NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Two Unlikely Neighbors, Orphans and Industry, Share a Past Along the Delaware River

Sign behind a fence reading Metal Bank Super Fund Site.

The Metal Bank site was placed on a National Priorities List for Federal cleanup in 1983. (NOAA)

When NOAA environmental scientist Alyce Fritz talks about her first visit to the Metal Bank Superfund Site back in 1986, she always mentions the orphanage next door. St. Vincent’s Orphans Asylum, as it was named when it was opened by the Catholic Archdiocese of Philadelphia in 1857, is separated from the Metal Bank site by a stormwater outfall that drains into the Delaware River just north of the former orphanage.

The Metal Bank Superfund Site and St. Vincent’s are located several miles north of the center of Philadelphia, Pennsylvania, on the banks of the Delaware River in an industrial district that is part of the historic Tacony neighborhood. Located on 29 acres along the river, St. Vincent’s looks like a beautiful old park. What Fritz remembers clearly on that first visit was the children’s playground equipment placed near the river’s edge.

Large brick building with St. Vincint's over the door.

St. Vincent’s, as it appears today on the Delaware River in the Tacony neighborhood of Philadelphia.

On the adjacent 10 acre Metal Bank site, a company called Metal Bank of America, Inc., owned and operated a salvage facility where scrap metal and electric transformers were recycled for over 60 years. Part of the recycling process used by Metal Bank of America, Inc. involved draining oil—loaded with toxic compounds including PCBs—from the used transformers to reclaim copper parts. PCBs are considered a probable cause of cancer in humans and are harmful to clams and fish found in the mudflats and river next to the site.

In the 1970s the U.S. Coast Guard discovered oil releases in the Delaware River and traced them back to the site. Throughout the 1980s, the Metal Bank site’s owners used an oil recovery system to clear the groundwater of PCB-laced oil. However, oil continued to seep from an underground tank at the site. As a result, PCBs and other hazardous substances were left in the soil, groundwater, and river bed sediments at the Metal Bank site and adjacent to St. Vincent’s.

In 1983 the Metal Bank site was placed on the National Priorities List (the Superfund program) and slated for federal cleanup. During the course of the federal cleanup process, various parties were identified as being liable for the contamination at the site, including a number of utility companies that transported their used electrical transformers to the Metal Bank site for disposal or otherwise arranged to dispose of their used electrical transformers at the Metal Bank site.

Federal and local agencies collaborated on a design for cleanup of multiple contaminants of concern at the Metal Bank site. Found in the soil, sediment, groundwater, and surface water, these contaminants included but were not limited to:

  • PCBs.
  • polynuclear aromatic hydrocarbons (a toxic component of oil).
  • semi-volatile organic compounds.
  • pesticides.
  • metals.

The cleanup, which began in 2008, included excavating soils and river sediments contaminated with PCBs, capping some areas of river sediment, installing a retaining wall near the river, and removing an old transformer oil storage tank. Most of this work was completed in 2010.

Panorama of Metal Bank Superfund Site from the top of steps by the river to the mudflats in 1991. The view is looking south on the Delaware River past St. Vincent’s property. (NOAA) A view of the outflow where water runs into the Delaware River to the south of the Metal Bank site in 2013. (NOAA) A riprap sampling station near an oil slick in 1993 in front of the Metal Bank site. (NOAA) A view of the Delaware River across the mudflats on the Metal Bank Site. (EPA)

Panorama of Metal Bank Superfund Site from the top of steps by the river to the mudflats in 1991. The view is looking south on the Delaware River past St. Vincent’s property. (NOAA) A view of the outflow where water runs into the Delaware River to the south of the Metal Bank site in 2013. (NOAA) A riprap sampling station near an oil slick in 1993 in front of the Metal Bank site. (NOAA) A view of the Delaware River across the mudflats on the Metal Bank Site. (EPA)

As part of the required 5-year review period, monitoring of the Metal Bank site continues. This is to ensure the cleanup is still protecting human health and the environment, including endangered Atlantic Sturgeon and Shortnose Sturgeon. Through successful coordination among the EPA, other federal and state agencies, and some of the potentially responsible parties (PRPs) during the Superfund process, the cleanup has reduced the threat to natural resources in the river and enhanced the recovery of the habitat along the site and St. Vincent’s property.

