration.

A similar tool was created for the Aerostat, a helium-filled balloon connected to a tether on the ship, which can create images and real-time video with that can track targets up to three miles away. This technology also was able to delineate the green dye plume in the ocean below—a function that could be used to support oil spill trajectory modeling. We could then make these images appear on a map in ERMA.

The third tool received email notifications from floating buoys provided by the Oil Spill Recovery Institute and updated their location in ERMA every half hour. These buoys are incredibly rugged and produced useful data that could be used to track oiled ice floes or local surface currents over time. Each of the tools we brought with us is adaptable to changes on the fly, making them highly valuable in the event of an actual oil spill response.

Internet: Working With or Without You

Having the appropriate tools in place for the situation at hand is vital to any response, let alone a response in the challenging conditions of the Arctic. One major challenge is a lack of high-speed Internet connectivity. While efficient satellite connectivity does exist for simple communication such as text-based email, a robust pipeline to transmit and receive megabytes of data is costly to maintain. Similar to last year’s expedition, we overcame this hurdle by using Stand-alone ERMA, our Internet-independent version of the site that was available to Healy researchers through the ship’s internal network.

NOAA's online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during  the Arctic Technology Evaluation of Arctic Shield 2014.

NOAA’s online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during the Arctic Technology Evaluation of Arctic Shield 2014. (NOAA)

This year we took a large step forward and successfully tested a new tool in ERMA that uses the limited Internet connectivity to upload small packages (less than 5 megabytes) of new data on the Stand-alone ERMA site to the live Arctic ERMA site. This provided updates of the day’s Arctic field activities to NOAA staff back home. During an actual oil spill, this tool would provide important information to decision-makers and stakeholders at a command post back on land and at agency headquarters around the country.

Every Experience Is a Learning Experience

I’ve painted a pretty picture, but this is not to say everything went as planned during our ventures through the Arctic Ocean. Arctic weather conditions lived up to their reputation this year, with fog, winds, and white-cap seas delaying and preventing a large portion of the demonstration. (This was even during the region’s relatively calm, balmy summer months.)

Subsequently, limited data and observations were produced—a sobering exercise for some researchers. I’ve described only a few of the technologies demonstrated during this exercise, but there were unexpected issues with almost every technology; one was even rendered inoperable after being crushed between two ice floes. In addition, troubleshooting data and human errors added to an already full day of work.

Yet every hardship allowed those of us aboard the Healy to learn, reassess, adapt, and move forward with our work. The capacity of human ingenuity and the tools we can create will be tested to their limits as we continue to prepare for an oil spill response in the harsh and unpredictable environs of the Arctic. The ability to operate in these conditions will be essential to protecting the local communities, wildlife, and coastal habitats of the region. The data we generate will help inform crucial and rapid decisions by resource managers, making interoperability along with efficient data management and dissemination fundamental to effective environmental response.

Editor’s note: Use Twitter to chat directly with NOAA GIS specialists Zachary Winters-Staszak and Jill Bodnar about their experience during this Arctic oil spill simulation aboard an icebreaker on Thursday, September 18 at 2:00 p.m. Eastern. Follow the conversation at #ArcticShield14 and get the details: http://1.usa.gov/1qpdzXO.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed me to the Arctic.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed Zachary Winters-Staszak to the Arctic in 2013. (NOAA)

Zachary Winters-Staszak is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


2 Comments

Join NOAA for a Tweetchat on Preparing for Arctic Oil Spills

 

Coast Guard icebreaker in sea ice.

The U.S. Coast Guard Cutter Healy, a state-of-the-art icebreaker and the August 2014 home of a team of researchers evaluating oil spill technologies in the Arctic. (U.S. Coast Guard)

As Arctic waters continue to lose sea ice each summer, shipping, oil and gas exploration, tourism, and fishing will increase in the region. With more oil-powered activity in the Arctic comes an increased risk of oil spills.

