NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

You Say Collision, I Say Allision; Let’s Sort the Whole Thing Out

Despite improved navigation aids, including charts and Global Positioning Systems (GPS), ships still have accidents in our nation’s waterways, and I regularly review notification reports of these accidents from the National Response Center. Sometimes I need to consult the old nautical dictionary I inherited from my grandfather (a lawyer and U.S. Navy captain) to figure out what they mean.

Nautical terms and marine salvage books.

Keeping it all straight. (NOAA)

The U.S. Coast Guard investigates ship accidents, but they use the terms “marine casualty or accident” interchangeably [PDF]. Mariners are required to report any occurrence involving a vessel that results in:

  • Grounding
  • Stranding
  • Foundering
  • Flooding
  • Collision
  • Allision
  • Explosion
  • Fire
  • Reduction or loss of a vessel’s electrical power, propulsion, or steering capabilities
  • Failures or occurrences, regardless of cause, which impair any aspect of a vessel’s operation, components, or cargo
  • Any other circumstance that might affect or impair a vessel’s seaworthiness, efficiency, or fitness for service or route
  • Any incident involving significant harm to the environment

Some of those terms are pretty straightforward, but what is the difference between grounding and stranding? Or foundering and flooding? And my favorite, collision and allision?

Here is my basic understanding of these terms, but I am sure that some of these could fill an admiralty law textbook.

Groundings and strandings are probably the most common types of marine casualties. A grounding is when a ship strikes the seabed, while a stranding is when the ship then remains there for some length of time. Both can damage a vessel and result in oil spills depending on the ocean bottom type (rocky, sandy, muddy?), sea conditions, and severity of the event (is the ship a little scraped or did it break open?).

Flooding means taking on excessive water in one or more of the spaces on a ship (e.g., the engine room), while foundering is basically taking on water to the point where the vessel becomes unstable and begins to sink or capsize. Note that “foundering” is different than “floundering,” which is to struggle or move aimlessly.

And collision and allision … These terms are sometimes used interchangeably, but technically, a collision is when two vessels strike each other, while an allision occurs when a vessel strikes a stationary object, such as a bridge or dock.

Close up of large damaged ship with Coast Guard boat.

A U.S. Coast Guard boat approaches the gash in the side of the M/V Cosco Busan after it allided (rather than collided) with San Francisco’s Bay Bridge on November 7, 2007, releasing 53,000 gallons of bunker oil into San Francisco Bay. (U.S. Coast Guard)

No matter the proper terminology, all of these incidents can result in spills, keeping us pollution responders on our toes because of the potential impacts to coasts, marine life, and habitats such as coral reefs and seagrass beds. But understanding these various nautical terms helps us understand the circumstances we’re dealing with in an emergency and better adapt our science-based recommendations as a result. And as my grandfather used to say, a collision at sea can ruin your entire day …


Leave a comment

In a Louisiana Marsh, an Uncommon Opportunity to Learn about Burning Oil

This is a post by LTJG Kyle Jellison, NOAA Scientific Support Coordinator.

“Every day is a new adventure.” I came to believe this phrase while sailing on the high seas, but it proves true as a NOAA Scientific Support Coordinator as well. There have been many adventures in my time working in the Gulf of Mexico doing emergency response for oil spills and hazardous materials releases.

The most recent oil spill—a pipeline leak in a Louisiana marsh—didn’t seem out of the ordinary, that is, until the Unified Command in charge of the response turned to alternative approaches to quicken and improve the effectiveness of the cleanup.

The Spill and Our Options

On May 28, 2014 a plane hired by Texas Petroleum Investment Company was performing a routine aerial survey of their inland oilfield and noticed a slight oil sheen and a dead clump of roseau cane (phragmites). This sparked further investigation and the discovery of 100 barrels (4,200 gallons) of crude oil, which had leaked out of a breach in their pipeline passing through the Delta National Wildlife Refuge, outside of Venice, Louisiana. Pipelines like this one are routinely inspected, but as they age the potential for corrosion and spills increases.

Roseau cane is a tall, woody plant, similar to bamboo, reaching heights of up to 20 feet. The stalks grow very close together and in water depths between two and 30 inches. This creates a complex situation which is very hard to clean oil out from.