Over the years, the role of St. Vincent’s has evolved too, from serving as a long-term home for orphans toward one of providing short-term shelter and care to abused and neglected children. Prior to the early 1990s, children who came to St. Vincent’s spent a significant part of their childhood as residents of the institution. In a 1992 article in the Philadelphia Daily News, Sister Kathleen Reilly explained that the children currently cared for by St. Vincent’s range in age from two to 12 years of age and are placed at the home temporarily through an arrangement between the City of Philadelphia Department of Human Services and Catholic Social Services. Today St. Vincent’s serves young people mostly through day programs. One thing hasn’t changed though—the lush grounds along the river are still beautiful.

Playground swings at St. Vincent's. Statue of St. Vincent with a child in front of large brick building. Elaborate locked iron gate with a cross. Pavilion with trees and river view.

From top left: A recent photo of part of the play area behind St. Vincent’s on the grounds facing the Delaware River. (NOAA) An old photo of a statue in front of St. Vincent’s Orphan Asylum, as it was originally named. (U.S. Library of Congress) The main building of the historic institution in Northeast Philadelphia that first opened its gates in 1857 as St. Vincent’s Orphans Asylum. Photo was taken in 2013. (NOAA) An old photo of a pavilion in the recreational area behind St. Vincent’s main building. The Delaware River and playground equipment is visible in the background. (U.S. Library of Congress)

The federal and state co-trustees for the ongoing Natural Resource Damage Assessment at the Metal Bank site include NOAA’s Damage Assessment, Remediation, and Restoration Program; the U.S. Fish and Wildlife Service; and multiple Pennsylvania state agencies. Collectively, the trustees are working together to further engage with the potentially responsible parties and build upon what has been accomplished at the site by the cleanup.

The trustees have invited the potentially responsible parties to join them in a cooperative effort to improve habitat for the injured natural resources (such as habitat along the river and wetlands) that support the clams, fish, and birds using the Delaware River. In addition, there is the potential for a trail to be routed through the property to a scenic view of St. Vincent’s and the river (an area which is now safe for recreational use). The trustees hope that the natural resources at the Metal Bank site can evolve to become a vibrant part of the historic Tacony neighborhood once again too.


Leave a comment

Follow Along with the State Department’s Our Ocean 2014 Conference

Jellyfish swiming near a harbor bottom.

A brown sea nettle (Chrysaora fuscescens) drifting through Monterey Harbor in California. (NOAA)

You already know how much the ocean does for you and how important it is to both celebrate and protect it. The U.S. Department of State also realizes this importance and, as a result, is hosting the Our Ocean Conference in Washington, DC from June 16–17, 2014. According to ourocean2014.state.gov:

We will bring together individuals, experts, practitioners, advocates, lawmakers, and the international ocean and foreign policy communities to gather lessons learned, share the best science, offer unique perspectives, and demonstrate effective actions. We aim to chart a way forward, working individually and together, to protect “Our Ocean.”

Watch a message about the conference and find out how you can help from Secretary of State John Kerry:

Marine pollution, a topic NOAA’s Office of Response and Restoration is very concerned about, is one of three core areas the conference aims to address, along with ocean acidification and sustainable fisheries. When a plastic bag or cigarette butt blows into a river, it can end up flowing to the ocean, where it endangers marine life. The problem is global, but mitigation is local. It’s in our hands to reduce marine debris—our trash in our ocean—at its source. Learn more about the debris filling our seas by reading about the challenges and solutions in this Our Ocean conference document [PDF], by visiting marinedebris.noaa.gov, and by watching the video below:

On the Our Ocean 2014 website, you also can submit your own pledge to protect the ocean, whether that means volunteering to clean up a beach or tracing the sustainability of the seafood you eat. Plus, you can show your support for the ocean by sharing a photo that inspires your dedication to our ocean. (If you’re looking for inspiration, try the images in our Flickr stream.) The State Department says all you have to do to participate is:

Post your photo to your favorite social media platform using the hashtag #OurOcean2014 or add it to the OurOcean2014 group on Flickr.  We will be keeping an eye out for photos using the hashtag and will choose some of the photos to be featured at the Our Ocean conference in Washington on June 16-17.