In August of 2014, NOAA’s Office of Response and Restoration sent two GIS specialists aboard the U.S. Coast Guard Cutter Healy for an exercise in the Arctic Ocean demonstrating oil spill tools and technologies. This scientific expedition provided multiple agencies and institutions with the invaluable opportunity to untangle some of the region’s knotty logistical challenges on a state-of-the-art Coast Guard icebreaker in the actual Arctic environment. It is one piece of the Coast Guard’s broader effort known as Arctic Shield 2014.

Part of NOAA’s focus in the exercise was to test the Arctic Environmental Response Management Application (ERMA®), our interactive mapping tool for environmental response data, during a simulated oil spill.

Join us as we learn about NOAA’s role in the mission and what life was like aboard an icebreaker. Use Twitter to ask questions directly to NOAA GIS specialists Jill Bodnar and Zachary Winters-Staszak.

Get answers to questions such as:

  • What type of technologies did the Coast Guard Research and Development Center (RDC) and NOAA test while aboard the Healy and what did we learn?
  • What was a typical day like on a ship that can break through ice eight feet thick?
  • Why can’t we just simulate an Arctic oil spill at home? What are the benefits of first-hand experience?

Tweetchat Details: What You Need to Know

What: Use Twitter to chat directly with NOAA GIS specialists Jill Bodnar and Zachary Winters-Staszak.

When: Thursday, September 18, 2014 from 11:00 a.m. Pacific to 12:00 p.m. Pacific (2:00 p.m. Eastern to 3:00 p.m. Eastern).

How: Tweet questions to @NOAAcleancoasts using hashtag #ArcticShield14. You can also submit questions in advance via orr.rsvp.requests@noaa.gov, at www.facebook.com/noaaresponserestoration, or in the comments here.

About NOAA’s Spatial Data Branch

Jill Bodnar is a GIS specialist in the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. She is an experienced oil spill responder and has been mapping data during oil spills for more than a decade. This is her first trip to the Arctic.

Zachary Winters-Staszak is a GIS specialist in the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. While not aboard the Healy, he co-leads an effort to manage data and foster partnerships for Arctic ERMA. This is his second time participating in the annual Arctic Technology Evaluation in support of Arctic Shield. You can listen to him discuss this exercise and NOAA’s participation in a NOAA’s Ocean Service audio podcast from August 2014.

About Oil Spills and NOAA

Every year NOAA’s Office of Response and Restoration (OR&R) responds to more than a hundred oil and chemical spills in U.S. waters. OR&R is a center of expertise in preparing for, evaluating, and responding to threats to coastal environments, including oil and chemical spills, releases from hazardous waste sites, and marine debris. This work also includes determining damage to coastal lands and waters after oil spills and other releases and rotecting and restoring marine and coastal areas, including coral reefs.

Learn more about how NOAA responds to oil spills and the full range of OR&R’s activities in the Arctic.


2 Comments

Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics

Ship breaking ice in Arctic waters.

The U.S. Coast Guard Cutter Healy breaks ice in Arctic waters. A ship like this would be the likely center of operations for an oil spill in this remote and harsh region. (NOAA)

August in the Arctic can mean balmy weather and sunny skies or, fifteen minutes later, relentless freezing rain and wind blowing off ice floes, chilling you to the core. If you were headed to an oil spill there, your suitcase might be carrying a dry suit, down parka, wool sweaters and socks, your heaviest winter hat and gloves, and even ice traction spikes for your boots. Transit could mean days of travel by planes, car, and helicopter to a ship overseeing operations at the edge of the oil spill. Meanwhile, the oil is being whipped by the wind and waves into the nooks and crannies on the underside of sea ice, where it could be frozen into place.

Even for an experienced oil spill responder like Jill Bodnar, the complexity of working in such conditions goes far beyond the usual response challenges of cleaning up the oil, gathering data about the spill, and minimizing the impacts to marine life and their sensitive habitats. Rather, in the Arctic, everything comes down to logistics.