The least invasive method for oil cleanup is to flush out the oil with high volumes of water at low pressure, but this is a long process with low amounts of oil recovered each day. Another common practice is to flush with water while cutting lanes into the vegetation, creating pathways for the oil to migrate along for recovery. Though more aggressive and with higher amounts of oil recovered each day, it still would likely take many weeks or months to clean up this particular oil spill using this method.

An Unconventional Solution

What about doing a controlled burn of the oil where it is, a strategy known as in situ burning? It removes a large amount of oil in a matter of days, and when performed properly, in situ burning can help marsh vegetation recover in five years or less for more than 75 percent of cases in one study.

In situ burning, Latin for burning in place, is considered an “alternative” response technology, rather than part of the regular suite of cleanup options, and is only employed under the right set of circumstances. More information about this can be found in the NOAA report “Oil Spills in Marshes,” which details research and guidelines for in situ burning in chapter 3, Response.

To help determine if burning was appropriate in this case, the Unified Command brought in the NOAA Scientific Support Team, U.S. Fish and Wildlife Service Fire Management Team, U.S. Coast Guard Gulf Strike Team, and T&T Marine Firefighting and Salvage. After considering the situation, gaining consensus, developing a burn plan, and earning the support of Regional Response Team 6, it was time to light it up!

Where There’s Smoke …

On June 3, 2014, we burned the oil for two hours, with flames reaching 40 feet. The next day, we burned for another six hours. There was a lot of oil to be burned, with pockets of oil spread throughout three acres of impacted marsh. The fire remained contained to the area where enough oil was present to support the burn, extinguishing once it reached the edge of the oiled marsh.

We have an ongoing study to evaluate the impacts of the burn, and preliminary results indicate that there was minimal collateral damage. More than 70 percent of the oil was burned over the two-day period. We considered this to be a very successful controlled burn. The much less remaining oil will be recovered by mechanical methods within a few weeks, instead of months.

Texas Petroleum Investment Company, as the responsible party in this case, will be responsible for all costs incurred for this incident, including cleanup and monitoring (and restoration, if necessary).

To help ensure we learn something from this incident, an assessment team entered the impacted marsh before the burns to collect oil, water, and sediment samples. The team also collected samples after each day of burning and returned a week after the burn to assess the condition of the vegetation and collect samples. This multi-agency team will return to the site in August for more sampling and monitoring.

The long-term monitoring and sampling project is being managed by NOAA, Louisiana Department of Environmental Quality, Fish and Wildlife Service, and Texas Petroleum Investment Company. We are conducting the study under the umbrella of the Response Science and Technology Subcommittee of the New Orleans Area Committee, a standing body of response scientists. Jeff Dauzat of Louisiana Department of Environmental Quality and I co-chair this subcommittee and are looking forward to the results of this ongoing scientific project.

Was burning the right move? The science will speak for itself in time.

For more information:

Man standing in a marsh with smoke in the background.LT Kyle Jellison is a Scientific Support Coordinator for NOAA’s Office of Response and Restoration. He supports Federal On-Scene Coordinators throughout the Gulf of Mexico by providing mission critical scientific information for response and planning to oil and hazardous material releases.


Leave a comment

With NOAA as a Model, India Maps Coastal Sensitivity to Oil Spills

This is a post by Vicki Loe and Jill Petersen of NOAA’s Office of Response and Restoration.

Boy running on beach.

Scientists in India have used NOAA’s Environmental Sensitivity Index maps as a model for preparing for oil spills on the west coast of India. (Credit: Samuel Kimlicka/Creative Commons Attribution 2.0 Generic License)

They say that imitation is the sincerest form of flattery, which is why we were thrilled to hear about recent efforts in India to mirror one of NOAA’s key oil spill planning tools, Environmental Sensitivity Index maps. A recent Times of India article alerted us to a pilot study led by scientists at the National Institute of Oceanography in India, which used our Environmental Sensitivity Index (ESI) shoreline classifications to map seven talukas, or coastal administrative divisions in India. Amid the estuaries mapped along India’s west coast, one of the dominant shoreline types is mangroves, which are a preferred habitat for many migratory birds as well as other species sensitive to oil.

