NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Preventing Chemical Disasters by Improving our Software Tools

On April 17, 2013, in the farming community of West, Texas, the storage and distribution facility of West Fertilizer Company caught fire. As firefighters attempted to douse the flames, tons of ammonium nitrate stored at the facility detonated, resulting in an explosion [warning*] packed with the force of a small earthquake. The blast killed fifteen people, injured more than 300, and damaged or destroyed more than 150 buildings.

Just two months later, on June 13, disaster struck again—this time at one of 12 chemical plants along a 10-mile stretch of the Mississippi River. In the industrial town of Geismar, Louisiana, the Williams Olefins chemical facility exploded and caught fire, killing two workers and injuring at least 75 others. The blast sent a huge fireball and column of smoke into the air. Fueled by the petrochemical propylene, the fire burned for more than three hours. Authorities ordered residents to remain indoors for hours to avoid the billowing smoke.

Getting Information into the Right Hands Before an Emergency

One of the challenges in preventing disasters such as these is to ensure that critical information gets into the planning cycle, and into the hands of the local emergency planning and responder community. To reduce the likelihood of chemical disasters in the United States, Congress has imposed requirements for governments, tribes, and industry.

For example, the Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 was created to help communities plan for emergencies involving hazardous substances. EPCRA requires federal, state, and local governments; Indian tribes; and the chemical industry to plan for hazardous chemical emergencies. It also requires industry to report on the storage, use, and releases of hazardous chemicals to federal, state, and local governments.

NOAA’s CAMEO software suite, jointly developed since 1987 with the U.S. Environmental Protection Agency’s Office of Emergency Management, is a key tool in the implementation of EPCRA. CAMEO is a suite of software tools used to plan for and respond to chemical emergencies. Developed to assist front-line chemical emergency planners and responders, CAMEO can access, store, and evaluate information critical for developing emergency plans, such as locations of hazardous chemical storage and nearby hospitals, schools, and other at-risk population centers.

From the Desk of the President

Chemical plant lit up at night.

Federal agencies are focused on changing the national landscape of chemical facility safety and security in the wake of the 2013 tragedies. (U.S. Occupational Safety and Health Administration)

After the two major chemical disasters of 2013, President Obama signed Executive Order 13650 (EO 13650) to improve the safety and security of chemical facilities and to reduce the risks of hazardous chemicals to workers and communities.

In addition to several other provisions, this executive order established a senior work group from six different departments and agencies, including the EPA, all of whom are responsible for chemical facility safety and security. In a report released June 6, 2014 [PDF], this work group identified specific actions for the agencies to take, and directly called out enhancements to the CAMEO suite to help address chemical facility safety and security.

A Safer Future Is a More Mobile-Friendly One

Because the executive order specifies that the changes in CAMEO be completed by the end of fiscal year 2016, our office and our EPA partner are crafting a two-year plan for CAMEO. Here are a couple of examples of the work we have ahead.

To ensure broad access to critical chemical information for emergency planners and responders, we will be adding new standards—the Department of Homeland Security’s Chemical Facility Anti-Terrorism Standards—to the regulatory section on our chemical datasheets, which already includes information from EPCRA, the Clean Air Act, and other regulations. This addition will help provide a linkage between regulatory programs.

Another recommendation is that chemical facility data reported under EPCRA be easier for emergency responders and planners to access. As a result, we and our partners will review plans for providing online access to this data via mobile applications. Currently, our CAMEO software programs are mostly stand-alone, computer desktop applications.

To expand offline access to emergency response information for people working in the field, we plan to add a mobile app version of our chemical database tool CAMEO Chemicals, which will have all of the program’s data loaded onto an individual’s smartphone. This will be in addition to the desktop, website, and mobile website versions of CAMEO Chemicals already available.

To maximize access to our chemical plume modeling program, ALOHA, we will make an Internet browser-based ALOHA program that is available as both a website and a desktop application. In addition, we will completely redesign the CAMEO data management program, CAMEOfm, which includes creating a supplemental CAMEO mobile application for viewing the EPCRA data from the linked desktop program.

Chemical accidents are infrequent, and through work like this, we hope to keep them—and their impacts—that way.