The unique logistics of this extreme and remote environment drive to the heart of why Bodnar, a NOAA Geographic Information Systems (GIS) specialist, and her colleague Zachary Winters-Staszak are currently on board the U.S. Coast Guard Cutter Healy, at the edge of the sea ice north of Alaska. They are participating in an Arctic Technology Evaluation, an exercise conducted by the U.S. Coast Guard Research and Development Center (RDC) in support of the Coast Guard’s broader effort known as Arctic Shield 2014.

Building on what was learned during the previous year’s exercise, the advanced technologies being demonstrated in this evaluation could potentially supplement those tools and techniques responders normally would rely on during oil spills in more temperate and accessible locations. This Arctic Technology Evaluation provides multiple agencies and institutions, in addition to NOAA, the invaluable opportunity to untangle some of the region’s knotty logistical challenges on a state-of-the-art Coast Guard icebreaker in the actual Arctic environment.

Getting from A to B: Not as Easy as 1-2-3

Bodnar has been mapping data during oil spills for more than a decade, but this exercise is her first trip to the Arctic. While preparing for it, she found it sobering to learn just how many basic elements of a spill response can’t be taken for granted north of the Arctic Circle. In addition to the scarcity of roads, airports, and hotels, other critical functions such as communications are subject to the harsh Arctic conditions and limited radio towers and satellite coverage. Out at sea ships depend on satellites for phone calls and some Internet connectivity, but above the 77th parallel those satellites often drop calls and can only support basic text email.

The remoteness of the Arctic questions how hundreds of responders would get there, along with all the necessary equipment—such as boom, skimmers, and vessels—not already in the area. Once deployed to the spill, response equipment has the potential to ice-over, encounter high winds, or be grounded from dense fog. Communicating with responders and decision makers on other ships, on shore at a command post, or even farther away in the lower 48 states would be an enormous challenge.

For example, if an oil spill occurs in the Beaufort Sea, north of Alaska, the nearest and “largest” community is Barrow, population 4,429. However, Barrow has very limited accommodations. For comparison, 40,000 people, including Bodnar, responded to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. This was possible because of the spill’s proximity to large cities with hotel space and access to food and communications infrastructure.

This is not the case for small Arctic villages, where most of their food, fuel, and other resources have to be shipped in when the surrounding waters are relatively free of ice. But to respond to a spill in the Arctic, the likely center of operations would be on board a ship, yet another reason working with the Coast Guard during Arctic Shield is so important for NOAA.

NOAA’s Role in Arctic Shield 2014

During this August’s Arctic Technology Evaluation, the Coast Guard is leading tests of four key areas of Arctic preparedness. NOAA’s area focuses on how oil disperses at the edge of the sea ice and collects under the older, thicker ice packs. NOAA’s Office of Response and Restoration is working with NOAA’s Unmanned Aircraft Systems (UAS) program to develop techniques for quickly identifying and delineating a simulated oil spill in the Arctic waters near the ice edge. The Coast Guard will be using both an unreactive, green fluorescein dye and hundreds of oranges as “simulated oil” for the various tools and technologies to detect.

Normally during an oil spill, NOAA or the Coast Guard would send people up in a plane or helicopter to survey the ocean for the oil’s precise location, which NOAA also uses to improve its models of the oil’s expected behavior. However, responders can’t count on getting these aircraft to a spill in the Arctic in the first place—much less assume safe conditions for flying once there.

Instead, the UAS group is testing the feasibility of using unmanned, remote-controlled aircraft such as the Puma to collect this information and report back to responders on the ship. Bodnar and Winters-Staszak will be pulling these data streams from the Puma into Arctic ERMA®, NOAA’s mapping tool for environmental response data. They’ll be creating a data-rich picture of where the oil spill dye and oranges are moving in the water and how they are behaving, particularly among the various types of sea ice.

Once the oil spill simulation is complete, Bodnar and Winters-Staszak will be reporting back on how it went and what they have learned. Stay tuned for the expedition’s progress in overcoming the many logistical hurdles of a setting as severe as the Arctic here and at oceanservice.noaa.gov/arcticshield.