Traditional ESI data categorize both the marine and coastal environments as well as their wildlife based on sensitivity to spilled oil. There are three main components: shoreline habitats (as was mapped in the Indian project), sensitive animals and plants, and human-use resources. The shoreline and intertidal zones are ranked based on their vulnerability to oil, which is determined by:

  • Shoreline type (such as fine-grained sandy beach or tidal flats).
  • Exposure to wave and tidal energy (protected vs. exposed to waves).
  • Biological productivity and sensitivity (How many plants and animals live there? Which ones?).
  • Ease of cleanup after a spill (For example, are there roads to access the area?).

The biology data available in ESI maps focus on threatened and endangered species, areas of high concentration, and areas where sensitive life stages (such as when nesting) may occur. Human use resources mapped include managed areas (parks, refuges, critical habitats, etc.) and resources that may be impacted by oiling or clean-up, such as beaches, archaeological sites, or marinas.

Many countries have adapted the ESI data standards developed and published by NOAA. India developed their ESI product independently, based on these standards. In other cases, researchers from around the world have come across ESI products and contacted NOAA for advice in developing their own ESI maps and data. In the recent past, Jill Petersen, the NOAA ESI Program Manager, has worked with scientists who have visited from Spain, Portugal, and Italy.

By publishing our data standards, we share information which enables states and countries to develop ESI maps and data independently while adhering to formats that have evolved and stood the test of time over many years. In addition to mapping the entire U.S. coast and territories, NOAA has conducted some of our own international mapping of ESIs. In the wake of Hurricane Mitch in 1998, we mapped the coastal natural resources in the affected areas of Nicaragua, Honduras, and Ecuador.

Currently, we are developing new ESI products for the north and mid-Atlantic coasts of the United States, many areas of which were altered by Hurricane Sandy in 2012. The new maps will provide a comprehensive and up-to-date picture of vulnerable shorelines, wildlife habitats, and key resources humans use. Having this information readily available will enable responders and planners to quickly make informed decisions in the event of a future oil spill or natural disaster.

For further information on NOAA’s ESI shoreline classification, see our past blog posts: Mapping How Sensitive the Coasts Are to Oil Spills and After Sandy, Adapting NOAA’s Tools for a Changing Shoreline.


2 Comments

As Oil Sands Production Rises, What Should We Expect at Diluted Bitumen (Dilbit) Spills?

Pipeline dug up for an oil spill cleanup next to a creek.

This area is where the Enbridge pipeline leaked nearly a million gallons of diluted bitumen (dilbit), a tar sands oil product, into wetlands, Talmadge Creek, and roughly 40 miles of Michigan’s Kalamazoo River in 2010. (U.S. Environmental Protection Agency)

I’ve seen a lot of firsts in the past four years.

During that time, I have been investigating the environmental impacts, through the Natural Resource Damage Assessment process, of the Enbridge pipeline spill in Michigan. In late summer of 2010, a break in an underground pipeline spilled approximately 1 million gallons of diluted bitumen into a wetland, a creek, and the Kalamazoo River. Diluted bitumen (“dilbit”) is thick, heavy crude oil from the Alberta tar sands (also known as oil sands), which is mixed with a thinner type of oil (the diluent) to allow it to flow through a pipeline.

A Whole New Experience

This was my first and NOAA’s first major experience with damage assessment for a dilbit spill, and was also a first for nearly everyone working on the cleanup and damage assessment. Dilbit production and shipping is increasing. As a result, NOAA and our colleagues in the field of spill response and damage assessment are interested in learning more about dilbit:

  • How does it behave when spilled into rivers or the ocean?
  • What kinds of effects does it have on animals, plants, and habitats?
  • Is it similar to other types of oil we’re more familiar with, or does it have unique properties?

While it’s just one case study, the Enbridge oil spill can help us answer some of those questions. My NOAA colleague Robert Haddad and I recently presented a scientific paper on this case study at Environment Canada’s Arctic and Marine Oil Spill Program conference.

In addition, the Canadian government and oil pipeline industry researchers Witt O’Brien’s, Polaris, and Western Canada Marine Response Corporation [PDF] and SL Ross [PDF] have been studying dilbit behavior as background research related to several proposed dilbit pipeline projects in the United States and Canada. Those experiments, along with the Enbridge spill case study, currently make up the state of the science on dilbit behavior and ecological impacts.

How Is Diluted Bitumen Different from Other Heavy Oils?

