NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

From Dynamite to Deconstruction, or How to Remove Ships from Coral Reefs

USS Guardian grounded on coral reef with tug removing fuel and wastewater.

SULU SEA (Jan. 28, 2013) The U.S. Navy contracted Malaysian tug Vos Apollo removes petroleum-based products and human wastewater from the mine countermeasure ship USS Guardian (MCM 5), which ran aground on the Tubbataha Reef in the Sulu Sea on Jan. 17. No fuel has leaked since the grounding and all of the approximately 15,000 gallons on board Guardian was safely transferred to Vos Apollo during two days of controlled de-fueling operations on Jan. 24 and Jan. 25. The grounding and subsequent heavy waves hitting Guardian have caused severe damage, leading the Navy to determine the 23-year old ship is beyond economical repair and is a complete loss. With the deteriorating integrity of the ship, the weight involved, and where it has grounded on the reef, dismantling the ship in sections is the only supportable salvage option. Since Guardian’s grounding, the Navy has been working meticulously to salvage any reusable equipment, retrieve the crew’s personal effects, and remove any potentially harmful materials. The U.S. Navy continues to work in close cooperation with the Philippine Coast Guard and Navy to safely dismantle Guardian from the reef while minimizing environmental effects. (U.S. Navy)

On January 17, 2013, the Navy mine countermeasures ship USS Guardian ran aground on a coral reef in the Philippines. Salvage experts evaluated various options for removing the ship, including towing or pulling it off the reef, but concluded that such efforts would cause even more damage  to the reef and the ship’s hull. Earlier this month, the Navy decided to dismantle the ship and remove it in smaller sections in order to minimize damage to the reef and surrounding marine environment.

The Tubbataha Reef, where the ship grounded in the Sulu Sea, is a marine park and UNESCO World Heritage Site, recognized for its biodiversity, pristine reefs, and protected nesting habitat for marine birds and sea turtles.

The photos of the stranded ship and the concern about the corals in this part of the world reminded me of a story about the old U.S. Coast and Geodetic Survey (USC&GS) vessel Fathomer.  The USC&GS mission was to survey the U.S. coastline and create nautical charts of the coast to help increase maritime safety. Today, this part of NOAA is called the Office of Coast Survey, which produces navigational products, data, and services to keep maritime commerce moving and to protect life and property at sea. (Editor’s note: You can check out their WordPress blog at http://noaacoastsurvey.wordpress.com.)

I came across old photos of the Fathomer when I was working on a project studying the impact of vessel groundings on corals.  That story ended quite differently than the USS Guardian, and shows how environmental protection has become a much bigger concern for salvors.  In the old days, the focus of salvage was strictly to save the ship and cargo, but modern salvors (salvage crews) have a much bigger emphasis on protecting the environment.

On August 15, 1936, the Fathomer dragged anchor in a typhoon and, like the USS Guardian, ended up grounded on a coral reef in the Philippine Islands[1].  At that time, the Philippines were a commonwealth of the United States, and the Fathomer was surveying and charting the islands.

The NOAA ship Fathomer aground on a coral reef in the Philippines after the typhoon of August 15, 1936.

The NOAA ship Fathomer aground on a coral reef in the Philippines after the typhoon of August 15, 1936. (NOAA)

The story of the Fathomer’s grounding and salvage is a good sea story, complete with rum.  All of the crew survived the storm and grounding, but the official history mentions that “Everyone was bruised and suffering from exhaustion and exposure. Two quarts of brandy, stored in the sick bay, were rationed out to all hands, and undoubtedly resulted in no one developing a severe cold or pneumonia.” The entire crew was later commended for their “seamanship, courage and fortitude.”

But what I found most interesting was the salvage efforts.  Buried in the official history are some details that show that coral reef protection was not a concern in 1936.  For example, a pile driver was used to place a “cluster of piles driven on the reef,” and these pilings were “backed by three anchors imbedded in the reef.”  Wire ropes were then used to try to bring the Fathomer upright and haul it off the reef, but those efforts were unsuccessful and ultimately the reef was dynamited and the loose coral was dredged, allowing the Fathomer to be towed to deeper water.

The removal of the USS Guardian is ongoing, but thankfully, it is clear, almost 80 years later, that coral reef protection will be very high on the list of priorities.


[1] The Fathomer worked in the Philippines from 1905-1941. After the 1936 typhoon, Fathomer resumed survey duties in the Philippine Islands. During World War II the ship was used in the defense of the Philippines and was lost in April 1942 when the American and Filipino defenders surrendered the Bataan Peninsula.


5 Comments

Where Are the Pacific Garbage Patches Located?

Microplastics in sand.

Microplastics, small plastics less than 5 millimeters long, are an increasingly common type of marine debris found in the water column (including the “garbage patches”) and on shorelines around the world. Based on research to date, most commonly used plastics do not fully degrade in the ocean and instead break down into smaller and smaller pieces. (NOAA Marine Debris Program)

The Pacific Ocean is massive. It’s the world’s largest and deepest ocean, and if you gathered up all of the Earth’s continents, these land masses would fit into the Pacific basin with a space the size of Africa to spare.

While the Pacific Ocean holds more than half of the planet’s free water, it also unfortunately holds a lot of the planet’s garbage (much of it plastic). But that trash isn’t spread evenly across the Pacific Ocean; a great deal of it ends up suspended in what are commonly referred to as “garbage patches.”