Leave a comment

Alaska ShoreZone: Mapping over 46,000 Miles of Coastal Habitat

This is a post by the Office of Response and Restoration’s Zach Winters-Staszak.

A survey of St. Lawrence Island, Alaska, from July 2013 reveals the island's dramatic coastal cliffs.

A survey of St. Lawrence Island, Alaska, from July 2013 reveals the island’s dramatic coastal cliffs. (ShoreZone.org)

I learned a few things while I was at a meeting in Anchorage, Alaska, last month. Most importantly (and perhaps a surprise to those from Texas), I learned everything is bigger in Alaska, namely its shoreline. Alaska’s shoreline measures over 46,600 miles (75,000 km), longer than the shorelines of all the lower 48 states combined.

Now imagine for a minute the work involved in flying helicopters low along that entire shoreline, collecting high-resolution imagery and detailed classifications of the coast’s geologic features and intertidal biological communities. No small endeavor, but that’s exactly what the Alaska ShoreZone Coastal Inventory and Mapping Project, a unique partnership between government agencies, NGOs, and private industry, has been doing each summer since 2001.

Since then, ShoreZone has surveyed Alaskan coasts at extreme low tide, collecting aerial imagery and environmental data for roughly 80% of Alaska’s coastal habitats and continues to move towards full coverage each year. Collecting the vast amounts of imagery and data is a great accomplishment in and of itself, but ShoreZone, with help from NOAA’s National Marine Fisheries Service, has done an equally incredible job at making their entire inventory accessible to the public.

Just think how this valuable and descriptive information could be used. Planning for an Alaskan kayak trip next summer? ShoreZone can help you prioritize which beaches will save your hull from unwanted scratches. Trying to identify areas of critical habitat for endangered fishes? ShoreZone can help you in your research. Indeed, ShoreZone has many applications. For the Office of Response and Restoration, ShoreZone is an invaluable tool that serves alongside NOAA’s Environmental Sensitivity Index (ESI) maps and data as a baseline for the coastal habitats of Alaska and is currently being used for environmental planning, preparedness, and Natural Resource Damage Assessment planning in Alaska.

One of the many ways to access ShoreZone imagery and data is through Arctic ERMA, NOAA’s online mapping tool for environmental response. There are several advantages to this. For example, the National Marine Fisheries Service used ShoreZone imagery and data to designate critical habitat areas for endangered rockfish in Washington’s Puget Sound, a process that could also be applied to Alaska if necessary. That information could quickly be integrated into ERMA and displayed on a map allowing you to view the data used to determine those locations as well.

Screenshot of Alaska through Arctic ERMA and showing ShoreZone data layers.

To find ShoreZone photos in ERMA, type “Alaska ShoreZone” in the find bar at the top, then click on the result to turn on the layer in the map. Next, to view ShoreZone photos in ERMA, first click on the Identify tool icon (i) and then click on a desired point in the map. A table will appear in a pop-up with the hyperlink to the desired photo. Or, click on this image to view ShoreZone data in Arctic ERMA. (NOAA)

As updates and additions to the imagery database become available they will also be available in Arctic ERMA. The Bureau of Safety and Environmental Enforcement (BSEE) has provided funding to complete the imagery processing and habitat mapping for the North Slope of Alaska. BSEE also provided funding to finish Arctic ERMA and to develop the internet-independent Stand-alone ERMA. The efforts are complementary and strategic given the increased activity in the Arctic.

To prepare for this increase in activity, the ShoreZone and ERMA teams are working to incorporate ShoreZone data into Stand-alone ERMA for use when Internet connectivity is unreliable. The beauty of the photos included here is deceptive. A majority of Alaska’s shoreline is rugged, unforgiving, and remote. Having access to high-resolution imagery along with environmental and response-focused data in the kind of Internet-independent package that ShoreZone and ERMA provide would be an indispensable tool during a hazardous incident like a ship collision, oil spill, or search and rescue mission. This is just one way NOAA and ShoreZone are working together to strengthen our commitment to the coastal environments and communities of Alaska.