Check out the program schedule and watch the conference streaming live starting at 9:30 a.m. Eastern on Monday and Tuesday at state.gov/ourocean.


Leave a comment

Celebrate and Protect the Ocean with us on World Ocean Day

Family exploring tidepools in Santa Cruz.

Learn about, explore, and protect your ocean — our ocean. (NOAA)

At NOAA’s National Ocean Service, we’re honoring all things ocean the entire month of June, but if you have only one day to spare, make it this weekend. Sunday, June 8 is World Ocean Day. As we commemorate this interconnected body of water which sustains our planet, consider how each of us can be involved in both celebrating and protecting the ocean.

To celebrate it, we suggest you learn something new about the ocean and share it with at least one friend (perhaps by sharing this blog post). Then, tell us which actions you’re taking to protect the ocean. We have a few examples to get you ready for both.

Learn to Love the Ocean

Did you know that …

You can learn even more about the ocean and coastal areas by visiting a National Marine Sanctuary or National Estuarine Research Reserve and getting a hands-on education.

Act to Protect the Ocean

Plastic water bottle floating in the ocean.

Don’t let this be your vision of World Ocean Day. Be part of the solution. (NOAA)

Now that you’re hopefully feeling inspired by our amazing ocean, you’re ready to do something to protect it from its many threats, such as ocean acidification (global warming’s oceanic counterpart), pollution, and habitat degradation. Here are some ways you can help:

The more we all know and care about the ocean, the more we will do to take care of it. Do your part this World Ocean Day and every day.


2 Comments

A River Reborn: Restoring Salmon Habitat along Seattle’s Duwamish River

Industrial river with part of a boat in the view.

Cutting through south Seattle, the Duwamish River is still very much an industrial river. (NOAA)

Just south of Seattle, the airplane manufacturer Boeing Company has created one of the largest habitat restoration projects on the Lower Duwamish River. Boeing worked with NOAA and our partners under a Natural Resource Damage Assessment to restore habitat for fish, shorebirds, and wildlife harmed by historical industrial activities on this heavily used urban river. We documented and celebrated this work in a short video.

What Kind of Restoration?

In this video, you can learn about the restoration techniques used in the project and how they will benefit the communities of people, fish, and wildlife of the Duwamish River. The restoration project included activities such as:

  • Reshaping the shoreline and adding 170,000 native plants and large woody debris, which provide areas where young salmon can seek refuge from predators in the river.
  • Creating 2 acres of wetlands to create a resting area for migrating salmon.
  • Transforming more than a half mile of former industrial waterfront back into natural shoreline.

Watch the video:

Why Does this River Need Restoring?

In 1913, the U.S. Army Corps of Engineers excavated and straightened the Duwamish River to expand Seattle’s commercial navigation, removing more than 20 million cubic yards of mud and sand and opening the area to heavy industry. But development on this waterway stretches back to the 1870s.

Ninety-seven percent of the original habitat for salmon—including marsh, mudflats, and toppled trees along multiple meandering channels— was lost when they transformed a 9-mile estuary into a 5-mile industrial channel.

As damaged and polluted as the Lower Duwamish Waterway is today, the habitat here is crucial to ensuring the survival and recovery of threatened fish species, including the Puget Sound Chinook and Puget Sound Steelhead. These young fish have to spend time in this part of the Duwamish River, which is a Superfund Site, as they transition from the river’s freshwater to the saltwater of the Puget Sound and Pacific Ocean. Creating more welcoming habitat for these fish gives them places to find food and escape from predators.

Fortunately, this restored waterfront outside of a former Boeing plant will be maintained for all time, and further cleanup and restoration of the river is in various stages as well.

UPDATE 6/17/2014: On June 17, 2014, Boeing hosted a celebration on the newly restored banks of the Lower Duwamish River to recognize the partners who helped make the restoration a reality. Speakers at the event included NOAA, Boeing, the Muckleshoot Tribe, and a local community group. This also gave us the opportunity to share the video “A River Reborn,” which was well received.


Leave a comment

Watch Bald Eagle Restoration Come Alive in California’s Channel Islands

On the heels of Endangered Species Day, we take a look at the incredible recovery story of the Bald Eagle, which teetered on the edge of extinction in the second half of the twentieth century, in part due to impacts from people releasing the pesticide DDT into the environment.

