NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Science of Oil Spills Training Now Accepting Applications for Fall 2014

Two men standing on a beach with one holding a bin of sand.

These trainings help oil spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions, and also include a field trip to a beach to apply newly learned skills. (NOAA)

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of November 17–21, 2014 in Norfolk, Virginia.

We will accept applications for this class through Friday, October 3, 2014, and we will notify applicants regarding their participation status by Friday, October 17, 2014.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

Additional SOS courses will be held in 2015 in Houston, Texas; Mobile, Alabama; and Seattle, Washington. Course dates will be posted as they are determined.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

OR&R Defines the Issues Surrounding Oil Spill Dispersant Use

Oil floating on water's surface.

Oil on the water’s surface. (NOAA)

I recently had the opportunity to attend an interesting seminar on the use of dispersants in oil spill response. On August 8, 2014, OR&R Emergency Response Division marine biologist, Gary Shigenaka, and Dr. Adrian C. Bejarano, aquatic toxicologist, made presentations to a group of oil spill response professionals as part of the Science of Oil Spills class, offered by OR&R in Seattle last week.

Mr. Shigenaka introduced the subject, giving the students background on the history of dispersant use in response to oil spills, starting with the first use in England at the Torrey Canyon spill. Because the first generation of oil dispersants were harsh and killed off intertidal species, the goal since has been to reduce their inherent toxicity while maintaining effectiveness at moving oil from the surface of the water into the water column. He gave an overview of the most prevalent commercial products, including Corexit 9527 and Corexit 9500, manufactured by Nalco, and Finasol OSR52, a French product.

Aerial view of testing facility with long pool.

The Ohmsett facility is located at Naval Weapons Station Earle, Waterfront. The research and training facility centers around a 2.6 million-gallon saltwater tank. (Bureau of Safety and Environmental Enforcement)

Shigenaka reviewed the U.S. EPA product schedule of dispersants as well as Ohmsett – National Oil Spill Response Research Facility in Leonardo, N.J. Ohmsett is run by the U.S. Department of Interior’s Bureau of Safety and Environmental Enforcement. He showed video clips of oil dispersant tests conducted recently at the facility by the American Petroleum Institute.

The corporate proprietary aspects of the exact formulation of dispersants were described by Shigenaka as one of the reasons for the controversy surrounding the use of dispersants on oil spills.

Dispersant Use in Offshore Spill Response

Dr. Bejarano’s presentation, “Dispersant Use in offshore Oil Spill Response,” started with a list of advantages of dispersant use such as reduced oil exposure to workers; reduced impacts on shoreline habitats; minimal impacts on wildlife with long life spans; and keeping the oil away from the nearshore area thus avoiding the need for invasive cleanup. She followed with some downside aspects such as increased localized concentration of hydrocarbons; higher toxicity levels in the top 10 meters of the water column; increased risk to less mobile species; and greater exposure to dispersed oil to species nearer to the surface.

Dr. Bejarano is working on a comprehensive publicly-available database that will include source evaluation and EPA data as well as a compilation of data from 160 sources scored on applicability to oil spill response (high, moderate, low and different exposures).

Her presentation concluded with a summary of trade-offs associated with dispersant use:

  • Shifting risk to water column organisms from shoreline, which recover more quickly (weeks or months).
  • Toxicity data are not perfect.
  • Realistic dose and duration are different from lab to field environment.
  • Interpretation of findings must be in the context of particular oil spill considerations.

Dr. Bejarano emphasized the need for balanced consideration in reaching consensus for the best response to a particular spill.

Following the formal presentations, there was a panel discussion with experts from NOAA, EPA, and State of Washington, and the audience had an opportunity to ask questions. Recent research from the NOAA National Marine Fisheries Service/ Montlake Laboratory was presented, focusing on effects of oil and dispersants on larval fish. The adequacy of existing science underlying trade-offs and net environmental benefit was also discussed.

Read our related blog on dispersants, “Help NOAA Study Chemical Dispersants and Oil Spills.”


Leave a comment

A Bird’s Eye View: Looking for Oil Spills from the Sky

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division, with input from David Wesley and Meg Imholt.

View over a pilot's shoulder out of a plane to ocean and islands.

View over the pilot’s shoulder on the first visit to the Chandeleur Islands in the Gulf of Mexico after Hurricane Katrina to see how much the shoreline had been altered. (NOAA)

During an oil spill, responders need to answer a number of questions in order to protect coastal resources: What happened? Where is the oil going? What will it hit? How will it cause harm?