Zach Winters-StaszakZach Winters-Staszak is a GIS Specialist with OR&R’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


Leave a comment

At the Coast Guard Academy, Students Get a Dose of Real-World Response Tools

This is a post by the Office of Response and Restoration’s GIS Specialists Kari Sheets and Jay Coady.

The Office of Response and Restoration's Spatial Data Team introduces U.S. Coast Guard Academy cadets to ERMA, NOAA's online mapping tool for environmental response.

The Office of Response and Restoration’s Spatial Data Team introduces U.S. Coast Guard Academy cadets to ERMA, NOAA’s online mapping tool for environmental response. (U.S. Coast Guard Academy)

Students wearing crisp, blue uniforms lean in to get a better look at the map of the Gulf of Mexico being projected at the front of the small classroom.

Their normal Friday GIS class at the United States Coast Guard Academy in New London, Conn., has been taken over by two mapping specialists from NOAA’s Office of Response and Restoration. Kari Sheets and Jay Coady are standing in front of the classroom of cadets to introduce these future U.S. Coast Guard responders to an important tool they may use one day in the midst of a hurricane or oil spill response.

The tool is NOAA’s Environmental Response Management Application (ERMA®). ERMA is an online mapping tool that integrates both static and real-time data, such as ship locations, weather, and ocean currents, in a centralized, interactive map for environmental disaster response. Having all the latest information in an easy-to-use format provides environmental resource managers with the data they need to make informed decisions about where and how to deal with a pollution threat when it happens.  NOAA and the University of New Hampshire developed ERMA with the U.S. Coast Guard, U.S. Environmental Protection Agency, and the Department of Interior.

To the Classroom and Beyond

By offering training and collaboration opportunities like this early in cadets’ careers, NOAA and the Academy are providing future Coast Guard responders with the real-world knowledge and tools that they might encounter when addressing future pollution events.

One day this fall, Sheets and Coady taught three GIS classes that focused on ERMA, its capabilities, and how to use it once the cadets graduate from the Academy. The classes covered a general overview of the ERMA platform, how it fits in the Incident Command System structure, how it enables users to see and access data. They also included a live demonstration of the tool that highlighted recent data used in the response to Post Tropical Cyclone Sandy in 2012.

From Training to Explaining

The lesson also integrated data from a training exercise held from September 17-19, which simulated a tug-and-barge grounding and potential oil spill in Long Island Sound as part of the National Preparedness for Response Exercise Program (PREP).

The September 2013 training exercise, PREP, simulated a vessel grounding and oil spill in Long Island Sound. In the foreground, NOAA's Kari Sheets is checking metadata in ERMA while to her left, LT Sabrina Bateman and Cadet Jaimie Chicoine of the U.S. Coast Guard Academy look at spill trajectories in ERMA. ERMA is being projected on the wall, with Jay Coady of NOAA and Tom Marquette of the training facilitation firm PPS reviewing how ERMA is functioning at the drill.

The September 2013 training exercise, PREP, simulated a vessel grounding and oil spill in Long Island Sound. In the foreground, NOAA’s Kari Sheets is checking metadata in ERMA while to her left, LT Sabrina Bateman and Cadet Jaimie Chicoine of the U.S. Coast Guard Academy look at spill trajectories in ERMA. ERMA is being projected on the wall, with Jay Coady of NOAA and Tom Marquette of the training facilitation firm PPS reviewing how ERMA is functioning at the drill. (NOAA)

NOAA’s Sheets and Coady began working with the Academy over the summer in preparation for this exercise in Long Island Sound. Coast Guard Academy GIS instructor LT Sabrina Bateman and Cadet Jaimie Chicoine helped provide and add data and information into ERMA for the PREP exercise, where ERMA was designated the common operational picture (COP). As the COP during an incident, ERMA brings together various types of information, providing a single place to display up-to-date information that is also accessible to all individuals involved in incident response operations. This consistency and accessibility helps improve communication and coordination among responders and stakeholders.