By the early 1960s Bald Eagles had disappeared from southern California’s Channel Islands after chemical companies near Los Angeles discharged into the ocean millions of pounds of the toxic chemicals DDT and PCBs [PDF], both of which stay in the environment for a very long time. Once DDT worked its way up the marine food chain to the eagles, it weakened the shells of their eggs, causing the parent eagles to crush the eggs before they could hatch.

However, thanks to the efforts of NOAA’s Montrose Settlements Restoration Program and our partners, including the Institute for Wildlife Studies, Bald Eagles have made a comeback in southern California’s Channel Islands.

Learn more about this notable conservation work in this Thank You Ocean Report video podcast:

“This program has been 30 years in the making and after that amount of time we have finally started to see natural hatching out on the islands,” says bird biologist Annie Little of the Montrose Settlements Restoration Program. “I think it shows the persistence of these types of chemicals in the environment and that restoration doesn’t happen overnight.”

But it does happen with a lot of hard work and dedication. Between 2006 and 2013, a total of 81 Bald Eagle chicks have hatched in the Channel Islands. You can watch the eagles’ recovery in real time as they build nests and hatch chicks on the islands via the Bald Eagle web cams.

Also from Thank You Ocean, here’s an everyday action you can take to protect the ocean and the animals dependent on it: “Avoid the use of toxic chemicals and keep trash and chemicals out of storm drains. Polluted water from storm drains flows into the sea and can harm marine life and the environment.”


Leave a comment

How Will You Celebrate World Ocean Day?

Red-footed booby landing near edge of ocean atoll.

Red-footed booby at the Three Sisters at Pearl and Hermes Atoll in the Papahanaumokuakea Marine National Monument. (NOAA)

World Ocean Day is June 8, and we’re only a month away. What will you do to celebrate and protect that big blue body of water that sustains our planet?

We have a few ideas to get you ready:

Look for even more ways to keep the ocean healthy and free of pollution, a small way of saying thanks for everything the ocean does for us.


Leave a comment

NOAA and Partners Invest in an Innovative New Stewardship Program for Washington’s Commencement Bay

A group of people holding a giant check for $4.9 million.

NOAA hands off a $4.9 million check to the nonprofit EarthCorps, which will use the funding for planning, restoration, monitoring, and maintenance at 17 restoration sites across Washington’s Commencement Bay. U.S. Representatives Dennis Heck (WA), Derek Kilmer (WA), and Peter DeFazio (OR) were also in attendance. (NOAA)

Last week, NOAA and partners awarded $4.9 million to EarthCorps for long-term stewardship of restoration sites in Commencement Bay near Tacoma, Washington. The Commencement Bay Stewardship Collaborative is part of a larger investment that will conserve habitat for fish and wildlife and give local urban communities access to the shoreline.

EarthCorps, which was competitively selected for this funding, is a non-profit organization that trains environmental leaders through local service projects.

Volunteers plant ferns at a restoration site in Commencement Bay.

Volunteers restore a site in Commencement Bay. (NOAA)

The funding will support planning, restoration, monitoring, and maintenance at 17 sites across the Bay. These sites were restored over the past 20 years as part of the ongoing Commencement Bay natural resource damage assessment (NRDA) case. This is the first time that a third party has received funding to launch a comprehensive stewardship program as part of a NRDA case. We hope it will become a model of stewardship for future cases.

Commencement Bay is the harbor for Tacoma, Washington, at the southern end of Puget Sound. Many of the waterways leading into the Bay—which provide habitat for salmon, steelhead, and other fish—have been polluted by industrial and commercial activities. NOAA and other federal, state, and tribal partners have been working for decades to address the contamination and restore damaged habitat.

One of the sites that EarthCorps will maintain is the Sha Dadx project on the bank of the Puyallup River. The lower Puyallup River was straightened in the early 20th century, leaving little off-channel habitat—which juvenile salmon use for rearing and foraging. The project reconnected the river to a curve that had been cut off by levees. This restored 20 acres of off-channel habitat, and fish and wildlife are using the site.

Most of the parties responsible for the contamination have settled and begun implementing restoration. NOAA and its partners are evaluating options for pursuing parties that haven’t settled yet. As new sites are added, stewardship funds will be secured at settlement and likely added to the overall long-term effort.