Not all of these questions can be answered adequately from the ground or even from a boat. Often, experts take to the skies to answer these questions.

Aerial overflights are surveys from airplanes or helicopters which help responders find oil slicks as they move and break up across a potentially wide expanse of water. Our oceanographers make predictions about where a spill might go, but each spill presents a unique combination of weather conditions, ocean currents, and even oil chemistry that adds uncertainty due to natural variability. Overflights give snapshots of where the oil is located and how it is behaving at a specific date and time, which we use to compare to our oceanographic models. By visually confirming an oil slick’s location, we can provide even more accurate forecasts of where the oil is expected to go, which is a key component of response operations.

Trained aerial overflight experts serve as the “eyes” for the command post of spill responders. They report critical information like location, size, shape, color, and orientation of an oil slick. They can also make wildlife observations, monitor cleanup operations, and spot oceanographic features like convergence zones and eddies, which impact where oil might go. All of these details help inform decisions for appropriate cleanup strategies.

Easier Said Than Done

Finding and identifying oil from the air is tricky. Oil slicks move, which can make them hard to pin down. In addition, they may be difficult to classify from visual observation because different oils vary in appearance, and oil slick appearance is affected by weather conditions and how long the oil has been out on the water.

False positives add even another challenge. When viewed from the air, algal blooms, boat wakes, seagrass, and many other things can look like oil. Important clues, such as if heavy pollen or algal blooms are common in the area, help aerial observers make the determination between false positives and the real deal. If the determination cannot be made from air, however, it is worth investigating further.

During an overflight, it takes concentration to capture the right information. Many things can distract the observer from the main mission of spotting oil, including taking notes in a notebook, technology, and other people. Even an item meant to help, such as a camera or GPS, can lose value if more time is spent fiddling with it rather than taking observations. The important thing is to look out the window!

Safety is paramount on an overflight. An observer must always pay close attention to the pilot’s instructions for getting on and off the aircraft, and not speak over the pilot if they are talking on the radio. While it’s not a problem to ask, a pilot may not be able to do certain maneuvers an observer requests due to safety concerns.

The Experts—And Becoming One Yourself

The Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R) has overflight specialists ready for quick deployment to do this job. These specialists have extensive training and expertise in aerial overflights.

View of airplane wing, clouds, and water.

Looking out of an observer window on a Coast Guard C-130 airplane during the Hurricane Katrina pollution response. (NOAA)

When I joined OR&R in 2011, I learned from the best before doing real-life observations myself. One of the first things I did was take a Helicopter Emergency Egress course to make sure I could safely exit an aircraft that had made an emergency landing over water. Then I took the Science of Oil Spills course, where I learned more about observing oil from the air. In preparation for my first overflight I also had one-on-one conversations with our trained aerial observers. Since then, I have done aerial observations for oil spills including a sunken vessel in Washington’s Penn Cove, the Post-Tropical Cyclone Sandy pollution response, and the Texas City “Y” oil spill in Galveston Bay.

OR&R provides training opportunities for others who may need to do an overflight during a response. Throughout the year, OR&R offers Science of Oil Spill classes across the country. In March 2014, more than 50 oil spill responders learned about aerial observing, and many other spill response skills, at OR&R’s Science of Oil Spills class at NOAA’s Disaster Response Center in the Gulf of Mexico. For those interested in becoming an overflight specialist themselves, OR&R even offers a one-day, in-person course on the topic throughout the country a few times per year.

OR&R has also created the online module, “Introduction to Observing oil from Helicopters and Planes,” to make training even more accessible. We even have a job aid for aerial observation of oil, a reference booklet conveniently sized to take on an overflight!

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


Leave a comment

Booms, Beams, and Baums: The History Behind the Long Floating Barriers to Oil Spills

Oiled boom on Louisiana beach.

Oiled boom is cleaned so that it can be used to contain oil over and over again. (NOAA)

One of the iconic images of spill preparedness and response is oil boom. You’ve probably seen these long ribbons of orange, yellow, or white material stockpiled on a pier, strung around a leaking vessel, or stretched across a channel to protect sensitive areas threatened by an advancing oil slick. Made of plastic, metal, or other materials, booms are floating, physical barriers to oil, meant to slow the spread of oil and keep it contained.

As we describe on our website, there are three main types of boom:

Hard boom is like a floating piece of plastic that has a cylindrical float at the top and is weighted at the bottom so that it has a “skirt” under the water. If the currents or winds are not too strong, booms can also be used to make the oil go in a different direction (this is called “deflection booming”).