*The video and audio recording of the explosion linked to here may be disturbing to some audiences.


2 Comments

NOAA Prepares for Bakken Oil Spills as Seattle Dodges Oil Train Explosion

As federal leaders in oil spill response science, NOAA’s Office of Response and Restoration is grateful for each oil spill which does not take place, which was fortunately the case on July 24, 2014 in Seattle, Washington, near our west coast office. A train passing through the city ran off the tracks, derailing three of its 100 tank cars carrying Bakken crude oil from North Dakota to a refinery in the port town of Anacortes, Washington. No oil spilled or ignited in the accident.

However, that was not the case in five high-profile oil train derailments and explosions in the last year, occurring in places such as Casselton, North Dakota, when a train carrying grain derailed into an oil train, causing several oil tank cars to explode in December 2013.

Oil production continues to grow in North America, in large part due to new extraction technologies such as hydraulic fracturing (fracking) opening up massive new oil fields in the Bakken region of North Dakota and Montana. The Bakken region lacks the capacity to transport this increased oil production by the most common methods: pipeline or tanker. Instead, railroads are filling this gap, with the number of tank cars carrying crude oil in the United States rising more than 4,000 percent between 2009 (9,500 carloads) and 2013 (407,761).

Just a day before this derailment, Seattle City Council signed a letter to the U.S. Secretary of Transportation, urging him to issue an emergency stop to shipping Bakken crude oil in older model tank train cars (DOT-111), which are considered less safe for shipping flammable materials. (However, some of the proposed safer tank car models have also been involved in oil train explosions.) According to the Council’s press release, “BNSF Railway reports moving 8-13 oil trains per week through Seattle, all containing 1,000,000 or more gallons of Bakken crude.” The same day as the Council’s letter, the Department of Transportation proposed rules to phase out the older DOT-111 model train cars for carrying flammable materials, including Bakken crude, over a two-year period.

NOAA’s Office of Response and Restoration is examining these changing dynamics in the way oil is moved around the country, and we recently partnered with the University of Washington to research this issue. These changes have implications for how we prepare our scientific toolbox for responding to oil spills, in order to protect responders, the public, and the environment.

The fireball that followed the derailment and explosion of two trains, one carrying Bakken crude oil, on December 30, 2013, outside Casselton, N.D.

The fireball that followed the derailment and explosion of two trains, one carrying Bakken crude oil, on December 30, 2013, outside Casselton, N.D. (U.S. Pipeline and Hazardous Materials Safety Administration)

For example, based on our knowledge of oil chemistry, we make recommendations to responders about potential risks during spill cleanup along coasts and waterways. We need to know whether a particular type of oil, such as Bakken crude, will easily ignite and pose a danger of fire or explosion, and whether chemical components of the oil will dissolve into the water, potentially damaging sensitive fish populations.

Our office responded to a spill of Bakken crude oil earlier this year on the Mississippi River. On February 22, 2014, the barge E2MS 303 carrying 25,000 barrels of Bakken crude collided with a towboat 154 miles north of the river’s mouth. A tank of oil broke open, spilling approximately 31,500 gallons (750 barrels) of its contents into this busy waterway, closing it down for several days. NOAA provided scientific support to the response, for example, by having our modeling team estimate the projected path of the spilled oil.

Barge leaking oil on a river.

Barge E2MS 303 leaking 750 barrels of Bakken crude oil into the lower Mississippi River on February 22, 2014. (U.S. Coast Guard)

We also worked with our partners at Louisiana State University to analyze samples of the Bakken crude oil. We found the oil to have a low viscosity (flows easily) and to be highly volatile, meaning it readily changes from liquid to gas at moderate temperatures. It also contains a high concentration of the toxic components known as polycyclic aromatic hydrocarbons (PAHs) that easily dissolve into the water column. For more information about NOAA’s involvement in this incident, visit IncidentNews.


Leave a comment

You Say Collision, I Say Allision; Let’s Sort the Whole Thing Out

Despite improved navigation aids, including charts and Global Positioning Systems (GPS), ships still have accidents in our nation’s waterways, and I regularly review notification reports of these accidents from the National Response Center. Sometimes I need to consult the old nautical dictionary I inherited from my grandfather (a lawyer and U.S. Navy captain) to figure out what they mean.

