NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Little “Bugs” Can Spread Big Pollution Through Contaminated Rivers

This is a post by the NOAA Restoration Center’s Lauren Senkyr.

When we think of natural resources harmed by pesticides, toxic chemicals, and oil spills, most of us probably envision soaring birds or adorable river otters.  Some of us may consider creatures below the water’s surface, like the salmon and other fish that the more charismatic animals eat, and that we like to eat ourselves. But it’s rare that we spend much time imagining what contamination means for the smaller organisms that we don’t see, or can’t see without a microscope.

Mayfly aquatic insect on river bottom.

A mayfly, pictured above, is an important component in the diet of salmon and other fish. (NOAA)

The tiny creatures that live in the “benthos”—the mud, sand, and stones at the bottoms of rivers—are called benthic macroinvertebrates. Sometimes mistakenly called “bugs,” the benthic macroinvertebrate community actually includes a variety of animals like snails, clams, and worms, in addition to insects like mayflies, caddisflies, and midges. They play several important roles in an ecosystem. They help cycle and filter nutrients and they are a major food source for fish and other animals.

Though we don’t see them often, benthic macroinvertebrates play an extremely important role in river ecosystems. In polluted rivers, such as the lower 10 miles of the Willamette River in Portland, Oregon, these creatures serve as food web pathways for legacy contaminants like PCBs and DDT. Because benthic macroinvertebrates live and feed in close contact with contaminated muck, they are prone to accumulation of contaminants in their bodies.  They are, in turn, eaten by predators and it is in this way that contaminants move “up” through the food web to larger, more easily recognizable animals such as sturgeon, mink, and bald eagles.

Some of the ways contaminants can move through the food chain in the Willamette River.

Some of the ways contaminants can move through the food chain in the Willamette River. (Portland Harbor Trustee Council)

The image above depicts some of the pathways that contaminants follow as they move up through the food web in Oregon’s Portland Harbor. Benthic macroinvertebrates are at the bottom of the food web. They are eaten by larger animals, like salmon, sturgeon, and bass. Those fish are then eaten by birds (like osprey and eagle), mammals (like mink), and people.

An illustration showing how concentrations of the pesticide DDT biomagnify 10 million times as they move up the food chain from macroinvertebrates to fish to birds of prey.

An illustration showing how concentrations of the pesticide DDT biomagnify 10 million times as they move up the food chain from macroinvertebrates to fish to birds of prey. (U.S. Fish and Wildlife Service)

As PCB and DDT contamination makes its way up the food chain through these organisms, it is stored in their fat and biomagnified, meaning that the level of contamination you find in a large organism like an osprey is many times more than what you would find in a single water-dwelling insect. This is because an osprey eats many fish in its lifetime, and each of those fish eats many benthic macroinvertebrates.

Therefore, a relatively small amount of contamination in a single insect accumulates to a large amount of contamination in a bird or mammal that may have never eaten an insect directly.  The graphic to the right was developed by the U.S. Fish and Wildlife Service to illustrate how DDT concentrations biomagnify 10 million times as they move up the food chain.

Benthic macroinvertebrates can be used by people to assess water quality. Certain types of benthic macroinvertebrates cannot tolerate pollution, whereas others are extremely tolerant of it.  For example, if you were to turn over a few stones in a Northwest streambed and find caddisfly nymphs (pictured below encased in tiny pebbles), you would have an indication of good water quality. Caddisflies are very sensitive to poor water quality conditions.

Caddisfly nymphs encased in tiny pebbles on a river bottom.

Caddisfly nymphs encased in tiny pebbles on a river bottom are indicators of high water quality. (NOAA)

Surveys in Portland Harbor have shown that we have a pretty simple and uniform benthic macroinvertebrate population in the area. As you might expect, it is mostly made up of pollution-tolerant species. NOAA Restoration Center staff are leading restoration planning efforts at Portland Harbor and it is our hope that once cleanup and restoration projects are completed, we will see a more diverse assemblage of benthic macroinvertebrates in the Lower Willamette River.

Lauren SenkyrLauren Senkyr is a Habitat Restoration Specialist with NOAA’s Restoration Center.  Based out of Portland, Ore., she works on restoration planning and community outreach for the Portland Harbor Superfund site as well as other habitat restoration efforts throughout the state of Oregon.


Leave a comment

A Pennsylvania Mining Town Moves Beyond Toxic History of Denuded Mountains and Contaminated Creeks

Palmerton, a small town in eastern Pennsylvania’s coal region, had its beginnings largely as a company town. In fact, it was incorporated in 1912 around the area’s growing zinc mining industry, which began in 1898. For many years, the New Jersey Zinc Company was the largest U.S. producer of zinc, which is used to make brass and construction materials. The town actually was named after Stephen Palmer, once head of the company. But this company left more than just a name imprinted on this part of Pennsylvania. It also left a toxic legacy on the people and the landscape.

One of the New Jersey Zinc Company's abandoned factories, located on the west side of the site in Palmerton, Penn.

One of the New Jersey Zinc Company’s abandoned factories, located on the west side of the site in Palmerton, Penn. Credit: Dennis Hendricks/Creative Commons Attribution-NonCommercial 2.0 Generic License.

The backdrop for this industrial town of just under 5,500 people is Blue Mountain, a few miles from the Appalachian Trail, and Aquashicola Creek, which drains into the Lehigh River, used extensively for transporting the region’s coal and a tributary of the Delaware River.

As a result of the industrial activities that took place in Palmerton for more than 80 years, the town was left with an enormous smelting residue pile called the “Cinder Bank.” The Cinder Bank is what is left of the 33 million tons of slag (rocky waste) left by the New Jersey Zinc Company as a byproduct of their mining operations. According to the U.S. Environmental Protection Agency (EPA), this pile extends for 2.5 miles and is over 100 feet high and 500 to 1000 feet wide.

Lehigh River runs between a mountain and ridge with a town in the background.