Sorbent boom looks like a long sausage made out of a material that absorbs oil. If you were to take the inside of a disposable diaper out and roll it into strips, it would act much like a sorbent boom. Sorbent booms don’t have the “skirt” that hard booms have, so they can’t contain oil for very long.

Fire boom is not used very much. It looks like metal plates with a floating metal cylinder at the top and thin metal plates that make the “skirt” in the water. This type of boom is made to contain oil long enough that it can be lit on fire and burned up.

But why is it called “boom”? Does it make a sound? Every industry has jargon, and the spill response community, at the intersection of the maritime and oil industry, has more than its fair share. There are whole dictionaries devoted to maritime terms, and others devoted to the oil industry. (Remember “top kill” and “junk shot”—industry terms used to describe attempts to stop the flow of oil from a damaged wellhead?) But when I looked for the origins of the word “boom,” I had to do some digging. I guess boom is such a common term in the response business, nobody thinks much about its derivation. Kind of like asking a chef why spoons are called spoons.

The word “boom” is the Dutch word for tree. German is similar: “baum.” Remember “O Tannenbaum,” a Christmas carol of German origin? From these roots, we get the word “beam” as in a long wooden timber, and of course, a part of a sailboat, the “boom,” that holds the foot of the sail and was traditionally made of wood. Around the Northwest it is pretty common to see a tug boat pulling a big raft of logs to a mill—a log boom.

But what do trees have to do with oil boom? Back to the Dutch. In the Middle Ages, logs were chained together and used as a floating barrier across a waterway to protect a harbor from attack or to force passing ships to stop and pay a toll. During the American Revolution, for example, the Hudson River was boomed with logs to prevent the British from sailing upriver. Similar fortifications were used during the Civil War, and even in World War II to protect U.S. West Coast ports from foreign submarines.

How log booms evolved into oil containment booms is unclear, but we know that every major spill has resulted in a flurry of inventions and improvements, often on the fly as responders adapted available resources to combat the spill. As concern over oil pollution increased over the past century, some of these were patented and form the basis for today’s technologies, but unfortunately there is still no silver bullet; once oil is spilled in the sea, it is a challenge to control and clean up. Learn more about how responders use boom during oil spills [PDF], including the ways to use boom effectively.


Leave a comment

Science of Oil Spills Training Now Accepting Applications for Summer 2014

Two people looking at forms and a booklet on the beach.

These classes help prepare responders to understand the environmental risks and scientific considerations when addressing oil spills. (California Office of Spill Prevention and Response)

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of August 4–8, 2014 in Seattle, Wash.

We will accept applications for this class through Friday, June 13, 2014, and we will notify applicants regarding their participation status by Friday, June 27, 2014. Class will begin on Monday afternoon, August 4, and will conclude at noon on Friday, August 8.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover topics including:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. The class will be limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

Marine Life in Gulf of Mexico Faces Multiple Challenges

Editor’s Note: This is a revised posting by Maggie Broadwater of NOAA’s National Centers for Coastal Ocean Science that has corrected some factual misstatements in the original post.

photo of a bottlenose dolphin calf.

A bottlenose dolphin calf in the Gulf of Mexico. (NOAA)

Animals living in coastal waters can face a number of environmental stressors—both from nature and from humans—which, in turn, may have compounding effects. This may be the case for marine life in the Gulf of Mexico which experiences both oil spills and the presence of toxic algae blooms.

On the Lookout

Marine sentinels, like bottlenose dolphins in the Gulf of Mexico, share this coastal environment with humans and consume food from many of the same sources. As marine sentinels, these marine mammals are similar to the proverbial “canary in the coal mine.” Studying bottlenose dolphins may alert us humans to the presence of chemical pollutants, pathogens, and toxins from algae (simple ocean plants) that may be in Gulf waters.

Texas Gulf waters, for an example, are a haven for a diverse array of harmful algae. Additional environmental threats for this area include oil spills, stormwater and agricultural runoff, and industrial pollution.

Recently, we have been learning about the potential effects of oil on bottlenose dolphin populations in the Gulf of Mexico as a result of the Deepwater Horizon oil spill in April 2010. Dolphins with exposure to oil may develop lung disease and adrenal impacts, and be less able to deal with stress.

Certain types of algae produce toxins that can harm fish, mammals, and birds and cause illness in humans. During harmful algal blooms, which occur when colonies of algae “bloom” or grow out of control, the high toxin levels observed often result in illness or death for some marine life, and low-level exposure may compromise their health and increase their susceptibility to other stressors.