This story was originally posted on NOAA’s National Marine Fisheries Service Habitat Conservation website.


Leave a comment

Oil Seeps, Shipwrecks, and Surfers Ride the Waves in California

This is a post by Jordan Stout, the Office of Response and Restoration’s Scientific Support Coordinator based in Alameda, Calif.

Tarball on the beach with a ruler.

A tarball which washed up near California’s Half Moon Bay in mid-February 2014. (Credit: Beach Watch volunteers with the Farallones Marine Sanctuary Association)

What do natural oil seeps, shipwrecks, and surfers have in common? The quick answer: tarballs and oceanography. The long answer: Let me tell you a story …

A rash of tarballs, which are thick, sticky, and small pieces of partially broken-down oil, washed ashore at Half Moon Bay, Calif., south of San Francisco back in mid-February. This isn’t an unusual occurrence this time of year, but several of us involved in spill response still received phone calls about them, so some of us checked things out.

Winds and ocean currents are the primary movers of floating oil. A quick look at conditions around that time indicated that floating stuff (like oil) would have generally been moving northwards up the coast. Off of Monterey Bay, there had been prolonged winds out of the south several times since December, including just prior to the tarballs’ arrival. Coastal currents at the time also showed the ocean’s surface waters moving generally up the coast. Then, just hours before their arrival, winds switched direction and started coming out of the west-northwest, pushing the tarballs ashore.

Seeps and Shipwrecks

It’s common winter conditions like that, combined with the many natural oil seeps of southern California, that often result in tarballs naturally coming ashore in central and northern California. Like I said, wintertime tarballs are not unheard of in this area and people weren’t terribly concerned. Even so, some of the tarballs were relatively “fresh” and heavy weather and seas had rolled through during a storm the previous weekend. This got some people thinking about the shipwreck S/S Jacob Luckenbach, a freighter which sank near San Francisco in 1953 and began leaking oil since at least 1992.

When salvage divers were removing oil from the Luckenbach back in 2002, they reported feeling surges along the bottom under some wave conditions. The wreck is 468 feet long, lying in about 175 feet of water and is roughly 20 miles northwest of Half Moon Bay. Could this or another nearby wreck have been jostled by the previous weekend’s storm and produced some of the tarballs now coming ashore?

Making Waves

Discussions with the oceanographers in NOAA’s Office of Response and Restoration provided me with some key kernels of wisdom about what might have happened. First, the height of a wave influences the degree of effects beneath the ocean surface, but the wave length determines how deep those effects go. So, big waves with long wavelengths have greater influence at greater depths than smaller waves with shorter wavelengths.

Graphic describing and showing wave length, height, frequency, and period.

Credit: NOAA’s Ocean Service

Second, waves in deep water cause effects at depths half their length. This means that a wave with a length of 100 meters can be felt to a depth of 50 meters. That was great stuff, I thought. But the data buoys off of California, if they collect any wave data at all, only collect wave height and period (the time it takes a wave to move from one high or low point to the next) but not wave length. So, now what?

As it turns out, our office’s excellent oceanographers also have a rule of thumb for calculating wave length from this information: a wave with a 10-second period has a wave length of about 100 meters in deep water. So, that same 10-second wave would be felt at 50 meters, which is similar to the depth of the shipwreck Jacob Luckenbach (54 meters or 175 feet).

Looking at nearby data buoys, significant wave heights during the previous weekend’s storm topped out at 2.8 meters (about 9 feet) with a 9-second period. So, the sunken Luckenbach may have actually “felt” the storm a little bit, but probably not enough to cause a spill of any oil remaining on board it.

Riding Waves

Even so, just two weeks before the tarballs came ashore, waves in the area were much, much bigger. The biggest waves the area had seen so far in 2014, in fact: more than 4 meters (13 feet) high, with a 24-second period. If the Luckenbach had been jostled by any waves at all in 2014, you would think it would have been from those waves in late January, and yet there were no reports of tarballs (fresh or otherwise) even though winds were blowing towards shore for about a week afterwards. This leads me to conclude that the recent increase in tarballs came from somewhere other than a nearby shipwreck.

Where do surfers fit in all this? That day in late January when the shipwreck S/S Jacob Luckenbach was being knocked around by the biggest waves of 2014 was the day of the Mavericks Invitational surf contest in Half Moon Bay. People came from all over to ride those big waves—and it was amazing!