Dilbit is in the range of other dense, heavy oils, with a density of 920 to 940 kg/m3, which is close to the density of freshwater (1,000 kg/m3). (In general when something is denser than water, it will sink. If it is less dense, it will float.) Many experts have analyzed the behavior of heavy oils in the environment and observed that if oil sinks below the surface of the water, it becomes much harder to detect and recover. One example of how difficult this can be comes from a barge spill in the Gulf of Mexico, which left thick oil coating the bottom of the ocean.

What makes dilbit different from many other heavy oils, though, is that it includes diluent. Dilbit is composed of about 70 percent bitumen, consisting of very large, heavy molecules, and 30 percent diluent, consisting of very small, light molecules, which can evaporate much more easily than heavy ones. Other heavy oils typically have almost no light components at all. Therefore, we would expect evaporation to occur differently for dilbit compared to other heavy oils.

Environment Canada confirmed this to be the case. About four to five times as much of the dilbits evaporated compared to intermediate fuel oil (a heavy oil with no diluent), and the evaporation occurred much faster for dilbit than for intermediate fuel oil in their study. Evaporation transports toxic components of the dilbit into the air, creating a short-term exposure hazard for spill responders and assessment scientists at the site of the spill, which was the case at the 2010 Enbridge spill.

Graph of evaporation rates over time of two diluted bitumen oils and another heavy oil.

An Environment Canada study found that two types of diluted bitumen (dilbits), Access Western Blend (AWB) and Cold Lake Blend (CLB), evaporated more quickly and to a greater extent than intermediate fuel oil (IFO). The two dilbits are shown on the left and the conventional heavy oil, IFO, on the right. (Environment Canada)

Since the light molecules evaporate after dilbit spills, the leftover residue is even denser than what was spilled initially. Environment Canada, Witt O’Brien’s/Polaris/WCMRC, and SL Ross measured the increase in dilbit density over time as it weathered, finding dilbit density increased over time and eventually reached approximately the same density as freshwater.

These studies also found most of the increase in density takes place in the first day or two. What this tells us is that the early hours and days of a dilbit spill are extremely important, and there is only a short window of time before the oil becomes heavier and may become harder to clean up as it sinks below the water surface.

Unfortunately, there can be substantial confusion in the early hours and days of a spill. Was the spilled material dilbit or conventional heavy crude oil? Universal definitions do not exist for these oil product categories. Different entities sometimes categorize the same products differently. Because of these discrepancies, spill responders and scientists evaluating environmental impacts may get conflicting or hard-to-interpret information in the first few days following a spill.

Lessons from the Enbridge Oil Spill

Initially at the Enbridge oil spill, responders used traditional methods to clean up oil floating on the river’s surface, such as booms, skimmers, and vacuum equipment (see statistics on recovered oil in EPA’s Situation Reports [PDF]).

After responders discovered the dilbit had sunk to the sediment at the river’s bottom, they developed a variety of tactics to collect the oil: spraying the sediments with water, dragging chains through the sediments, agitating sediments by hand with a rake, and driving back and forth with a tracked vehicle to stir up the sediments and release oil trapped in the mud.

These tactics resulted in submerged oil working its way back up to the water surface, where it could then be collected using sorbent materials to mop up the oily sheen.

While these tactics removed some oil from the environment, they might also cause collateral damage, so the Natural Resource Damage Assessment trustees assessed impacts from the cleanup tactics as well as from the oil itself. This case is still ongoing, and trustees’ assessment of those impacts will be described in a Damage Assessment and Restoration Plan after the assessment is complete.

A hand holds a crushed mussel.

A freshwater mussel found crushed in an area of the Kalamazoo River with heavy cleanup traffic following the 2010 Enbridge oil spill. (Enbridge Natural Resource Damage Assessment Trustee Council)

For now, we can learn from the Enbridge spill and help predict some potential environmental impacts of future dilbit spills. We can predict that dilbit will weather (undergo physical and chemical changes) rapidly, becoming very dense and possibly sinking in a matter of days. If the dilbit reaches the sediment bed, it can be very difficult to get it out, and bringing in responders and heavy equipment to recover the oil from the sediments can injure the plants and animals living there.

To plan the cleanup and response and predict the impacts of future dilbit spills, we need more information on dilbit toxicity and on how quickly plants and animals can recover from disturbance. Knowing this information will help us balance the potential impacts of cleanup with the short- and long-term effects of leaving the sunken dilbit in place.