Nautical terms and marine salvage books.

Keeping it all straight. (NOAA)

The U.S. Coast Guard investigates ship accidents, but they use the terms “marine casualty or accident” interchangeably [PDF]. Mariners are required to report any occurrence involving a vessel that results in:

  • Grounding
  • Stranding
  • Foundering
  • Flooding
  • Collision
  • Allision
  • Explosion
  • Fire
  • Reduction or loss of a vessel’s electrical power, propulsion, or steering capabilities
  • Failures or occurrences, regardless of cause, which impair any aspect of a vessel’s operation, components, or cargo
  • Any other circumstance that might affect or impair a vessel’s seaworthiness, efficiency, or fitness for service or route
  • Any incident involving significant harm to the environment

Some of those terms are pretty straightforward, but what is the difference between grounding and stranding? Or foundering and flooding? And my favorite, collision and allision?

Here is my basic understanding of these terms, but I am sure that some of these could fill an admiralty law textbook.

Groundings and strandings are probably the most common types of marine casualties. A grounding is when a ship strikes the seabed, while a stranding is when the ship then remains there for some length of time. Both can damage a vessel and result in oil spills depending on the ocean bottom type (rocky, sandy, muddy?), sea conditions, and severity of the event (is the ship a little scraped or did it break open?).

Flooding means taking on excessive water in one or more of the spaces on a ship (e.g., the engine room), while foundering is basically taking on water to the point where the vessel becomes unstable and begins to sink or capsize. Note that “foundering” is different than “floundering,” which is to struggle or move aimlessly.

And collision and allision … These terms are sometimes used interchangeably, but technically, a collision is when two vessels strike each other, while an allision occurs when a vessel strikes a stationary object, such as a bridge or dock.

Close up of large damaged ship with Coast Guard boat.

A U.S. Coast Guard boat approaches the gash in the side of the M/V Cosco Busan after it allided (rather than collided) with San Francisco’s Bay Bridge on November 7, 2007, releasing 53,000 gallons of bunker oil into San Francisco Bay. (U.S. Coast Guard)

No matter the proper terminology, all of these incidents can result in spills, keeping us pollution responders on our toes because of the potential impacts to coasts, marine life, and habitats such as coral reefs and seagrass beds. But understanding these various nautical terms helps us understand the circumstances we’re dealing with in an emergency and better adapt our science-based recommendations as a result. And as my grandfather used to say, a collision at sea can ruin your entire day …


Leave a comment

University of Washington Partners with NOAA to Research and Prepare for Changes in the Oil and Gas Industry

This is a guest post by the Emerging Risks Workgroup at the University of Washington in Seattle.

LNG Tanker Arctic Lady near shore.

Hydraulic fracturing, or fracking, has opened up natural gas production in the United States, to the point that industry is increasingly looking to export it as liquified natural gas (LNG) via tanker. (Photo: Amanda Graham/Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic License)

From fracking to oil trains, the landscape of oil production and transportation in North America has been undergoing a major transformation in recent years. This transformation has implications for how NOAA’s Office of Response and Restoration prepares its scientific toolbox for dealing with oil spills. Our group of graduate students from the University of Washington partnered with NOAA on a project to identify major trends in the changes to risk in transporting oil and natural gas along U.S. coasts and major rivers.

Scope

To study these risks, we researched the trends that are changing the way in which petroleum is produced and transported in the United States. We also examined three high-profile incidents:

We reviewed the lessons learned from each of these responses and determined whether they also apply to the emerging risks we identified.

Research on Risks: Fracking, LNG, and Oil Trains

The largest catalyst for changes in the petroleum market in the U.S. is the proliferation of hydraulic fracturing, or “fracking,” combined with horizontal drilling. Fracking is a technique which forces fluids under great pressure through production wells to “fracture” rock formations and free greater amounts of crude oil or natural gas. This has drastically changed the amount of petroleum produced, where the petroleum is produced, and where it is transported.