Palmerton and the former zinc smelters are located near the Lehigh River, which flows through a valley between Blue Mountain (left) and Stony Ridge. (Christine McAndrew/Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic License)

In addition, the smelting operations, a high-heat process that extracts metals from ore, released heavy metals, including cadmium, lead, and zinc, into the air and waters of the surrounding area. These activities killed off vegetation on 2,000 acres of Blue Mountain and allowed contaminants to flow into the Aquashicola Creek and Lehigh River. According to the EPA, children in this area tested over the years showed elevated levels of lead in their blood. Horses, cattle, and fish were also shown to contain contaminants.

Because of a declining market for zinc and increased attention to hazards of environmental contamination, zinc smelting in Palmerton stopped in 1980. The Palmerton site was added to the Superfund National Priorities List on September 8, 1983. Cleanup of the town, Blue Mountain, and the Cinder Bank, overseen by U.S. EPA Region 3, has been going on since 1987. It has included activities such as grading, revegetation, cleaning of residences, cleanup of surface water, and water treatment.

People standing on both sides of a state game lands sign in a field.

In August 2013, the Natural Resource Trustee Council members and guests celebrated the acquisition of more than 300 acres for state game lands and the Cherry Valley National Wildlife Refuge. (NOAA)

NOAA and other federal and state agencies, comprising the natural resource trustee council for this Superfund site, reached a settlement for damages to natural resources in 2009. Over $20 million in cash and property have been paid to compensate the United States and the Commonwealth of Pennsylvania for the natural resource damages to the Aquashicola Creek and Lehigh River watershed. Throughout this process, the Office of Response and Restoration’s Peter Knight and the National Marine Fisheries Services’ John Catena have been providing scientific review and input on the environmental cleanup and restoration plans for this site.

In August of 2013, the Palmerton Natural Resource Trustee Council and its partners announced the acquisition of more than 300 acres for state game lands and the Cherry Valley National Wildlife Refuge, home to the endangered bog turtle, and located just 30 minutes from Palmerton. Other properties designated for restoration include habitats along Aquashicola Creek and its tributaries. Acquiring and protecting these lands and waters are part of the larger restorative effort making up for the loss of both natural areas and their benefits due to Palmerton’s mining activities.

After many years of collaboration by a number of organizations and individuals, today the Lehigh River is popular with rafters and Blue Mountain is home to a lush 750 acre nature preserve and a 12 lift ski resort. According to its Chamber of Commerce, Palmerton is again a growing town and making incredible progress in moving beyond the once-tainted shadow of its history.

Agencies represented by the Palmerton Natural Resource Trustee Council include the U.S. Fish and Wildlife Service, National Park Service, National Oceanic and Atmospheric Administration (NOAA), Pennsylvania Game Commission, Pennsylvania Fish and Boat Commission, Pennsylvania Department of Environmental Protection, and the Pennsylvania Department of Conservation and Natural Resources. The Office of Response and Restoration represents NOAA on this council.


Leave a comment

Mapping the Problem After Owners Abandon Ship

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division.

One of the largest vessel removal efforts in Washington history was a former Navy Liberty Ship, the Davy Crockett. In 2011 the Davy Crockett, previously abandoned by its owner on the Washington shore of the Columbia River, began leaking oil and sinking due to improper and unpermitted salvage operations. Its cleanup and removal cost $22 million dollars, and the owner was fined $405,000 by the Washington Department of Ecology and sentenced to four months in jail by the U.S. Attorney, Western District of Washington.

As I’ve mentioned before, derelict and abandoned vessels like the Davy Crockett are a nationwide problem that is expensive to deal with properly and, if the vessels are left to deteriorate, can cause significant environmental impacts. Unfortunately Washington’s Puget Sound is no exception to this issue.

Agency Collaboration

I’m part of the Derelict Vessel Task Force led by U.S. Coast Guard Sector Puget Sound. Made up of federal, state, and local agencies, this task force aims to identify and remove imminent pollution and hazard-to-navigation threats from derelict vessels and barges within Puget Sound. Among these agencies there are different jurisdictions and enforcement mechanisms related to derelict vessels.

A key player is Washington’s Department of Natural Resources (WA DNR), which manages the state Derelict Vessel Removal Program (DVRP). The DVRP has limited funding for removal of priority vessels. Unfortunately, according to WA DNR [PDF], with the growing number and size of problem vessels, program funding can’t keep up with the rising removal and disposal costs. The backlog of vessels in need of removal continues to grow.

Keeping Track

I’m working with the NOAA Office of Response and Restoration’s Spatial Data Branch to enter this list of derelict vessels into ERMA®. ERMA is a NOAA online mapping tool that integrates both static and real-time data to support environmental planning and response operations. Right now the vessels are primarily tracked in the WA DNR DVRP database. By pulling this data into ERMA, the task force will not only be able to see the vessels displayed on a map but also make use of the various layers of environmental sensitivity data already within ERMA. The hope is that this can help with the prioritizing process and possibly eventually be used as a tool to raise awareness.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington's Puget Sound as well as the colors indicating the shoreline's characteristics and vulnerability to oil.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington’s Puget Sound as well as the colors indicating the shoreline’s characteristics and vulnerability to oil. (NOAA)

However, there aren’t enough resources within the Derelict Vessel Task Force to gather and continue to track (as the vessels can move) all the data needed in order to map the vessels accurately in ERMA. As a result, the task force is turning to local partners in order to help capture data.

Reaching Out

One such partner is the local Coast Guard Auxiliary Flotillas, a group of dedicated civilians helping the Coast Guard promote safety and security for citizens, ports, and waterways. In order to garner support for data-gathering, I recently attended the USCG Auxiliary Flotilla Seattle-Elliott Bay meeting, along with members of the local Coast Guard Incident Management Division who head the Puget Sound Derelict Vessel Task Force.

I spoke about a few local derelict vessel incidents and their impacts to the environment. I also showed how ERMA can be a powerful tool for displaying and prioritizing this information—if we can get the basic data that’s missing. As a result, this Flotilla will follow up with my Coast Guard colleagues and start collecting missing information on derelict and abandoned vessels on behalf of the Coast Guard and WA DNR.

Gathering data and displaying derelict vessels graphically is a small, but important, step on the way to solving the massive problem of derelict vessels. Once complete I hope that ERMA will be a powerful aid in displaying the issue and helping make decisions regarding derelict vessels in the Puget Sound. Stay tuned.