Leave a comment

Wishing You a Happy Donut Day (Free of Frying Oil Spills)

A mug, ruler, and NOAA chart with a stack of donuts, one decorated with the NOAA logo.

Happy Donut Day from NOAA!

Tomorrow we celebrate National Donut Day.

As scientists who work in oil spill response, and who also love these oil-fried creations, we know that donut oil can harm the environment almost as severely as the oils that are typically spilled on our coastlines and rivers.

When we talk about “oil” spills, we are generally referring to petroleum-based oils—the naturally occurring products, such as crude oil, found in geologic formations. But the oil and fats that we use to fry our food come from animals (e.g., lard/tallow, butter/ghee, fish oil) or from seeds and plants (e.g., palm, castor, olive, soya bean, sunflower, rape-seed). Like petroleum products, these oils can spill when they are stored or transported. When an accident occurs, large quantities of oil can spill into rivers, lakes, and harbors.

Although vegetable oils and animal fats are not as acutely toxic as many petroleum products, spills of these products can still result in significant environmental damage. Like petroleum oils, vegetable oils and animal fats and their components can have both immediate and long-term negative effects on wildlife and the environment when they:

  • Coat the fur or feathers of wildlife, and even smother embryos if oil comes in contact with bird eggs.
  • Suffocate marine life by depleting the oxygen in the water.
  • Destroy future and existing food supplies, breeding animals, and habitats.
  • Produce rancid odors.
  • Foul shorelines, clog water treatment plants, and catch fire when ignition sources are present.
  • Form products that linger in the environment for many years.

Many non-petroleum oils share similar physical properties with petroleum-based oils; for example, they don’t readily dissolve in water, they both create slicks on the surface of water, and they both form water-oil mixtures known as emulsions, or “mousse.” In addition, non-petroleum oils tend to be persistent, remaining in the environment for long periods of time.

Firefighters in Madison County, Wisc., had to deal with 16 million pounds of butter melting and flowing out of the burning refrigerated warehouse. The butter is visible here in the dug-out channels.

In the Great Butter Fire of May 3, 1991, firefighters in Madison County, Wisc., had to deal with 16 million pounds of butter melting and flowing out of a burning refrigerated warehouse. The butter, which threatened a nearby creek and recently restored lake, is visible here in the dug-out channels. (Wisconsin Department of Natural Resources)

In our earlier blog post, Recipes for Disaster, we describe spills of coconut oil, palm kernel oil, and even butter, which emergency responders across the United States have had to address. In addition to the oil spill response tools and resources we use to mitigate spills of all types, EPA’s explanation of the rules that apply to animal fats and vegetable oil spill planning and response, and response techniques suggested by ITOPF and CEDRE, researchers are finding new ways to clean up spills of vegetable oils.

For example, at Washington University in St. Louis, researchers have found that adding dry clay to spilled oil results in formation of oil-mineral combinations that sink to the bottom of the water. The process works best under conditions of relatively low mixing in the water, and is acceptable only if the oil can be broken down naturally in the sediment.

Back to National Donut Day and things that can be broken down naturally in your stomach. Enjoy your glazed, jelly-filled, or frosted-with-sprinkles delight however it is prepared—with vegetable oil, shortening, or maybe coconut oil. And if you’re thinking of enjoying your donut with a glass of milk, start thinking about what might happen when milk spills into our waters.


Leave a comment

A Bird’s Eye View: Looking for Oil Spills from the Sky

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division, with input from David Wesley and Meg Imholt.

View over a pilot's shoulder out of a plane to ocean and islands.

View over the pilot’s shoulder on the first visit to the Chandeleur Islands in the Gulf of Mexico after Hurricane Katrina to see how much the shoreline had been altered. (NOAA)

During an oil spill, responders need to answer a number of questions in order to protect coastal resources: What happened? Where is the oil going? What will it hit? How will it cause harm?

Not all of these questions can be answered adequately from the ground or even from a boat. Often, experts take to the skies to answer these questions.

Aerial overflights are surveys from airplanes or helicopters which help responders find oil slicks as they move and break up across a potentially wide expanse of water. Our oceanographers make predictions about where a spill might go, but each spill presents a unique combination of weather conditions, ocean currents, and even oil chemistry that adds uncertainty due to natural variability. Overflights give snapshots of where the oil is located and how it is behaving at a specific date and time, which we use to compare to our oceanographic models. By visually confirming an oil slick’s location, we can provide even more accurate forecasts of where the oil is expected to go, which is a key component of response operations.