Fracking also comes with its own transportation issues. The large amounts of wastewater from fracking operations are often transported or treated near waterways, increasing the risk for a spill of contaminated wastewater.

Fracking has increased the amount of natural gas production in the U.S., which is transported within North America as a gas through pipelines. However, with the increase in gas production, energy companies are looking to export some of this outside of North America as liquefied natural gas, or LNG. Several projects have been approved to export LNG, and several more are awaiting approval. LNG is currently transported by tanker, and with these new export projects, LNG tanker traffic will increase.

LNG is also being explored as a marine fuel option, which will require LNG bunkering infrastructure to supply the fuel needs of vessels that will run on LNG. Several LNG terminals and bunkering operations are in various stages of planning and development, and the presence of more vessels carrying LNG as a fuel or cargo will need to be addressed in future spill response planning.

Tanker rail cars over a wood bridge.

According to the Association of American Railroads, U.S. railroads shipping crude oil jumped from 9,500 carloads in 2008 to an estimated 400,000 carloads in 2013. (Photo: Roy Luck/Creative Commons Attribution 2.0 Generic License)

Fracking has also led to greater amounts of crude oil produced in the U.S. Much of this new oil is being transported by rail, historically not a typical way to move lots of crude oil. This change in volume and mode of transportation for crude oil also presents risks for accidents. There have been several recent high-profile derailments of oil trains, many including fires or explosions.

The increase in crude oil transportation by rail is in large part a stopgap measure. First, because existing pipeline infrastructure isn’t available in certain parts of the country, including North Dakota and Wyoming, which are now producing crude oil. Second, because new pipelines take time to get approved and then constructed to serve new areas. Pipeline construction has increased significantly since 2008 but not without some issues.

All of this would be further complicated if the national ban on exporting crude oil (rather than refined oil) were lifted, an idea which has some supporters. This could change the amount and type of oil being transported by different modes to different locations, especially ports, and increase the risk of oil spills into nearby waterways.

Additional Risks and Recommendations

Offshore wind development and LNG infrastructure were also identified as potential risks that could further complicate petroleum production and transport in the United States. These developments could increase traffic in certain areas or place additional obstacles (i.e., wind turbines) in the path of vessels carrying petroleum products, potentially increasing the risk of spills. Additionally, the decrease in Arctic sea ice is changing oil exploration opportunities and shipping routes through the Arctic, which could shift the entire petroleum shipping picture in the U.S.

After analyzing these overall trends, we turned to recommendations from previous incidents involving oil exploration and spills. There were 248 recommendations made in the post-incident reports for the Cosco Busan, Deepwater Horizon, and Shell Kulluk. Out of these 248, we identified 29 recommendations that could apply in the context of these new, overall changes in petroleum transportation. These were divided into five major categories: contingency planning, equipment and responder training, industry oversight, funding, and public outreach and education.

Key Findings

Overall, we identified four major findings about petroleum production and transport:

  • Increased and more complex transportation risk.
  • Trends that hinder spill prevention and complicate spill response.
  • Lessons learned from past incidents are still valid for future responses.
  • There are several potential gaps in regulation, funding, planning, and coordination.

If you have any questions about the group, its members, our research, or would like to read any of our scoping documents, memos, or final paper, please visit our website at www.erw.comuv.com. We are happy to answer any questions.

The Emerging Risks Workgroup (ERW) is a group of four graduate students from the University of Washington working with UW faculty advisor Robert Pavia and Incident Operations Coordinator Doug Helton of NOAA’s Office of Response and Restoration. The students in the group are all part of the Environmental Management Certificate at UW’s Program on the Environment. Stacey Crecy is from the School of Marine and Environmental Affairs, and Andrew Cronholm, Barry Hershly, and Marie Novak are from the Evans School of Public Affairs. The Environmental Management Certificate culminates in a two-quarter capstone project that allows the student teams to work on a project for an outside client and then present their findings.

The ERW would like to thank our sponsor NOAA OR&R, and Doug Helton. We would also like to thank our UW faculty advisor, Robert Pavia of the School of Marine and Environmental Affairs, Anne DeMelle of the Program on the Environment, and all of the people that guided our research.