[Editor's Note: You can see a U.S. Coast Guard video of the start-to-finish process of removing the Davy Crockett from the Columbia River along with the Washington Department of Ecology's photos documenting the response.]

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


1 Comment

PCBs: Why Are Banned Chemicals Still Hurting the Environment Today?

Heavy machinery removes soil and rocks in a polluted stream.

PCB contamination is high in the Housatonic River and New Bedford Harbor in Massachusetts. How high? The “highest concentrations of PCBs ever documented in a marine environment.” (U.S. Fish and Wildlife Service)

For the United States, the 20th century was an exciting time of innovation in industry and advances in technology. We were manufacturing items such as cars, refrigerators, and televisions, along with the many oils, dyes, and widgets that went with them. Sometimes, however, technology races ahead of responsibility, and human health and the environment can suffer as a result.

This is certainly the case for the toxic compounds known as polychlorinated biphenyls, or PCBs. From the 1920s until they were banned in 1979, the U.S. produced an estimated 1.5 billion pounds of these industrial chemicals. They were used in a variety of manufacturing processes, particularly for electrical parts, across the country. Wastes containing PCBs were often improperly stored or disposed of or even directly discharged into soils, rivers, wetlands, and the ocean.

Unfortunately, the legacy of PCBs for humans, birds, fish, wildlife, and habitat has been a lasting one. As NOAA’s National Ocean Service notes:

Even with discontinued use, PCBs, or polychlorinated biphenyls, are still present in the environment today because they do not breakdown quickly. The amount of time that it takes chemicals such as PCBs to breakdown naturally depends on their size, structure, and chemical composition. It can take years to remove these chemicals from the environment and that is why they are still present decades after they have been banned.

Sign by Hudson River warning against eating contaminated fish.

According to a NOAA, U.S. Fish and Wildlife Service, and State of New York report on the Hudson River, “Fish not only absorb PCBs directly from the river water but are also exposed through the ingestion of contaminated prey, such as insects, crayfish, and smaller fish…New York State’s “eat none” advisory and the restriction on taking fish for this section of the Upper Hudson has been in place for 36 years.” (NOAA)

PCBs are hazardous even at very low levels. When fish and wildlife are exposed to them, this group of highly toxic compounds can travel up the food chain, eventually accumulating in their tissues, becoming a threat to human health if eaten. What happens after animals are exposed to PCBs? According to a NOAA, U.S. Fish and Wildlife Service, and State of New York report [PDF], PCBs are known to cause:

  • Cancer
  • Birth defects
  • Reproductive dysfunction
  • Growth impairment
  • Behavioral changes
  • Hormonal imbalances
  • Damage to the developing brain
  • Increased susceptibility to disease

Because of these impacts, NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) works on a number of damage assessment cases to restore the environmental injuries of PCBs. Some notable examples include:

Yet the list could go on—fish and birds off the southern California coast, fish and waterfowl in Wisconsin’s Sheboygan River, a harbor in Massachusetts with the “highest concentrations of PCBs ever documented in a marine environment.”

These and other chemical pollutants remain a challenge but also a lesson for taking care of the resources we have now. While PCBs will continue to be a threat to human and environmental health, NOAA and our partners are working hard to restore the damage done and protect people and nature from future impacts.


Leave a comment

NOAA, U.S. Fish and Wildlife Service Correct GE’s Misinformation in Latest Hudson River Pollution Report

A manufacturing facility on the banks of a dammed river.

General Electric plant on the Hudson River in New York. (Hudson River Natural Resource Trustees)

The Federal Hudson River Natural Resource Trustees sent a letter to General Electric (GE) today, addressing misinformation and correcting the public record in regard to the recently released Hudson River Project Report, submitted by GE to the New York Office of the State Comptroller. Trustees are engaged in a natural resource damage assessment and restoration (NRDAR) of the Hudson River, which is extensively contaminated with polychlorinated biphenyls (PCBs) released by GE.

“We take our responsibility to keep the public informed throughout the damage assessment process seriously,” said Wendi Weber, Northeast Regional Director of the U.S. Fish and Wildlife Service, one of the Trustees engaged in the NRDAR process. “An informed public is key to the conservation and restoration of our treasured natural resources.”

“The extensive PCB contamination of the Hudson River by General Electric has clearly injured natural resources and the services those resources provide to the people of New York State,” said Robert Haddad, Assessment and Restoration Division Chief of NOAA’s Office of Response and Restoration, a Federal Trustee in the Hudson River NRDAR process.

The Federal Trustees affirm these five facts in the letter [PDF]:

(1) Trustees have documented injuries to natural resources that the Report does not acknowledge.

Trustees have published injury determination reports for three categories of the Hudson River’s natural resources that GE does not mention in the report. Trustees anticipate that GE will be liable for the restoration of these injured natural resources.

  • Fishery injury: For more than 30 years, PCB levels in fish throughout the 200 mile Hudson River Superfund Site have exceeded the Food and Drug Administration’s (FDA) limit for PCBs in fish. Fish consumption advisories for PCB-contaminated fish have existed since 1975.
  • Waterfowl injury: In the upper Hudson River, over 90 percent of the mallard ducks tested had PCB levels higher than the FDA limit for PCBs in poultry. The bodies of mallard ducks in the Upper Hudson River have PCB levels approximately 100 times greater than those from a reference area.
  • Surface and ground water injury: Both surface water in the Hudson River itself and groundwater in the Towns of Fort Edward, Hudson Falls and Stillwater have PCB contamination in excess of New York’s water quality criteria. PCBs levels higher than these standards count as injuries. Additionally, the injuries to surface water have resulted in a loss of navigational services on the Hudson River.

(2) GE has been advised that additional dredging would reduce their NRD liability.

Federal trustees have urged GE to remove additional contaminated sediments to lessen the injuries caused by GE’s PCB contamination. Federal trustees publicly released maps showing hot spots that could be targeted for sediment removal over and above that called for in the U.S. Environmental Protection Agency remedy, and calculated the acreage to be dredged based on specific surface cleanup triggers. Information on these recommendations is publicly and explicitly available. Therefore, GE’s statement that they have “no basis to guess how much additional dredging the trustee agencies might want, in which locations, and applying which engineering or other performance standards” is incorrect.