The Academy was able to use ERMA to load selected data from their internal databases.  As a result of these early collaborations preparing for the drill, Sheets and Coady were invited to the Academy to guest lecture on ERMA for the GIS classes. The classes they taught went well, solidifying the Office of Response and Restoration’s connections with the Academy and resulting in an invitation back to teach again in the future.

In the meantime, LT Bateman plans on using ERMA in several of her GIS lectures and labs at the Academy to get cadets more accustomed to using it once they receive their assignments and enter Coast Guard stations around the country after graduation. This relationship has continued growing as the two organizations explore further opportunities for collaboration.

Kari Sheets.

Kari Sheets

Kari Sheets is a GIS specialist with the Office of Response and Restoration’s Spatial Data Branch in Silver Spring, Md., where she works on GIS strategic planning and leads ERMA projects. Previously, she worked at NOAA’s National Weather Service, where she coordinated GIS activities throughout the office.

Jay Coady

Jay Coady

Jay Coady is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch in Charleston, S.C. He has been working on the Deepwater Horizon incident since July 2010 and has been involved in a number of other responses, including Post Tropical Cyclone Sandy. Jay is a co-lead for the Gulf of Mexico regional ERMA.


Leave a comment

NOAA Data on Deepwater Horizon Oil Spill Plume Now Available Online

This is a post by the Office of Response and Restoration’s Ben Shorr and Mark Miller.

Fighting the flames on the Deepwater Horizon drill platform in 2010.

Fighting the flames on the Deepwater Horizon drill platform in 2010. (NOAA)

NOAA Physical Scientist Ben Shorr: It was late April 2010, in the first few days of the Deepwater Horizon/BP oil spill response. It was clear that, in addition to a tragic loss of life, this oil spill was going to be a major event. As I was heading down to the Gulf of Mexico to join my colleagues who were beginning to assess environmental injuries from the spill, I got a call from my supervisor Amy. A research vessel was heading out to collect samples near the leaking wellhead—could I hop on the boat the next day?

That’s how my journey into this oil spill response began and I ended up on the first federal scientific vessel collecting oceanographic and environmental samples, including those from the underwater oil plume. Now, the finalized and standardized analytical chemistry data have been released in NOAA’s online archive. Here’s more about it from the press release:

The dataset, collected to support oil removal activities and assess the presence of dispersants, wraps up a three year process that began with the gathering of water samples and measurements by ships in the Gulf of Mexico during and after the oil release in 2010. NOAA was one of the principal agencies responding to the Macondo well explosion in the Gulf of Mexico, and is the official ocean data archivist for the federal government. While earlier versions of the data were made available during and shortly after the response, it took three years for NOAA employees and contractors to painstakingly catalog each piece of data into this final form.

This Deepwater Horizon Oil Spill dataset, including more than two million chemical analyses of sediment, tissue, water, and oil, as well as toxicity testing results and related documentation, is available to the public online at: http://www.nodc.noaa.gov/deepwaterhorizon/specialcollections.html. A companion dataset, including ocean temperature and salinity data, currents, preliminary chemical results and other properties collected and made available during the response can be found at: http://www.nodc.noaa.gov/deepwaterhorizon/insitu.html.

The Deepwater Horizon Oil Spill response involved the collection of an enormous dataset. The underwater plume of hydrocarbon — a chemical compound that consists only of the elements carbon and hydrogen — was a unique feature of the spill, resulting from a combination of high-pressure discharge from the well near the seafloor and the underwater application of chemical dispersant to break up the oil. …

The effort to detect and track the plume was given to the Deepwater Horizon Response Subsurface Monitoring Unit (SMU), led by NOAA’s Office of Response and Restoration, and included responders from many federal and state agencies and British Petroleum (BP). Between May and November 2010, the SMU coordinated data collection from 24 ships on 129 cruises.