The views expressed in this post reflect those of the authors and do not necessarily reflect the official views of the National Oceanic and Atmospheric Administration (NOAA) or the federal government.


1 Comment

Looking Back: What Led up to the Exxon Valdez Oil Spill?

Calendar showing March 1989 and image of Exxon Valdez ship.

In an ironic twist of fate, the Exxon Shipping Company’s safety calendar featured the T/V Exxon Valdez in March 1989, the same month the ship ran aground. Image: From the collection of Gary Shigenaka.

The Exxon Valdez oil spill occurred on March 24, 1989. This spill was a turning point for the nation and a major event in the history of NOAA’s Office of Response and Restoration. It also led to major changes in the federal approach to oil spill response and the technical, policy, and legal outcomes continue to reverberate today.

But before this monumental oil spill happened, there were a series of events around the world building up to this moment. Now, 25 years later, join us for a look at the history which set the stage for this spill.

1968

Atlantic Richfield Company and Humble Oil (which would later become Exxon) confirmed the presence of a vast oil field at Prudhoe Bay, Alaska. Plans for a pipeline were proposed but held up by various environmental challenges.

1973

The 1973 oil embargo plunged the nation into a serious energy crisis, and Alaskan oil became a national security issue. On November 16, 1973, President Richard Nixon signed the Trans-Alaska Pipeline Authorization Act, which prohibited any further legal challenges. This pipeline would connect the developing oil fields of Alaska with the port town of Valdez, where oil could be shipped out on tankers through the Gulf of Alaska.

1977

On August 1, 1977, the tanker ARCO Juneau sailed out of Valdez with the first load of North Slope crude oil.

1981

How prepared for oil spills was Valdez? Despite complaints from the State of Alaska, Alyeska Pipeline Service Company, the corporation running the Trans-Alaska Pipeline, decides to disband its full-time oil spill team and reassign those employees to other operations.

1982

The National Contingency Plan (NCP) is updated from the original 1968 version, which provided the first comprehensive system of accident reporting, spill containment, and cleanup in the United States. The 1982 revisions formally codified NOAA’s role as coordinator of scientific activities during oil spill emergencies. NOAA designated nine Scientific Support Coordinators, or SSCs, to coordinate scientific information and provide critical support to the U.S. Coast Guard, and other federal on-scene commanders.

1984

In May 1984, Alaska Department of Environmental Conservation (DEC) field officers in Valdez write a detailed memo warning that pollution abatement equipment has been dismantled and Alyeska, the pipeline company, does not have the ability to handle a big spill. This document will become part of the Congressional investigation of the Exxon Valdez oil spill.

Later in 1984, Alyeska conducts an oil spill response practice drill that federal and state officials deem a failure. In December 1984, DEC staffers in Valdez write another lengthy memo to their administrators detailing shortcomings in Alyeska’s spill response program.

1986

The T/V Exxon Valdez is delivered to Exxon in December of 1986 and makes its maiden voyage to Alaska. When the Exxon Valdez first arrived at the Port of Valdez later that month, the town celebrated its arrival with a party. “We were quite proud of having that tanker named after the city of Valdez,” recalls former Mayor John Devens.

1987

Captain Joseph Hazelwood becomes master of the Exxon Valdez, which then earns Exxon Fleet safety awards for 1987 and 1988.

In June 1987, the Alaska Department of Environmental Conservation approves Alyeska’s contingency plan without holding another drill. The plan details how Alyeska would handle an 8.4 million gallon oil spill in Prince William Sound. Alyeska says:

“It is highly unlikely that a spill of this magnitude would occur. Catastrophic events of this nature are further reduced because the majority of tankers calling on Port Valdez are of American registry and all of these are piloted by licensed masters or pilots.”

1988

The big news in Alaska is the lingering low price of oil. Nearly one in 10 jobs disappears from the Alaska economy. Oil output peaks on the Trans-Alaska Pipeline at 2.1 million barrels of oil a day.

January 1989

In January 1989 the Valdez terminal has a couple major tests of spill response capacity with two small oil spills, which draw attention to cleanup problems and the condition of their tanker fleet. Alyeska vows to increase its response capacity and decides to buy a high-tech, 122-foot-long skimmer, at a cost of $5 million. The skimmer is scheduled for delivery in August 1990. The company also replaces four 21-foot response boats and arranges to purchase thousands of feet of extra boom for delivery later in the year.