Trained aerial overflight experts serve as the “eyes” for the command post of spill responders. They report critical information like location, size, shape, color, and orientation of an oil slick. They can also make wildlife observations, monitor cleanup operations, and spot oceanographic features like convergence zones and eddies, which impact where oil might go. All of these details help inform decisions for appropriate cleanup strategies.

Easier Said Than Done

Finding and identifying oil from the air is tricky. Oil slicks move, which can make them hard to pin down. In addition, they may be difficult to classify from visual observation because different oils vary in appearance, and oil slick appearance is affected by weather conditions and how long the oil has been out on the water.

False positives add even another challenge. When viewed from the air, algal blooms, boat wakes, seagrass, and many other things can look like oil. Important clues, such as if heavy pollen or algal blooms are common in the area, help aerial observers make the determination between false positives and the real deal. If the determination cannot be made from air, however, it is worth investigating further.

During an overflight, it takes concentration to capture the right information. Many things can distract the observer from the main mission of spotting oil, including taking notes in a notebook, technology, and other people. Even an item meant to help, such as a camera or GPS, can lose value if more time is spent fiddling with it rather than taking observations. The important thing is to look out the window!

Safety is paramount on an overflight. An observer must always pay close attention to the pilot’s instructions for getting on and off the aircraft, and not speak over the pilot if they are talking on the radio. While it’s not a problem to ask, a pilot may not be able to do certain maneuvers an observer requests due to safety concerns.

The Experts—And Becoming One Yourself

The Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R) has overflight specialists ready for quick deployment to do this job. These specialists have extensive training and expertise in aerial overflights.

View of airplane wing, clouds, and water.

Looking out of an observer window on a Coast Guard C-130 airplane during the Hurricane Katrina pollution response. (NOAA)

When I joined OR&R in 2011, I learned from the best before doing real-life observations myself. One of the first things I did was take a Helicopter Emergency Egress course to make sure I could safely exit an aircraft that had made an emergency landing over water. Then I took the Science of Oil Spills course, where I learned more about observing oil from the air. In preparation for my first overflight I also had one-on-one conversations with our trained aerial observers. Since then, I have done aerial observations for oil spills including a sunken vessel in Washington’s Penn Cove, the Post-Tropical Cyclone Sandy pollution response, and the Texas City “Y” oil spill in Galveston Bay.

OR&R provides training opportunities for others who may need to do an overflight during a response. Throughout the year, OR&R offers Science of Oil Spill classes across the country. In March 2014, more than 50 oil spill responders learned about aerial observing, and many other spill response skills, at OR&R’s Science of Oil Spills class at NOAA’s Disaster Response Center in the Gulf of Mexico. For those interested in becoming an overflight specialist themselves, OR&R even offers a one-day, in-person course on the topic throughout the country a few times per year.

OR&R has also created the online module, “Introduction to Observing oil from Helicopters and Planes,” to make training even more accessible. We even have a job aid for aerial observation of oil, a reference booklet conveniently sized to take on an overflight!

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


Leave a comment

Sign up for 2014 NOAA Science Camp in Seattle

Registration for this summer’s NOAA Science Camp at our Seattle campus is now open. Each year, this week-long, hands-on camp for 7th and 8th graders immerses kids in the wide range of scientific activities going on at NOAA. For example, campers get the chance to solve an environmental mystery with our toxicologists and observe the impacts of oil on (simulated) beaches and wildlife with our oceanographers and biologists. And that’s only the beginning:

Get the details:

  • Who: Youths entering 7th and 8th grades in the fall of 2014.
  • Where: NOAA’s Sand Point Facility on Lake Washington—7600 Sand Point Way NE, Seattle, Washington.
  • When: Two camp sessions (both weeks have the same content focus)—July 7 – 11 and July 14 – 18, 2014. The Junior Leadership Program is two weeks long, and will run July 7-18.
  • Cost: $250. Camper scholarships to cover half of the registration fee are available.
  • Too old for NOAA Science Camp? Check out the Junior Leadership Program for teens entering 9th-12th grades in the fall of 2014.

Learn more and register on the NOAA Science Camp Web page.


Leave a comment

Booms, Beams, and Baums: The History Behind the Long Floating Barriers to Oil Spills

Oiled boom on Louisiana beach.