Jordan StoutJordan Stout currently serves as the NOAA Scientific Support Coordinator in California where he provides scientific and technical support to the U.S. Coast Guard and Environmental Protection Agency in preparing for and responding to oil spills and hazardous material releases. He has been involved in supporting many significant incidents and responses in California and throughout the nation.


3 Comments

Detecting Change in a Changing World: 25 Years After the Exxon Valdez Oil Spill

Life between high and low tide along the Alaskan coast is literally rough and tumble.

The marine animals and plants living there have to deal with both crashing sea waves at high tide and the drying heat of the sun at low tide. Such a life can be up and down, boom and bust, as favorable conditions come and go quickly and marine animals and plants are forced to react and repopulate just as quickly.

But what happens when oil from the tanker Exxon Valdez enters this dynamic picture—and 25 years later, still hasn’t completely left? What happens when bigger changes to the ocean and global climate begin arriving in these waters already in flux?

Telling the Difference

Two people wearing chest waders sift for marine life in shallow rocky waters.

In 2011 NOAA marine biologist Gary Shigenaka (right) sifts through the sediments of Alaska’s Lower Herring Bay, looking for the tiny marine life that live there. (Photo by Gerry Sanger/Sound Ecosystem Adventures)

In the 25 years since the Exxon Valdez oil spill hit Alaska’s Prince William Sound, NOAA scientists, including marine biologist Gary Shigenaka and ecologist Alan Mearns, have been studying the impacts of the spill and cleanup measures on these animals and plants in rocky tidal waters.

Their experiments and monitoring over the long term revealed a high degree of natural variability in these communities that was unrelated to the oil spill. They saw large changes in, for example, numbers of mussels, seaweeds, and barnacles from year to year even in areas known to be unaffected by the oil spill.

This translated into a major challenge. How do scientists tell the difference between shifts in marine communities due to natural variability and those changes caused by the oil spill?

Several key themes emerged from NOAA’s long-term monitoring and subsequent experimental research:

  • impact. How do we measure it?
  • recovery. How do we define it?
  • variability. How do we account for it?
  • subtle connection to large-scale oceanic influences. How do we recognize it?

What NOAA has learned from these themes informs our understanding of oil spill response and cleanup, as well as of ecosystems on a larger scale. None of this, however, would have been apparent without the long-term monitoring effort. This is an important lesson learned from the Exxon Valdez experience: that monitoring and research, often viewed as an unnecessary luxury in the context of a large oil spill response, are useful, even essential, for framing the scientific and practical lessons learned.

Remote Possibilities

As NOAA looks ahead to the future—and with the Gulf of Mexico’s Deepwater Horizon oil spill in our recent past—we can incorporate and apply lessons of the Exxon Valdez long-term program into how we will support response decisions and define impact and recovery.

The Arctic is a region of intense interest and scrutiny. Climate change is opening previously inaccessible waters and dramatically shifting what scientists previously considered “normal” environmental conditions. This is allowing new oil production and increased maritime traffic through Arctic waters, increasing the risk of oil spills in remote and changing environments.

If and when something bad happens in the Arctic, how do scientists determine the impact and what recovery means, if our reference point is a rapidly moving target? What is our model habitat for restoring one area impacted by oil when the “unimpacted” reference areas are undergoing their own major changes?

Illustrated infographic showing timeline of ecological recovery after the Exxon Valdez oil spill.

Tracking the progress of recovery for marine life and habitats following the Exxon Valdez oil spill is no easy task. Even today, not all of the species have recovered or we don’t have enough information to know. (NOAA) Click to enlarge.

Listening in

NOAA marine biologist Gary Shigenaka explores these questions as he reflects on the 25 years since the Exxon Valdez oil spill in the following Making Waves podcast from the National Ocean Service:

[NARRATOR] This all points back at what Gary says is the main take-away lesson after 25 years of studying the aftermath of this spill: the natural environment in Alaska and in the Arctic are rapidly changing. If we don’t understand that background change, then it’s really hard to say if an area has recovered or not after a big oil spill.