However, we know very little about the combined effects from both oil and harmful algal blooms.

A barge loaded with marine fuel oil sits partially submerged in the Houston Ship Channel, March 22, 2014. The bulk carrier Summer Wind, reported a collision between the Summer Wind and a barge, containing 924,000 gallons of fuel oil, towed by the motor vessel Miss Susan. (U.S. Coast Guard)

A barge loaded with marine fuel oil sits partially submerged in the Houston Ship Channel, March 22, 2014. The bulk carrier Summer Wind, reported a collision between the Summer Wind and a barge, containing 924,000 gallons of fuel oil, towed by the motor vessel Miss Susan. (U.S. Coast Guard)

Familiar Waters

Prior to the Galveston Bay oil spill, Texas officials closed Galveston Bay to the harvesting of oysters, clams, and mussels on March 14, 2014 after detecting elevated levels of Dinophysis. These harmful algae can produce toxins that result in diarrhetic shellfish poisoning when people eat contaminated shellfish. Four days later, on March 18, trained volunteers from NOAA’s Phytoplankton Monitoring Network detected Pseudo-nitzschia in Galveston Bay. NOAA Harmful Algal Bloom scientist Steve Morton, Ph.D., confirmed the presence of Pseudo-nitzchia multiseries, a type of algae known as a diatom that produces a potent neurotoxin affecting humans, birds, and marine mammals. NOAA’s Harmful Algal Bloom Analytical Response Team confirmed the toxin was present and notified Texas officials.

When Oil and Algae Mix

Studying marine mammal strandings and deaths helps NOAA scientists and coastal managers understand the effects of harmful algal blooms across seasons, years, and geographical regions. We know that acute exposure to algal toxins through diet can cause death in marine mammals, and that even exposures to these toxins that don’t kill the animal may result in serious long-term effects, including chronic epilepsy, heart disease, and reproductive failure.

But in many cases, we are still working to figure out which level of exposure to these toxins makes an animal ill and which leads to death. We also don’t yet know the effects of long-term low-level toxin exposure, exposure to multiple toxins at the same time, or repeated exposure to the same or multiple toxins. Current NOAA research is addressing many of these questions.

A dolphin mortality event may have many contributing factors; harmful algae may only be one piece in the puzzle. Thus, we do not yet know what effects recent Dinophysis and Pseudo-nitzchia blooms may have on the current marine mammal populations living in Texas coastal waters. Coastal managers and researchers are on alert for marine mammal strandings that may be associated with exposure to harmful algae, but the story is unfolding, and is very complex.

Photo of volunteer with a microscope.

Galveston volunteer with NOAA’s Phytoplankton Monitoring Network helps identify toxic algae. (NOAA)

On March 22, 2014, four days after harmful algae were found in Galveston Bay, the M/V Summer Wind collided with oil tank-barge Kirby 27706 in Galveston Bay near Texas City, releasing approximately 168,000 gallons of thick, sticky fuel oil. The Port of Houston was closed until March 27. State and federal agencies are responding via the Unified Command. NOAA is providing scientific support and Natural Resource Damage Assessment personnel are working to identify injured natural resources and restoration needs. Much of the oil has come ashore and survey teams are evaluating the shorelines to make cleanup recommendations.

Time will tell if the harmful algal toxins and oil in Galveston Bay have a major negative effect on the marine mammals, fish, and sea turtles that live in surrounding waters. Fortunately, NOAA scientists with a range of expertise—from dolphins to harmful algae to oil spills—are on the job.

Maggie BroadwaterMaggie Broadwater is a Research Chemist and serves as coordinator for NOAA’s Harmful Algal Bloom Analytical Response Team at the National Centers for Coastal Ocean Science in Charleston, S.C.  Dr. Broadwater earned a Ph.D. in Biochemistry from the Medical University of South Carolina in 2012 and has a M.S. in Biomedical Sciences and a B.S. in Biochemistry.


1 Comment

Looking Back: What Led up to the Exxon Valdez Oil Spill?

Calendar showing March 1989 and image of Exxon Valdez ship.

In an ironic twist of fate, the Exxon Shipping Company’s safety calendar featured the T/V Exxon Valdez in March 1989, the same month the ship ran aground. Image: From the collection of Gary Shigenaka.

The Exxon Valdez oil spill occurred on March 24, 1989. This spill was a turning point for the nation and a major event in the history of NOAA’s Office of Response and Restoration. It also led to major changes in the federal approach to oil spill response and the technical, policy, and legal outcomes continue to reverberate today.