Oiled boom is cleaned so that it can be used to contain oil over and over again. (NOAA)

One of the iconic images of spill preparedness and response is oil boom. You’ve probably seen these long ribbons of orange, yellow, or white material stockpiled on a pier, strung around a leaking vessel, or stretched across a channel to protect sensitive areas threatened by an advancing oil slick. Made of plastic, metal, or other materials, booms are floating, physical barriers to oil, meant to slow the spread of oil and keep it contained.

As we describe on our website, there are three main types of boom:

Hard boom is like a floating piece of plastic that has a cylindrical float at the top and is weighted at the bottom so that it has a “skirt” under the water. If the currents or winds are not too strong, booms can also be used to make the oil go in a different direction (this is called “deflection booming”).

Sorbent boom looks like a long sausage made out of a material that absorbs oil. If you were to take the inside of a disposable diaper out and roll it into strips, it would act much like a sorbent boom. Sorbent booms don’t have the “skirt” that hard booms have, so they can’t contain oil for very long.

Fire boom is not used very much. It looks like metal plates with a floating metal cylinder at the top and thin metal plates that make the “skirt” in the water. This type of boom is made to contain oil long enough that it can be lit on fire and burned up.

But why is it called “boom”? Does it make a sound? Every industry has jargon, and the spill response community, at the intersection of the maritime and oil industry, has more than its fair share. There are whole dictionaries devoted to maritime terms, and others devoted to the oil industry. (Remember “top kill” and “junk shot”—industry terms used to describe attempts to stop the flow of oil from a damaged wellhead?) But when I looked for the origins of the word “boom,” I had to do some digging. I guess boom is such a common term in the response business, nobody thinks much about its derivation. Kind of like asking a chef why spoons are called spoons.

The word “boom” is the Dutch word for tree. German is similar: “baum.” Remember “O Tannenbaum,” a Christmas carol of German origin? From these roots, we get the word “beam” as in a long wooden timber, and of course, a part of a sailboat, the “boom,” that holds the foot of the sail and was traditionally made of wood. Around the Northwest it is pretty common to see a tug boat pulling a big raft of logs to a mill—a log boom.

But what do trees have to do with oil boom? Back to the Dutch. In the Middle Ages, logs were chained together and used as a floating barrier across a waterway to protect a harbor from attack or to force passing ships to stop and pay a toll. During the American Revolution, for example, the Hudson River was boomed with logs to prevent the British from sailing upriver. Similar fortifications were used during the Civil War, and even in World War II to protect U.S. West Coast ports from foreign submarines.

How log booms evolved into oil containment booms is unclear, but we know that every major spill has resulted in a flurry of inventions and improvements, often on the fly as responders adapted available resources to combat the spill. As concern over oil pollution increased over the past century, some of these were patented and form the basis for today’s technologies, but unfortunately there is still no silver bullet; once oil is spilled in the sea, it is a challenge to control and clean up. Learn more about how responders use boom during oil spills [PDF], including the ways to use boom effectively.


Leave a comment

National Research Council Releases NOAA-Sponsored Report on Arctic Oil Spills

Healy escorts the tanker Renda through the icy Bering Sea.

The Coast Guard Cutter Healy broke ice for the Russian-flagged tanker Renda on their way to Nome, Alaska, in January of 2012 to deliver more than 1.3 million gallons of petroleum products to the city of Nome. (U.S. Coast Guard)

Responding to a potential oil spill in the U.S. Arctic presents unique logistical, environmental, and cultural challenges unparalleled in any other U.S. water body. In our effort to seek solutions to these challenges and enhance our Arctic preparedness and response capabilities, NOAA co-sponsored a report, Responding to Oil Spills in the U.S. Arctic Marine Environment, directed and released by the National Research Council today.

Several recommendations in the report are of interest to NOAA’s Office of Response and Restoration (OR&R), including the need for:

  • Up-to-date high-resolution nautical charts and shoreline maps.
  • A real-time Arctic ocean-ice meteorological forecasting system.
  • A comprehensive, collaborative, long-term Arctic oil spill research program.
  • Regularly scheduled oil spill exercises to test and evaluate the flexible and scalable organizational structures needed for a highly reliable Arctic oil spill response.
  • A decision process such as the Net Environmental Benefit Analysis for selecting appropriate response options.