(3) GE’s very large discharges of PCBs prior to 1975 were not authorized by any permit.

Two GE manufacturing facilities began discharging PCBs into the river in the late 1940s, resulting in extensive contamination of the Hudson River environment. In its report, GE states that “GE held the proper government permits to discharge PCBs to the river at all times required,” suggesting that all of GE’s PCB releases were made pursuant to a permit.

The implication that all of GE’s PCB releases were permitted is inaccurate. In fact, the company had no permit to discharge PCBs between 1947 and the mid-1970s, and thus GE discharged and released massive, unpermitted amounts of PCBs to the Hudson River from point sources (engineered wastewater outfalls) and non-point sources (soil and groundwater) at the Fort Edward and Hudson Falls facilities. After GE obtained discharge permits in the mid-1970s, the company at times released PCBs directly to the River in violation of the permits that it did hold. Not all of GE’s releases were permitted, and regardless, GE is not absolved of natural resource damage liability for their PCB releases.

(4) GE’s characterization of inconclusive studies on belted kingfisher and spotted sandpiper is misleading.

Trustees hold the scientific process in high regard. In its report, GE inaccurately states that studies on spotted sandpiper and belted kingfisher demonstrate no harm to those species from exposure to PCBs. In truth, those studies were simply unable to show an association between PCBs and impacts to these species. Both studies make a point of stating that the lack of association may have resulted from the sample size being too small. The studies are therefore inconclusive.

(5) The Trustees value public input and seek to ensure the public is informed and engaged.

The Trustees are stewards of the public’s natural resources and place high value in engaging with the public. GE incorrectly implies in the report that the Trustees have been secretive with respect to their NRDAR assessment. The Trustees strive to keep the public informed of progress by presenting at Hudson River Community Advisory Group meetings and at events organized by scientific, educational, and nonprofit organizations, as well as releasing documents for public review and providing information through web sites and a list serve.

To access the letter to GE and for more information, visit the Hudson River NRDAR Trustee websites:

www.fws.gov/contaminants/restorationplans/hudsonriver/index.html

www.darrp.noaa.gov/northeast/hudson/index.html

www.dec.ny.gov/lands/25609.html

The Hudson River Natural Resource Trustees agencies are the U.S. Department of Commerce (DOC), the U.S. Department of the Interior (DOI) and the state of New York. These entities have each designated representatives that possess the technical knowledge and authority to perform Natural Resource Damage Assessments. For the Hudson River, the designees are the National Oceanic and Atmospheric Administration (NOAA), which represents DOC; the U.S. Fish and Wildlife Service (FWS), which represents DOI bureaus (FWS and the National Park Service) and the New York State Department of Environmental Conservation, which represents the State of New York.


Leave a comment

A Delaware Salt Marsh Finds its way to Restoration by Channeling Success

This is a post by Simeon Hahn, Regional Resource Coordinator for the Office of Response and Restoration’s Assessment and Restoration Division.

You can find the Indian River Power Plant situated along the shores of Indian River Bay in southern Delaware. This shallow body of water is protected from the Atlantic Ocean by a narrow spit of land to the east and is downriver of the town of Millsboro to the west.

In December 1999, the power plant’s owner at the time, Delmarva Power and Light, discovered a leak in an underground fuel line that over a decade had released approximately 500,000 gallons of oil.  The fuel oil had leaked into the soil and groundwater beneath the plant. When the edge of the underground oil plume reached Indian River Bay, oil seeping from the shoreline impacted the fringe of salt marsh growing along the beach, as well as the shallow-water area a short distance offshore.

In the cleanup that followed, about 1,000 tons of oily sediment were excavated from these marshes and replaced with a similar sand quarried from nearby. As part of the restoration, Delmarva replanted the area with hundreds of seedlings of smooth cordgrass (Spartina alterniflora) and other native plants common to the shores of Delaware’s inland bays. But further restoration was needed to compensate for the environmental services lost during the period when the marshes were oiled.

When I took on this case in 2007 as a NOAA coordinator  for the subsequent Natural Resource Damage Assessment, Slough’s Gut Marsh had already been selected as the site of an additional restoration project on Indian River Bay. Slough’s Gut Marsh, east of the James Farm Ecological Preserve near Ocean View, Del., is located on land owned by Sussex County and managed by the Delaware Center for the Inland Bays. The area was described to me as 24 acres of eroded and degraded salt marsh. After a lot of hard work, some innovative thinking, and five years of monitoring the results, I’m pleased to report that Slough’s Gut Marsh has been successfully restored.

What Does it Take to Fix a Marsh?

Previously, however, Slough’s Gut was on the decline, with many of the plants growing in its salty waters either stunted or dying off. The overriding goal, as with many marsh restoration projects, was to reverse this trend and increase the vegetative cover. But does just revegetating a marsh really restore it? On the other hand, some folks, including a few at NOAA, asked whether Slough’s Gut should even be considered for “restoration” since it was already functionally a marsh and … wasn’t the ecosystem working OK? The answer on both accounts was: We were about to find out.

Although the cause of the marsh plant die-offs was not entirely clear, we suspected it had to do with changes to the natural water drainage systems associated with:

  1. Historical mosquito ditching.
  2. Sea level rise.
  3. The gradual sinking of the land.
  4. All of the above.

These suspicions were based on monitoring conducted before Slough’s Gut was ever slated for restoration. It appeared that water would not drain sufficiently off the marsh during the tidal cycle and this was suppressing the vegetation, in a phenomenon known as “waterlogging.”

I became involved as we began scoping the restoration project design. At this point, I suggested that although revegetating the marsh was a reasonable goal, the primary emphasis should be on restoring a more natural network of tidal channels, replacing the old mosquito ditches. Around the 1940s, this salt marsh had been dug up and filled in, creating a series of parallel ditches connecting at a straightened main river channel (a now-questionable practice known as “mosquito ditching” because it aimed to reduce mosquito populations). The current configuration of channels that was leading to the loss of vegetation in Slough’s Gut was likely also impacting the fish, crabs, and other aquatic life that would normally use the marsh.