But before this monumental oil spill happened, there were a series of events around the world building up to this moment. Now, 25 years later, join us for a look at the history which set the stage for this spill.

1968

Atlantic Richfield Company and Humble Oil (which would later become Exxon) confirmed the presence of a vast oil field at Prudhoe Bay, Alaska. Plans for a pipeline were proposed but held up by various environmental challenges.

1973

The 1973 oil embargo plunged the nation into a serious energy crisis, and Alaskan oil became a national security issue. On November 16, 1973, President Richard Nixon signed the Trans-Alaska Pipeline Authorization Act, which prohibited any further legal challenges. This pipeline would connect the developing oil fields of Alaska with the port town of Valdez, where oil could be shipped out on tankers through the Gulf of Alaska.

1977

On August 1, 1977, the tanker ARCO Juneau sailed out of Valdez with the first load of North Slope crude oil.

1981

How prepared for oil spills was Valdez? Despite complaints from the State of Alaska, Alyeska Pipeline Service Company, the corporation running the Trans-Alaska Pipeline, decides to disband its full-time oil spill team and reassign those employees to other operations.

1982

The National Contingency Plan (NCP) is updated from the original 1968 version, which provided the first comprehensive system of accident reporting, spill containment, and cleanup in the United States. The 1982 revisions formally codified NOAA’s role as coordinator of scientific activities during oil spill emergencies. NOAA designated nine Scientific Support Coordinators, or SSCs, to coordinate scientific information and provide critical support to the U.S. Coast Guard, and other federal on-scene commanders.

1984

In May 1984, Alaska Department of Environmental Conservation (DEC) field officers in Valdez write a detailed memo warning that pollution abatement equipment has been dismantled and Alyeska, the pipeline company, does not have the ability to handle a big spill. This document will become part of the Congressional investigation of the Exxon Valdez oil spill.

Later in 1984, Alyeska conducts an oil spill response practice drill that federal and state officials deem a failure. In December 1984, DEC staffers in Valdez write another lengthy memo to their administrators detailing shortcomings in Alyeska’s spill response program.

1986

The T/V Exxon Valdez is delivered to Exxon in December of 1986 and makes its maiden voyage to Alaska. When the Exxon Valdez first arrived at the Port of Valdez later that month, the town celebrated its arrival with a party. “We were quite proud of having that tanker named after the city of Valdez,” recalls former Mayor John Devens.

1987

Captain Joseph Hazelwood becomes master of the Exxon Valdez, which then earns Exxon Fleet safety awards for 1987 and 1988.

In June 1987, the Alaska Department of Environmental Conservation approves Alyeska’s contingency plan without holding another drill. The plan details how Alyeska would handle an 8.4 million gallon oil spill in Prince William Sound. Alyeska says:

“It is highly unlikely that a spill of this magnitude would occur. Catastrophic events of this nature are further reduced because the majority of tankers calling on Port Valdez are of American registry and all of these are piloted by licensed masters or pilots.”

1988

The big news in Alaska is the lingering low price of oil. Nearly one in 10 jobs disappears from the Alaska economy. Oil output peaks on the Trans-Alaska Pipeline at 2.1 million barrels of oil a day.

January 1989

In January 1989 the Valdez terminal has a couple major tests of spill response capacity with two small oil spills, which draw attention to cleanup problems and the condition of their tanker fleet. Alyeska vows to increase its response capacity and decides to buy a high-tech, 122-foot-long skimmer, at a cost of $5 million. The skimmer is scheduled for delivery in August 1990. The company also replaces four 21-foot response boats and arranges to purchase thousands of feet of extra boom for delivery later in the year.

March 1989

On March 22, the Exxon Valdez arrives at the Valdez Marine Terminal, Berth 5 and begins discharging ballast (water used for balancing cargo) and loading crude oil. Loading is completed late on March 23 and a little after 9:00 p.m. the tanker leaves Valdez with 53 million gallons of crude, bound for California.

Early on March 24, 1989, a little over three hours after leaving port, the Exxon Valdez strikes Bligh Reef, spilling approximately 10.9 million gallons of oil into Prince William Sound.


Join us on March 24, 2014 at 12:00 p.m. Pacific/3:00 p.m. Eastern as we remember the Exxon Valdez oil spill 25 years later.

Use Twitter to ask questions of NOAA biologist Gary Shigenaka and learn about this spill’s impacts on Alaska’s environment.

Get the details.

Follow

Get every new post delivered to your Inbox.

Join 417 other followers