In addition, the report mentions NOAA’s ongoing Arctic efforts including our Arctic Environmental Response Mapping Application (ERMA), our oil spill trajectory modeling, and our innovative data sharing efforts. Find out more about OR&R’s efforts related to the Arctic region at response.restoration.noaa.gov/arctic.

Download the full National Research Council report.

This report dovetails with NOAA’s 2014 Arctic Action Plan, released on April 21, which provides an integrated overview of NOAA’s diverse Arctic programs and how these missions, products, and services support the goals set forth in the President’s National Strategy for the Arctic Region [PDF].

In addition, the Government Accountability Office (GAO) released a report [PDF] in March of 2014, which examined U.S. actions related to developing and investing in Arctic maritime infrastructure. The report outlines key issues related to commercial activity in the U.S. Arctic over the next decade.

Get a snapshot of the National Research Council report in this four minute video, featuring some of our office’s scientific models and mapping tools:


Leave a comment

NOAA Scientists Offer In-depth Workshops at 2014 International Oil Spill Conference

2014 International Oil Spill Conference banner with sea turtle graphicEvery three years, experts representing organizations ranging from government and industry to academic research and spill response gather at the International Oil Spill Conference. This event serves as a forum for sharing knowledge and addressing challenges in planning for and responding to oil spills. NOAA plays a key role in planning and participating in this conference and is one of the seven permanent sponsors of the event.

This year is no different. In addition to presenting on topics such as subsea applications of dispersants and long-term ecological evaluations, Office of Response and Restoration staff are teaching several half-day workshops giving deeper perspectives, offering practical applications, and even providing hands-on experience.

If you’ll be heading to the conference in Savannah, Ga., from May 5–8, 2014, take advantage of the following short courses to pick our brains and expand yours. Or, if you can’t make it, consider applying for our next Science of Oil Spills training this August in Seattle, Wash.

Environmental Trade-offs Focusing on Protected Species

When: Monday, May 5, 2014, 8:00 a.m. to 12:00 p.m. Eastern

Who: Ed Levine (Scientific Support Coordinator), Jim Jeansonne (Scientific Support Coordinator), Gary Shigenaka (Marine Biologist), Paige Doelling (Scientific Support Coordinator)

Level: Introductory

What: Learn the basics about a variety of marine protected species, including whales, dolphins, sea turtles, birds, fish, corals, invertebrates, and plants. This course will cover where they are found, the laws that protect them, and other information necessary to understand how they may be affected by an oil spill. The course will discuss the impacts of specific response operations on marine protected species, and the decision making process for cleaning up the oil while also working in the best interest of the protected species. We will also discuss knowledge gaps and research needs and considerations when information is not available.

A man points out something on a computer screen to another person.Advanced Oil Spill Modeling and Data Sources

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Glen Watabayashi (Oceanographer), Amy MacFadyen (Oceanographer), Chris Barker (Oceanographer)

Level: Intermediate

What: This is a rare opportunity to get hands-on experience with NOAA’s oil spill modeling tools for use in response planning and trajectory forecasting. We will lead participants as they use our General NOAA Operational Modeling Environment (GNOME) model for predicting oil trajectories and the Automated Data Inquiry for Oil Spills (ADIOS) model for predicting oil weathering.

Arctic Drilling Environmental Considerations

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Kate Clark (Acting Chief of Staff), Mary Campbell Baker (Northwest/Great Lakes Damage Assessment Supervisor)

Level: Introductory

What: How are Arctic development decisions being made given environmental, political, and societal uncertainty? How should they be made? Examine how a changing Arctic is intersecting with increased shipping and oil development to alter the profile of human and environmental risks.

Worldwide Practice Approaches to Environmental Liability Assessment

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Ian Zelo (Oil Spill Coordinator) and Jessica White (Deputy Director, NOAA’s Disaster Response Center)

Level: Intermediate

What: In the United States, Natural Resource Damage Assessment (NRDA) regulations promulgated pursuant to the Oil Pollution Act of 1990 institutionalized the concept of NRDA and the cooperative NRDA. Learn some of the key principles related the NRDA and restoration process in the context of oil spills, as well as suggested best practices and how they may be implemented at various sites in the U.S. and worldwide.

Follow

Get every new post delivered to your Inbox.

Join 370 other followers