March 1989

On March 22, the Exxon Valdez arrives at the Valdez Marine Terminal, Berth 5 and begins discharging ballast (water used for balancing cargo) and loading crude oil. Loading is completed late on March 23 and a little after 9:00 p.m. the tanker leaves Valdez with 53 million gallons of crude, bound for California.

Early on March 24, 1989, a little over three hours after leaving port, the Exxon Valdez strikes Bligh Reef, spilling approximately 10.9 million gallons of oil into Prince William Sound.


Join us on March 24, 2014 at 12:00 p.m. Pacific/3:00 p.m. Eastern as we remember the Exxon Valdez oil spill 25 years later.

Use Twitter to ask questions of NOAA biologist Gary Shigenaka and learn about this spill’s impacts on Alaska’s environment.

Get the details.


2 Comments

As New Risks Emerge in Producing and Transporting Oil, University of Washington Helps NOAA Plan for Spills

This is a guest post by the Emerging Risks Workgroup at the University of Washington in Seattle.

Trucks and heavy machinery used to drill for natural gas parked in dirt.

A hydraulic fracturing operation at a Marcellus Shale natural gas well in Pennsylvania. (U.S. Geological Survey)

From fracking to oil trains, the landscape of oil production and transportation in North America has been undergoing a major transformation in recent years. This transformation has implications for how NOAA’s Office of Response and Restoration prepares its scientific toolbox for dealing with oil spills. Our group of graduate students from the University of Washington is trying to provide NOAA with a picture of new or emerging risks that oil spill response plans need to adapt to.

To do this, we first have to look at what is causing the risks of transporting oil and gas products to change over time. We then compare those changes to changes that have already been accounted for by spill response planning. Once these “emerging” risks are accounted for, we can list in detail those areas that are going to be areas of concern for NOAA in the future.

Fracking

The main drivers of change for spill risks are the changes in the production of crude oil and natural gas. By far, the largest change in the market is the proliferation of hydraulic fracturing or “fracking,” which involves forcing fluids under great pressure through production wells to “fracture” rock formations to allow more crude oil or natural gas to be released. This controversial drilling technique has seen rapid and abundant growth in North America.

Fracking and other new technologies have resulted in a change in the types of petroleum products being transported in the U.S. It has changed where the products are originating, the quantities involved, and the methods of transportation.

LNG

Liquefied Natural Gas (LNG) is natural gas that has been cooled to -260° Fahrenheit and liquefied for ease of transport. Its production has substantially increased in recent years. This is a result of the lower prices for natural gas that are caused by the immense supply, which is in turn due to increased production from fracking. Because there is so much LNG available at lower prices, two major changes in natural gas transportation have occurred.

First, due to the immense volume of available LNG (and the lack of export bans), the U.S. has started to export more LNG than in the past. The biggest recent change in LNG transport is the more widespread adoption of the LNG tanker. These tankers are just what the name implies: tanker ships storing large quantities of refrigerated LNG. These massive LNG tankers create a myriad of new challenges due to the nature of LNG (it is highly flammable) and the locations of shipping ports, which need to be large enough and properly equipped to load them.

Second, LNG is gaining popularity as a fuel for ships. Many of the new ships shipping companies are purchasing are built to run on LNG as well as traditional bunker fuel. Additionally, a number of existing ships are being retrofitted to run on LNG in certain conditions. As a result, fueling stations at the ports that service these large ships have to add a new fuel type that must be transported to the port and stored before fueling ships. This also further complicates port safety by adding more fueling processes that must be supported at in-port fueling stations.

Oil by Rail

Oil tank cars with railroad tracks.

According to the Association of American Railroads, in 2008 U.S. railroads moved 9,500 train cars of crude oil, while in 2012, U.S. trains moved nearly 234,000 carloads of oil. (U.S. Pipeline and Hazardous Materials Safety Administration)

Fracking, as well as the advances in producing oil from oil sands, has changed where crude oil is being produced. Because pipelines require more permits and are slower and more expensive to build, maintain, and operate than rail, there has been a large increase in transporting oil via rail cars. These “rolling pipelines” are a convenient use of existing transportation infrastructure but cause significant changes in the risks of transporting crude oil in the U.S.