Looking to a similar project on Washington, DC’s Anacostia River, the design team decided on a technique for restoring tidal channels that uses observations from relatively unimpacted marshes. This example helped us answer questions such as:

  • How big should the channels be?
  • What would a natural channel network look like? (e.g., how often would the channels split, how much would they wind)?

Next, Delmarva Power and Light hired the contractor Cardno ENTRIX to develop a restoration design that used the existing channels as much as possible but restored the channel network by creating new channels while plugging and filling others. The Delaware Department of Natural Resources and Environmental Control (DNREC), which has extensive experience working in wetlands, executed the design. Then, we watched and waited.

The End Game

The number of birds observed at Slough's Gut Marsh has doubled since 2008. Here, a heron perches at the site.

The number of birds observed at Slough’s Gut Marsh has doubled since 2008. Here, a heron perches at the site. (Cardno ENTRIX)

Cardno ENTRIX monitored the renovated marsh for five years and collected data on its recovery. This past summer, the natural resource agencies involved (NOAA, the Delaware DNREC, and the U.S. Fish and Wildlife Service) together with Delmarva Power and Light, Cardno ENTRIX, and the Center for Inland Bays (the project hosts) visited Slough’s Gut Marsh to view and discuss its progress.

Based on the past five years of data, the marsh is on a path toward successful restoration. There has been a 50 percent increase in the density of fish, shrimp, and crabs living in Slough’s Gut, compared with levels before we restored the natural tidal channels. With this extra food, the number of birds observed there has doubled since 2008.

Additional environmental sampling showed localized drainage improvements, indicating that the new channel network is stable yet adaptable, as it should be in natural marshes. This feature is particularly beneficial when confronted with issues like sea level rise and hurricanes. Protecting and restoring tidal wetlands is an important effort in adapting to climate change in coastal areas.

This project demonstrates that ecological impacts in tidal marshes from historical ditching and diking can be restored by reconstructing a more natural tidal channel network. But don’t take my word for it. Next time you’re in the area, go see the success at Slough’s Gut yourself and leave time to visit the Center for the Inland Bays to learn more about other great environmental efforts going on in Delaware’s inland bays. The center is easily accessible and the view is tremendous.

The natural resource trustees celebrate the restoration of Slough's Gut Marsh in August 2013. Simeon Hahn is at the far right.

The natural resource trustees celebrate the restoration of Slough’s Gut Marsh in August 2013. Simeon Hahn is at the far right. (Cardno ENTRIX)

Simeon Hahn is an Office of Response and Restoration Regional Resource Coordinator in the Mid-Atlantic Region for the NOAA Damage Assessment, Remediation, and Restoration Program. He is located in EPA Region 3 in Philadelphia, Pa., and works on Superfund and state remedial projects and Natural Resource Damage Assessment cases. He has been an environmental scientist with expertise in ecological risk assessment, site remediation, and habitat restoration at NOAA for 15 years and 10 years before that with the Department of Defense.


5 Comments

In New Jersey, Celebrating a Revived Marsh and the Man who Made it Possible

This is a post by the NOAA Restoration Center’s Carl Alderson.

Ernie Oros speaking next to Woodbridge marsh.

Former State Assemblyman and champion of open space, Ernie Oros at the Woodbridge marsh dedication ceremony on Oct 16, 2007. (New York New Jersey Baykeeper/Greg Remaud)

Ernie Oros, former New Jersey State Assemblyman and octogenarian, stood next to me on the bank of a newly created tributary to the Woodbridge River and looked out across an expanse of restored tidal marsh. It was May 2008 and the marsh that he had long championed was now lush and green and teeming with fish. This inspiring sight before us was the result of a marsh restoration project undertaken by NOAA, the Army Corps of Engineers, New Jersey Department of Environmental Protection, and the Port Authority of New York and New Jersey.

Years ago a tall berm was raised between the Woodbridge River and this marshland, effectively walling it off from the reach of the tides that replenished it. Reeds that grow in damaged marshes choked off the tides even further.

He gave a pause, drew a breath and was on to the next subject before I had finished marveling at the sea of grass standing before us. “When can you get the observation walkway back up?” Ernie asked me. “Soon,” I replied, “we have a plan.” “Good,” he said, “I’m not getting any younger.”

That’s how the conversation went until August 2012 when Ernie passed away at the age of 88. The construction of the tidal marsh itself—with all the complexities of hydrology, chemistry, biology, logistical twists and turns, negotiations, permits, and contract discussions—seemed to go up in a snap. In two years it went from design contract to dedication ceremony. Yet, the observation boardwalks—there were now two—seemed to lag behind in a mire of contract disputes, tight budgets, two hurricanes, and extension after extension of funding agreements.

A Vision to Restore

I never wondered why Ernie was so anxious to move forward; he was after all in his 80s and by his own account in failing health. In his knock-around clothes, he looked like an old clam digger, but in his best suit, like the one he wore the day of the marsh dedication ceremony, he still cut the figure of the State Assemblyman he once was. Ernie had a vision for this place, and he was now on a roll. He had long ago established Woodbridge River Watch, a community organization to advocate for open space in Woodbridge, N.J.; he had guided the town through major acquisition and conservation efforts; he gathered momentum for his butterfly garden; planned to landscape the perimeter with local historic artifacts; and now he could add the marsh restoration to his list of achievements.

Among all of his accomplishments, nothing could be more dramatic than having blown life into this dying marshland. It linked the past and the future to a community that blossomed at the cross roads of the American colonial experience in the 17th century, soared to the peak of industrialization beginning in the 18th and 19th centuries, then boomed and at last came to rest upon the suburbanization movement of the 20th century. For myself, I could live with the simple sweet note of this being an urban habitat: a rebirth for colonial wading birds, ribbed mussels, fiddler crabs, and young juvenile bluefish called “snappers.” But for Ernie, the marsh was the opening hymn to a chorus of American history.

It took me a long time to realize what Ernie was up to. The marsh wasn’t just a host for the history garden; it itself was an artifact. The marsh represented every century that came before the first European settlers arrived. Better than any artifact, the marsh was living history as far as Ernie was concerned.

An interpretative sign displaying the flora and fauna found in Woodbridge Marsh.