A combination of oceanic and atmospheric forces causes trash, free-floating sea life (for example, algae, plankton, and seaweed), and a variety of other things to collect in concentrations in certain parts of the ocean. In the Pacific Ocean, there are actually a few “Pacific garbage patches” of varying sizes as well as other locations where marine debris is known to accumulate.

The Eastern Pacific Garbage Patch (aka “Great Pacific Garbage Patch”)

In most cases when people talk about the “Great Pacific Garbage Patch,” they are referring to the Eastern Pacific garbage patch. This is located in a constantly moving and changing swirl of water roughly midway between Hawaii and California, in an atmospheric area known as the North Pacific Subtropical High.

NOAA National Weather Service meteorologist Ted Buehner describes the North Pacific High as involving “a broad area of sinking air resulting in higher atmospheric pressure, drier warmer temperatures and generally fair weather (as a result of the sinking air).”

This high pressure area remains in a semi-permanent state, affecting the movement of the ocean below. “Winds with high pressure tend to be light(er) and blow clockwise in the northern hemisphere out over the open ocean,” according to Buehner.

As a result, plastic and other debris floating at sea tend to get swept into the calm inner area of the North Pacific High, where the debris becomes trapped by oceanic and atmospheric forces and builds up at higher concentrations than surrounding waters. Over time, this has earned the area the nickname “garbage patch”—although the exact content, size, and location of the associated marine debris accumulations are still difficult to pin down.

Map of ocean currents, features, and areas of marine debris accumulation (including "garbage patches") in the Pacific Ocean.

This map is an oversimplification of ocean currents, features, and areas of marine debris accumulation (including “garbage patches”) in the Pacific Ocean. There are numerous factors that affect the location, size, and strength of all of these features throughout the year, including seasonality and El Nino/La Nina. (NOAA Marine Debris Program)

The Western Pacific Garbage Patch

On the opposite side of the Pacific Ocean, there is another so-called “garbage patch,” or area of marine debris buildup, off the southeast coast of Japan. This is the lesser known and studied, Western Pacific garbage patch. Southeast of the Kuroshio Extension (ocean current), researchers believe that this garbage patch is a small “recirculation gyre,” an area of clockwise-rotating water, much like an ocean eddy (Howell et al., 2012).

North Pacific Subtropical Convergence Zone

While not called a “garbage patch,” the North Pacific Subtropical Convergence Zone is another place in the Pacific Ocean where researchers have documented concentrations of marine debris. A combination of oceanic and atmospheric forces create this convergence zone, which is positioned north of the Hawaiian Islands but moves seasonally and dips even farther south toward Hawaii during El Niño years (Morishige et al., 2007, Pichel et al., 2007). The North Pacific Convergence Zone is an area where many open-water marine species live, feed, or migrate and where debris has been known to accumulate (Young et al. 2009). Hawaii’s islands and atolls end up catching a notable amount of marine debris as a result of this zone dipping southward closer to the archipelago (Donohue et al. 2001, Pichel et al., 2007).

But the Pacific Ocean isn’t the only ocean with marine debris troubles. Trash from humans is found in every ocean, from the Arctic (Bergmann and Klages, 2012) to the Antarctic (Eriksson et al., 2013), and similar oceanic processes form high-concentration areas where debris gathers in the Atlantic Ocean and elsewhere.

You can help keep trash from becoming marine debris by (of course) reducing, reusing, and recycling; by downloading the NOAA Marine Debris Tracker app for your smartphone; and by learning more at http://marinedebris.noaa.gov.

Carey Morishige, Pacific Islands regional coordinator for the NOAA Marine Debris Program, also contributed to this post.

Literature Cited

Bergmann, M. and M. Klages. 2012. Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Marine Pollution Bulletin, 64: 2734-2741.

Donohue, M.J., R.C. Boland, C.M. Sramek, and G.A Antonelis. 2001. Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems. Marine Pollution Bulletin, 42 (12): 1301-1312.

Eriksson, C., H. Burton, S. Fitch, M. Schulz, and J. van den Hoff. 2013. Daily accumulation rates of marine debris on sub-Antarctic island beaches. Marine Pollution Bulletin, 66: 199-208.

Howell, E., S. Bograd, C. Morishige, M. Seki, and J. Polovina. 2012. On North Pacific circulation and associated marine debris concentration. Marine Pollution Bulletin, 65: 16-22.

Morishige, C., M. Donohue, E. Flint, C. Swenson, and C. Woolaway. 2007. Factors affecting marine debris deposition at French Frigate Shoals, Northwestern Hawaiian Islands Marine National Monument, 1990-2002. Marine Pollution Bulletin, 54: 1162-1169.

Pichel, W.G., J.H. Churnside, T.S. Veenstra, D.G. Foley, K.S. Friedman, R.E. Brainard, J.B. Nicoll, Q. Zheng and P. Clement-Colon. 2007. Marine debris collects within the North Pacific Subtropical Convergence Zone [PDF]. Marine Pollution Bulletin, 54: 1207-1211.

Young L. C., C. Vanderlip, D. C. Duffy, V. Afanasyev, and S. A. Shaffer. 2009. Bringing home the trash: do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses? PLoS ONE 4 (10).

Follow

Get every new post delivered to your Inbox.

Join 398 other followers