Many of these rail lines, at times, run adjacent to navigable waterways and end at a port for export, which means spills from derailments may sometimes release crude oil into waterways. We have already seen an increase in train derailments and resulting oil spills in recent weeks. This new risk is likely to grow, as the amount of oil transported by rail continues to grow each year.

Project Details and Timeline

We will be finishing our research and writing our report in the coming weeks. We plan on presenting our findings to NOAA’s Office of Response and Restoration in mid-March and will also be presenting at a symposium for the University of Washington’s Program on the Environment.

If you have any questions about the ERW, its members, our research, or would like to read any of our scoping documents, memos, or (eventually) the final paper, please visit our website at www.erw.comuv.com.

The Emerging Risks Workgroup (ERW) is a group of four graduate students from the University of Washington that are working with faculty advisor Robert Pavia and Doug Helton, the Incident Operations Coordinator for NOAA’s Office of Response and Restoration. The students in the group are all part of the Environmental Management Certificate Program at UW’s Program on the Environment. Stacey Crecy is from the School of Marine and Environmental Affairs and Andrew Cronholm, Barry Hershly, and Marie Novak are all from the Evans School of Public Affairs.

The views expressed in this post reflect those of the authors and do not necessarily reflect the official views of the National Oceanic and Atmospheric Administration (NOAA) or the federal government.


Leave a comment

As North American Oil Production Explodes, So Do Oil Trains

National Transportation Safety Board officials at the scene of the Casselton, N.D., train derailment and explosion on January 1, 2014 in below-zero temperatures. One of the burned-out trains is in the background.

National Transportation Safety Board officials at the scene of the Casselton, N.D., train derailment and explosion on January 1, 2014 in below-zero temperatures. One of the burned-out trains is in the background. (National Transportation Safety Board)

December 30, 2013 turned out to be an explosive day. On that date, a train hauling grain near Casselton, N.D., derailed into the path of an oncoming crude oil train, resulting in several oil tank cars exploding.

Fortunately, the burning tank cars caused no injuries, but local residents were evacuated as a precaution. The North Dakota accident is one of a number of high-profile rail accidents in North America over the past year, which included the July 2013 accident in Quebec, Canada, that killed 47 people. Earlier this week, on January 8, another train accident occurred, this one in New Brunswick near the Maine border. It resulted in several crude oil and liquefied petroleum gas tank cars catching fire.

The growth in U.S. and Canadian oil production has exceeded pipeline capacity and has resulted in a dramatic increase in oil shipments via rail. According to the Association of American Railroads [PDF], in 2008 U.S. railroads moved “just 9,500 carloads of crude oil. In 2012, they originated nearly 234,000 carloads.”

These recent accidents have also raised concerns about the safety of some of these crude oils being transported. Within days of the North Dakota oil train accident, the U.S. Pipeline and Hazardous Materials Safety Administration issued a warning to emergency responders that “crude oil being transported from the Bakken region may be more flammable than traditional heavy crude oil.” The full safety alert can be found online [PDF].

This rise in transporting oil by rail is one way the growth in the domestic oil industry and changing oil transportation patterns can pose new environmental and safety risks. Unit trains carrying oil are becoming a common sight. (A “unit train” is an entire train carrying the same product to the same destination. A crude oil unit train of 100 tanker cars would carry about 60,000 barrels, or about 2.5 million gallons.) Additional rail terminals have been proposed in Washington state and elsewhere to accommodate growing oil production in the Dakotas and eastern Montana, particularly from the Bakken oil fields.

NOAA and other spill responders are working to understand these emerging risks in order to effectively and safely respond to oil spills. We are currently working with the University of Washington’s Program on the Environment on a project to explore these risks from changes in oil and gas production and transportation. Stay tuned for future blog posts about the progress and findings of this project. UPDATE:

Follow

Get every new post delivered to your Inbox.

Join 451 other followers