An interpretative sign displaying the flora and fauna found in Woodbridge Marsh. (Illustrations: Jorge Cotto. Design: Ann Folli)

The observation boardwalks were the last piece of the plan. Both Ernie and I viewed the future boardwalks and their brightly designed story panels as a means of drawing in the citizens of Woodbridge. Boardwalks send a signal of welcome where a marsh alone often does not. The signs would interpret for them the plants, the animals, the natural processes unfolding in the marsh around them.

That is why Ernie was so anxious to see this vision through to completion. Despite the town’s position on the waterfront of three major bodies of water—the Raritan River, Raritan Bay, and Arthur Kill (a tidal straight separating the township from New York City)—very little of it was accessible to the public. Ernie hoped to change that by inviting people into a renewed Woodbridge Marsh.

A Day to Remember

Greg Remaud is the Deputy Director for the New York/New Jersey Baykeeper. The Baykeeper, a long-time partner of NOAA and advocate for open space in New York Harbor, is a non-profit organization committed to the conservation and restoration of the Hudson-Raritan Estuary. For Remaud, it had become increasingly apparent that the post-industrial age presented opportunities to create New Jersey’s waterfront in a new image.

Greg had met up with Ernie Oros years before. With the help of many others, this pair championed a new way forward for the Woodbridge River. Eventually, they were able to draw the attention of key agencies and help these dreams take the shape of Spartina grasses, High Tide bush, and killifish.

Then, earlier this year, I learned of the Baykeeper’s plan to honor Ernie’s memory with a day-long celebration.

One of the sons and great-grandsons of Ernie Oros canoeing on the banks of the Woodbridge River on Ernie Oros Celebration Day, September 28, 2013.

Ernie’s son Richard Oros and Michael Kohler, Ernie’s great-grandson, canoeing on the banks of the Woodbridge River on Ernie Oros Celebration Day, September 28, 2013. (Carl Alderson/all rights reserved)

On the astonishingly beautiful Saturday morning of September 28, 2013, the NOAA Restoration Center was on hand to be part of a very special event to honor Ernie’s life. To honor his legacy, the New York/New Jersey Baykeeper held a family-friendly event right next to what I consider Ernie’s greatest environmental achievement: the 67-acre Woodbridge River Wetland Restoration Project.

In a day that featured music, games, picnics, and face painting, the most popular event was the free kayak tours with the very capable staff of the Baykeeper, who led citizens through a seeming maze of restored marshes and tidal creeks. Several of Ernie’s family members were present. His sons, granddaughters, and great-grandkids jumped into canoes and kayaks to venture a ride through Ernie’s great achievement.

A Role for NOAA

NOAA’s involvement with the Woodbridge River Wetland Restoration Project began to take shape sometime in the late 1990s. We provided funds from natural resource damage settlements for two local oil spills to conduct feasibility studies, design, and permitting in 2000. Under a partnership of federal and state agencies, the project was designed and constructed between 2006 and 2007. NOAA and New Jersey Department of Environmental Protection provided $2.3 million, combining it with funds from the Army Corps of Engineers Harbor Deepening Program to make the full project come together for the Woodbridge River.

The project removed berms and obstructions that had sealed the former wetland from the Woodbridge River for decades and reunited two large tracts of land with the tides via created tidal creeks and planted marsh grasses. Today, the site is once again the home of wading birds, waterfowl, fiddler crabs, ribbed mussels, and seemingly hundreds of thousands of killifish. Ernie had tirelessly dedicated much of his adult life to campaign for the acquisition, protection, and restoration of his beloved Woodbridge River wetlands and his achievements will live on in their vibrant waters.

Carl Alderson.

Carl Alderson (left, NOAA) and Greg Remaud (right, NY/NJ Baykeeper) on the banks of the Woodbridge River on Ernie Oros Celebration Day, Sept. 28, 2013. Credit: Susan Alderson.

Carl Alderson is a Marine Resource Specialist with the NOAA Restoration Center, located at the JJ Howard Marine Science Lab in Highlands, N.J. Carl provides oversight of coastal habitat restoration projects and marine debris programs through NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) and Community-based Restoration Grants Program (CRP) in the mid-Atlantic region. He is a graduate of Rutgers University and is a Licensed Landscape Architect. Before joining NOAA, Carl worked for the City of New York and led a decade long effort to restore tidal wetlands, marine bird, and fish habitat as compensation for natural resources damages resulting from oil spills in New York Harbor. Carl is recognized as a national leader in restoration of coastal wetlands and bay habitats.


Leave a comment

Swimming Upstream: Examining the Impacts of Nuclear-age Pollution on Columbia River Salmon

A view of the free-flowing section of Columbia River known as the Hanford Reach, along with the famous white bluffs that line it.

A view of the free-flowing section of Columbia River known as the Hanford Reach, along with the famous white bluffs that line it. (NOAA)

Flowing freely through southeastern Washington is an approximately 50 mile stretch of the Columbia River known as the Hanford Reach. This unique section of river is birthplace and home to many animals at different stages of life, including Chinook salmon, the largest of the river’s Pacific salmon. Yet this same segment of river at one time also served as the birthplace of the nuclear age: at the Hanford Nuclear Reservation. Today, NOAA, other federal and state agencies, and Indian tribes are still trying to determine the full impact of this nuclear legacy on fish, wildlife, and their habitats.

Beginning in 1943, the Hanford Reach, with its steady supply of water and relative isolation, attracted the attention of the U.S. government during World War II. Searching for a location to erect nuclear reactors for the top-secret Manhattan Project, the U.S. was racing to build an atomic bomb and this work took shape at Hanford.

Two of Hanford's nuclear reactors sit, decommissioned, along the Columbia River at the Hanford Nuclear Reservation.

Two of Hanford’s nine nuclear reactors sit, decommissioned, along the Columbia River at the Hanford Nuclear Reservation. (NOAA)

The first nuclear reactor built at Hanford—and the first full-scale nuclear production plant in the world—was the B Reactor, which began operating in 1944. This and the other eight reactors eventually constructed at Hanford were located right on the Columbia River, an essential source of water to carry away the extreme heat generated by nuclear fission reactions. In these plants, workers turned uranium (euphemistically referred to as “metal”) into weapons-grade plutonium (known as “product”). The plutonium eventually ended up in the atomic bomb dropped on Nagasaki, Japan, in 1945, as well as in nuclear arms stockpiled during the U.S.-Soviet Cold War. Hanford’s last reactors shut down in 1987.