While on this scientific sampling cruise, I found myself working closely with the U.S. Environmental Protection Agency scientists, the ship’s captain and oceanographic technicians, BP’s scientific lead and contractors, and NOAA’s Natural Resource Damage Assessment representative. There were also experts from Canada’s Department of Fisheries and Oceans aboard. The work our team began quickly became the basis for the Subsurface Monitoring Unit within the spill response, which coordinated and provided scientific expertise for sampling, analysis, and mapping of the underwater hydrocarbon plume. Our team was made up of NOAA staff, in addition to others from the EPA, U.S. Geological Survey, and Gulf states.

During the first several months of the response, our team worked closely with EPA and other partners to establish common data management protocols that would allow us to coordinate and collect data including chemistry samples, acoustics, particle size, and oceanographic measurements from federal, BP, and academic scientific cruises in the Gulf of Mexico. These datasets were quickly analyzed and used by the scientific advisors and U.S. Coast Guard to make decisions about directing spill response clean-up operations. NOAA’s Office of Response and Restoration and National Coastal Data Development Center (a division of the National Oceanographic Data Center) formed a close partnership, working with federal, state, and university scientists to gather, organize, process, and analyze oceanographic data—in addition to archiving and making these datasets publicly available.

NOAA Physical Scientist Mark Miller: In October of 2010, shortly after returning from Coast Guard headquarters where I worked during the oil spill, I was asked to help prepare for public release the data collected by the Subsurface Monitoring Unit on the research vessels such as the one my colleague Ben Shorr was on. A few months later in January of 2011, I picked up where Ben left off on coordinating this effort.

Now, I had been involved in database development and deployment for 20 years, so I felt prepared for this task. This was naïve. While at Coast Guard headquarters in Washington, DC, I had been closely involved with the group that used some of the same Subsurface Monitoring Unit data to prepare operational reports for the National Incident Commander, Coast Guard Admiral Thad Allen.

Yet, I did not realize the scope and depth of the data collected on these research cruises. When told later in the project that there were over 2 million records collected, I quickly gained a much greater appreciation of the long, rigorous process involved in preparing and making this information public. The National Oceanographic Data Center has been releasing and updating this response data on a dedicated public website since early in the spill, and this process is finally complete. Because these data will be archived for at least 75 years, they will be available to help researchers for decades to come.

Ben Shorr has been a Physical Scientist with NOAA’s Office of Response and Restoration since he came to Seattle (mostly to ski and sail) in 2000. Ben works on a range of topics, from cleanup, damage assessment, and restoration to visualization and spatial analysis. In his spare time, he enjoys hanging out with his 5 and 3 year old kids, which means riding bikes, skiing, and sailing too.

Mark Miller has been with NOAA’s Office of Response and Restoration in the Emergency Response Division for 25 years, starting the year before the Exxon Valdez oil spill. When not wrestling with data from the Deepwater Horizon/BP spill, he supervises the in-house programming staff and is the NOAA Program Manager for the CAMEO software suite used extensively by fire services across the country to respond to chemical release incidents.


Leave a comment

With Eye Toward Restoring Ecosystems, NOAA Releases New Pollution Mapping Tool for Great Lakes

[Editor’s Note: Happy Great Lakes Week! NOAA and our many U.S. and Canadian partners are celebrating and tackling issues for the world’s largest source of liquid freshwater from September 9-12, 2013.]

This is a post by Office of Response and Restoration Physical Scientist Ben Shorr.

A scientific team monitors cleanup progress in an airboat on the Kalamazoo River

Scientists observe cleanup progress for the Kalamazoo River in Michigan, an Area of Concern in the Great Lakes region. (NOAA/Terry Heatlie)

The Great Lakes have been a big part of my life. Growing up in Chicago, I spent many hours as a child sailing big and little boats on Lake Michigan. During college at the University of Wisconsin-Madison, I studied civil and environmental engineering, with a major focus in sailing on the Great Lakes and the small lakes and rivers in between. When I began working at the U.S. Environmental Protection Agency (EPA) in Chicago, I had the opportunity to work on assessment and cleanup of contaminated sediment sites and water quality issues across the Great Lakes. Over the past decade at NOAA, I have also been able to work on the cleanup and restoration of natural resources in the Great Lakes and across the country.