[GARY SHIGENAKA] “I think we need to really keep in mind that maybe our prior notions of recovery as returning to some pre-spill or absolute control condition may be outmoded. We need to really overlay that with the dynamic changes that are occurring for whatever reason and adjust our assessments and definitions accordingly. I don’t have the answers for the best way to do that. We’ve gotten some ideas from the work that we’ve done, but I think that as those changes begin to accelerate and become much more marked, then it’s going to be harder to do.”

 

Read a report by Gary Shigenaka summarizing information about the Exxon Valdez oil spill and response along with NOAA’s role and research on its recovery over the past 25 years.


Leave a comment

Mapping the Problem After Owners Abandon Ship

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division.

One of the largest vessel removal efforts in Washington history was a former Navy Liberty Ship, the Davy Crockett. In 2011 the Davy Crockett, previously abandoned by its owner on the Washington shore of the Columbia River, began leaking oil and sinking due to improper and unpermitted salvage operations. Its cleanup and removal cost $22 million dollars, and the owner was fined $405,000 by the Washington Department of Ecology and sentenced to four months in jail by the U.S. Attorney, Western District of Washington.

As I’ve mentioned before, derelict and abandoned vessels like the Davy Crockett are a nationwide problem that is expensive to deal with properly and, if the vessels are left to deteriorate, can cause significant environmental impacts. Unfortunately Washington’s Puget Sound is no exception to this issue.

Agency Collaboration

I’m part of the Derelict Vessel Task Force led by U.S. Coast Guard Sector Puget Sound. Made up of federal, state, and local agencies, this task force aims to identify and remove imminent pollution and hazard-to-navigation threats from derelict vessels and barges within Puget Sound. Among these agencies there are different jurisdictions and enforcement mechanisms related to derelict vessels.

A key player is Washington’s Department of Natural Resources (WA DNR), which manages the state Derelict Vessel Removal Program (DVRP). The DVRP has limited funding for removal of priority vessels. Unfortunately, according to WA DNR [PDF], with the growing number and size of problem vessels, program funding can’t keep up with the rising removal and disposal costs. The backlog of vessels in need of removal continues to grow.

Keeping Track

I’m working with the NOAA Office of Response and Restoration’s Spatial Data Branch to enter this list of derelict vessels into ERMA®. ERMA is a NOAA online mapping tool that integrates both static and real-time data to support environmental planning and response operations. Right now the vessels are primarily tracked in the WA DNR DVRP database. By pulling this data into ERMA, the task force will not only be able to see the vessels displayed on a map but also make use of the various layers of environmental sensitivity data already within ERMA. The hope is that this can help with the prioritizing process and possibly eventually be used as a tool to raise awareness.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington's Puget Sound as well as the colors indicating the shoreline's characteristics and vulnerability to oil.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington’s Puget Sound as well as the colors indicating the shoreline’s characteristics and vulnerability to oil. (NOAA)

However, there aren’t enough resources within the Derelict Vessel Task Force to gather and continue to track (as the vessels can move) all the data needed in order to map the vessels accurately in ERMA. As a result, the task force is turning to local partners in order to help capture data.

Reaching Out

One such partner is the local Coast Guard Auxiliary Flotillas, a group of dedicated civilians helping the Coast Guard promote safety and security for citizens, ports, and waterways. In order to garner support for data-gathering, I recently attended the USCG Auxiliary Flotilla Seattle-Elliott Bay meeting, along with members of the local Coast Guard Incident Management Division who head the Puget Sound Derelict Vessel Task Force.

I spoke about a few local derelict vessel incidents and their impacts to the environment. I also showed how ERMA can be a powerful tool for displaying and prioritizing this information—if we can get the basic data that’s missing. As a result, this Flotilla will follow up with my Coast Guard colleagues and start collecting missing information on derelict and abandoned vessels on behalf of the Coast Guard and WA DNR.

Gathering data and displaying derelict vessels graphically is a small, but important, step on the way to solving the massive problem of derelict vessels. Once complete I hope that ERMA will be a powerful aid in displaying the issue and helping make decisions regarding derelict vessels in the Puget Sound. Stay tuned.

[Editor's Note: You can see a U.S. Coast Guard video of the start-to-finish process of removing the Davy Crockett from the Columbia River along with the Washington Department of Ecology's photos documenting the response.]

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.

Follow

Get every new post delivered to your Inbox.

Join 370 other followers