The River Runs Through It

While the nuclear reactors were operating, however, water was pumped from the Columbia River and aerated at a rate of 70,000 gallons a minute. This was meant to improve its quality as it flowed through a maze of processing equipment—pipes, tubes, and valves—and into the core, the heart of the nuclear reactor. There, in the case of B Reactor, about 27,000 gallons of water gushed through 2,004 process tubes every minute. Each tube held 32 rods of uranium fuel.

The "valve pit" in Hanford's B Reactor, where the thousands of gallons of water that cooled the nuclear reactor's core passed through.

The “valve pit” in Hanford’s B Reactor, where the thousands of gallons of water that cooled the nuclear reactor’s core passed through. (NOAA)

Inside the reactor’s core, where the nuclear reactions were occurring, the water temperature would spike from 56 degrees Fahrenheit to 190 degrees in a single minute. Later in the reactor’s lifespan, the operators would be able to leave the water inside the nuclear reactor core long enough to heat it to 200 degrees before releasing the water into lined but leaky outdoor holding ponds. Once in the holding ponds, the reactor water would sit until its temperature cooled and any short-lived radioactive elements had broken down. Finally, the water would return to the Columbia River and continue its path to the Pacific Ocean.

Water played such an essential role in the nuclear reactor that engineers had four levels of backup systems to keep water constantly pumping through the core. In addition to being aerated, the water was also filtered and chemically treated. To prevent the core’s plumbing equipment from corroding, chromium was added to the water. Hanford’s D Reactor, in particular, handled large quantities of solid hexavalent chromium, a toxic chemical known to cause cancer.

The Salmon Runs Through It

A NOAA scientist takes stock of a male Chinook salmon during their fall run along the Hanford Reach in 2013.

A NOAA scientist takes stock of a male Chinook salmon during their fall run along the Hanford Reach in 2013. (NOAA)

Fast-forward to 2013. NOAA and its partners are participating in a natural resource damage assessment, a process determining whether negative environmental impacts resulted from the Department of Energy’s activities at Hanford. As part of that, NOAA is helping look at the places where water leaked or was discharged back into the Columbia River after passing through the reactors.

One goal is to establish at what levels of contamination injury occurs for species of concern at Hanford. Salmon and freshwater mussels living in the Columbia River represent the types of species they are studying. Yet these species may face impacts from more than 30 different contaminants at Hanford, some of which are toxic metals such as chromium while others are radioactive isotopes such as strontium-90.

Many of the Columbia River’s Chinook salmon and Steelhead trout spawn in or migrate through the Hanford Reach. Currently, NOAA and the other trustees are pursuing studies examining the extent of their spawning in this part of the river and determining the intensity of underground chromium contamination welling up through the riverbed. This information is particularly important because salmon build rocky nests and lay their eggs in the gravel on the bottom of the river.

You can learn more about the history of the Hanford Reach and the chromium and other contamination that threatens the river (around minute 8:50-9:03)  in this video from the Department of Energy:

The trustees have many other studies planned, all trying to uncover more information about the natural resources and what they have been experiencing in the context of Hanford’s history. Yet, for the natural resource damage assessment, even if the trustees find salmon experiencing negative impacts, the evidence found needs to be tied directly to exposure to Hanford’s pollution (rather than, for example, the influence of dams or pollution from nearby farms). It is a complicated process of information gathering and sleuthing, but eventually it will culminate in a determination of the restoration required for this critical stretch of habitat on the Columbia River.

For more information, see:


Leave a comment

Sandy, One Year Later: Where Are We Now?

Boats and other debris were out of place in Brigantine, N.J., Oct. 30, 2012, after Sandy made landfall on the southern New Jersey coastline Oct. 29, 2012.

Boats and other debris were out of place in Brigantine, N.J., Oct. 30, 2012, after Sandy made landfall on the southern New Jersey coastline Oct. 29, 2012. (U.S. Coast Guard)

At the end of October 2012, Hurricane Sandy raced toward the East Coast. Although the hurricane became a post-tropical cyclone before making landfall, it still caused extensive damage. Its forceful winds and flooding swept waves of oil, hazardous chemicals, and debris into the waters along New Jersey, New York, and Connecticut.

Both before and after Sandy hit, NOAA’s Office of Response and Restoration (OR&R) was bracing for the repercussions of this massive storm. In the year since, we have been working with federal, state, and local agencies to reduce the environmental impacts, restore coastal habitats, and improve the tools needed to prepare for the next disaster.

Restoring Tidal Wetlands in New Jersey

Oil mixed with vegetation and organic debris in the tidal marshes affected by the Motiva refinery's diesel spill as a result of the storm.

Oil mixed with vegetation and organic debris in the tidal marshes affected by the Motiva refinery’s diesel spill as a result of the storm. (NOAA)

As water levels receded, the U.S. Coast Guard began receiving reports of pollution in the areas of coastal New Jersey and New York. Petroleum products, biodiesel, and other chemicals were leaking into the waters from pollution sources such as damaged coastal industries, ruptured petroleum storage tanks, and sunken and stranded vessels. The area of Arthur Kill, a waterway that borders New York and New Jersey, was hit particularly hard. One such spill occurred when a tank holding diesel broke open at the Motiva refinery in Sewaren, N.J., releasing an estimated 336,000 gallons of diesel into several creeks.

The week following Sandy, our Damage Assessment, Remediation, and Restoration Program (DARRP) staff ventured into storm-ravaged areas to gather data on impacts to coastal habitats and other natural resources, including those potentially affected by the Motiva oil spill. NOAA, along with representatives from the New Jersey Department of Environmental Protection and Motiva, surveyed affected sites both by land and by boat and coordinated with these groups to determine whether to pursue a natural resource damage assessment and implement environmental restoration.