And after working on it for the past year, this week our team announces the creation of the Environmental Response Management Application (ERMA®) for the Great Lakes.

A Tool for Restoration

Great Lakes ERMA is an online mapping tool for coastal pollution cleanup and restoration efforts across the Great Lakes Basin. This tool brings together regional data and information from NOAA and its partners into a single interactive map. Great Lakes ERMA was created to help illustrate and expedite cleanup and restoration of Areas of Concern (areas identified by the U.S. and Canada as polluted and in need of cleanup and restoration). It does this by combining environmental contaminant data from NOAA’s Great Lakes Query Manager database with ecological, recreational, tribal, and commercial information from across the region.

Screen shot of Great Lakes ERMA with contaminant chemistry stations and Areas of Concern.

Great Lakes ERMA, shown above, displays Areas of Concern, areas identified by the U.S. and Canada as polluted and in need of cleanup and restoration, and NOAA Query Manager sediment sampling stations (orange points). This tool can help illustrate progress in restoring the health of the Great Lakes. (NOAA)

NOAA, as part of the Great Lakes Restoration Initiative, collaborated with the EPA, U.S. Coast Guard, and University of New Hampshire to develop Great Lakes ERMA. Out of the Great Lakes Restoration Initiative came a five-year action plan focusing on a handful of essential issues for the region, spanning the cleanup of toxic pollution (where we come in) to the combat of invasive species. In addition to incorporating environmental cleanup and restoration information, we’re working with emergency response colleagues within NOAA, EPA, Coast Guard, and the academic community on how to use ERMA in the Great Lakes to improve planning, communication, and coordination for responses to oil and chemical spills.

The History Behind the Data

A key part of Great Lakes ERMA is its connection to the data in the Query Manager database. In my work developing Great Lakes ERMA over the past year, I’ve had the opportunity to build upon that work done by my NOAA colleagues Jay Field and Todd Goeks (who is based in Chicago, Ill). They established a Great Lakes–wide database with contaminant concentration data and the related impacts on living organisms.

This database, which is the product of close collaboration with the EPA Great Lakes National Program Office, the Army Corps of Engineers, and the Great Lakes states, is the region’s most extensive compilation of environmental contaminant data. Comprised of data from smaller-scale watersheds and studies of individual pollution sites, the Great Lakes Query Manager database now contains over 480 studies with nearly 23,000 stations with contaminant chemistry or toxicity results. By integrating this data into Great Lakes ERMA, accessing it for cleanup and environmental injury assessment and restoration at contaminant sites across the Great Lakes is now even easier.

A Data-rich Future

As we look to the future, our team is excited about the opportunities to leverage NOAA and our partners’ research and analysis in ERMA to highlight and further NOAA’s mission of conserving and managing coastal and marine ecosystems and resources. Our team continues working to build partnerships in the Great Lakes under the Great Lakes Restoration Initiative and on pollution cases and hazardous waste sites that are a focus for NOAA’s Damage Assessment, Remediation, and Restoration Program.

Stay tuned to this blog for more about how we are applying innovative approaches to data management in the Great Lakes and around the country. For now, you can check out Great Lakes ERMA by visiting https://www.erma.unh.edu/greatlakes/erma.html.

Ben Shorr has been a Physical Scientist with the Office of Response and Restoration since he came to Seattle (mostly to ski and sail) in 2000. Ben works on a range of topics, from cleanup, damage assessment, and restoration to visualization and spatial analysis. In his spare time, Ben enjoys hanging out with his 5 and 3 year old kids, which means riding bikes, skiing, and sailing too!

Follow

Get every new post delivered to your Inbox.

Join 467 other followers