Early in this process, the trustees, NOAA and New Jersey, and Motiva agreed to focus on restoration, rather than conducting new studies and debating legal issues. This meant using observations from the surveys, past damage assessments in the area, and previous scientific studies to determine the amount of restoration required to offset the resulting injuries to natural resources.  As a result, NOAA and New Jersey reached consensus on a cooperative settlement in less than 6 months with the Motiva refinery in Sewaren for the release of oil during the storm. This successful agreement will provide funds to restore and monitor recovery of tidal wetlands in the Arthur Kill watershed, which will begin before the end of 2013.

Identifying Remaining Debris Along the Coasts

Drums and other debris were washed away into the ocean and surrounding waters following Sandy and in some cases continue to be a threat to safety and the environment.

Drums and other debris were washed away into the ocean and surrounding waters following Sandy and in some cases continue to be a threat to safety and the environment. (U.S. Environmental Protection Agency)

Even when drums, tanks, and other debris swept into the waters after a storm are free of oil and chemicals, they can still pose a threat to navigation, commercial and recreational fishing grounds, and sensitive habitats. This was a considerable problem after Hurricane Katrina in 2005, and Sandy was no exception in 2012.

In the months following this storm, the NOAA Marine Debris Program coordinated debris response activities and initial assessments with agencies in impacted states. Using aerial, underwater, and shoreline surveys, today we continue working with federal and state agencies to identify the amount and location of remaining debris that Sandy littered up and down Mid-Atlantic coastal waters.

In addition, we are using a computer model we developed with NOAA’s Office of Coast Survey after Hurricane Katrina to predict probabilities of finding debris generated by Sandy in the nearshore waters of New Jersey, New York, and Connecticut. These and other analyses, along with support from the rest of the Marine Debris Program and OR&R’s Atlantic ERMA mapping tool, will inform how states prioritize cleanup efforts.

Due to the Disaster Relief Appropriations Act of 2013, the Marine Debris Program received $4.75 million for activities related to finding and clearing debris from Sandy.  Through the end of 2013 and into 2014, we will continue our work identifying priority items for removal and supporting limited removal efforts. The program is also using what we learned from Sandy to establish long-term debris recovery plans for future storms.

Adapting to a Changing Shoreline

In addition to damaging buildings, roller coasters, and vessels, Sandy’s strong winds and waves caused considerable change to shorelines on the East Coast. The areas most affected were metropolitan New York, northern Long Island, Connecticut, and New Jersey.

As a result, OR&R’s Emergency Response Division received funding through the Disaster Relief Appropriations Act of 2013 to update our Environmental Sensitivity Index (ESI) maps for northeast states. These updated maps will reflect the shoreline changes caused by the storm but will be developed with a broad range of potential disasters in mind.

Additionally, they will expand the coastal information offered to better inform planning and response efforts for the next disaster. Such information may include flood inundation and storm surge areas, environmental monitoring stations, tide stations, and offshore renewable energy sites. Long Island Sound is first on our list for updates, but the Hudson River, Chesapeake Bay, and affected shorelines from South Carolina north to Maine eventually will follow suit.

While it has already been a year since Sandy left its mark on the U.S., the work of recovery and rebuilding is not yet complete. You can read more about these efforts in support of healing our coasts and communities on NOAA’s Ocean Service website.


Leave a comment

$3.7 Million to go toward Restoring Contaminated Natural Resources in Alabama

Part of a $5 million settlement with BASF following pesticide releases

Tombigbee River.

Beginning in the 1950s, hazardous wastes from producing the pesticide DDT were released into unlined pits at the McIntosh, Ala., plant and discharged into the Tombigbee River and its adjacent floodplain. (Credit: Jeffrey Reed, Creative Commons Attribution-Share Alike 3.0 Unported license)

Four federal and state trustee agencies have announced $3.7 million in funds following a natural resource damages settlement to restore natural resources and habitats harmed by hazardous substances released from a manufacturing site in McIntosh, Ala.

The funds are part of a $5 million settlement with BASF Corporation, the company that acquired the Ciba-Geigy Corporation’s McIntosh facility. Beginning in the 1950s, the facility manufactured DDT, a pesticide used to combat disease-carrying insects, as well as other pesticides, herbicides, and various agricultural and industrial chemicals. During those years, hazardous wastes from the facility were released into unlined pits on the property and discharged into the Tombigbee River and its adjacent floodplain.

The settlement was negotiated by the U.S. Department of Justice’s Environment and Natural Resources Division on behalf of the trustees.

The natural resource trustees—NOAA, Department of Interior’s U.S. Fish and Wildlife Service, Alabama Department of Conservation and Natural Resources, and Geological Survey of Alabama— began a cooperative natural resource damage assessment with the responsible party in 2005 to identify resource injuries and the amount of restoration needed. The trustees act on behalf of the public to protect and restore natural resources.

Nearly $3.2 million of the $5 million BASF settlement will be used to plan, implement, and oversee restoration projects and/or acquire lands within the Mobile Bay watershed to compensate for resources injured as a result of exposure to contaminants from the facility.

The state of Alabama will receive $500,000 to fund additional ecosystem restoration efforts through support of the Alabama Aquatic Biodiversity Center. The remaining funds will reimburse the Fish and Wildlife Service and NOAA for their past assessment costs.

BASF chemical plant in McIntosh, Ala.

A view of the former Ciba chemical plant, now owned by BASF, which has agreed to pay $3.7 million for restoration projects for historical pollution coming from this McIntosh, Ala. facility. (Credit: Alabama Media Group/All Rights Reserved)

The use of DDT was banned in the United States in 1972 because of its harmful effects on the environment, wildlife and the public. Once released, DDT persists in the environment for a long time and increases in concentrations up the food chain.

In 1984, EPA listed the McIntosh facility as a Superfund site. Early investigations on this site found elevated concentration levels of DDT in fish and sediments within the floodplain, bottomland hardwood forests, and areas of the Tombigbee River adjacent to the site.

The settlement agreement is available on NOAA’s Damage Assessment, Remediation, and Restoration Program website at www.darrp.noaa.gov/southeast/ciba/index.html. The trustees will develop a draft restoration plan with proposed projects, which will be released for public review and comment.

Photos:

Top photo: Jeffrey Reed, Creative Commons Attribution-Share Alike 3.0 Unported license.

Bottom photo: Used with permission from Alabama Media Group.

Follow

Get every new post delivered to your Inbox.

Join 336 other followers