NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Join the International Coastal Cleanup and Clean up a Beach Near You

Plastic bottle caps picked up from a beach on Midway Atoll.

Help pick up marine debris where you live on September 21 with the International Coastal Cleanup. Marine debris is a global problem, even for places like the middle of the U.S. or a remote Pacific island. The plastic bottle caps shown here were collected from Midway Atoll in the Northwestern Hawaiian Islands by NOAA Pacific Islands Fisheries Science Center. (NOAA)

Worried about the amount of trash on our coasts? Do gyres of bobbing plastic whirl through your head each night? Help wipe these worries from your mind and the beach by joining the International Coastal Cleanup on September 21, 2013.

With more than 550,000 volunteers scouring beaches, rivers, and lakes last year, this event is the biggest one-day cleanup of marine debris in the world. In the past, volunteers have turned up everything from bottle caps and plastic bags to toilet seats and cyborg sea-kitties. But each year cigarette butts take home the prize for most common item of debris found on the beach, with 2,117,931 of these toxic pieces of plastic turning up during the 2012 global cleanup alone.

To volunteer at a location near you, visit Ocean Conservancy online. The NOAA Marine Debris Program is a proud sponsor of the annual event, and last year NOAA volunteers cleaned up more than 2.8 tons (nearly 5,700 pounds) of debris from waterways and beaches in DC, Seattle, and Oahu.

Even if you can’t make it to your nearest waterway on September 21, you can still help reduce how much trash makes it to the ocean by planning your own beach cleanup and considering these 10 suggestions from Ocean Conservancy:

10 things you can do for trash free seas


2 Comments

NOAA Lifts 14 Metric Tons of Fishing Nets and Plastics from Hawaiian Coral Reefs

NOAA Fisheries Biologist Matthew Parry also contributed to this post.

Lost or discarded fishing nets frequently get lodged on corals and smother or break the corals underneath them. Here, a diver removes them from a reef near Midway Atoll in the Northwestern Hawaiian Islands. (NOAA)

Lost or discarded fishing nets frequently get lodged on corals and smother or break the corals underneath them. Here, a diver removes them from a reef near Midway Atoll in the Northwestern Hawaiian Islands. (NOAA)

The sea life around Hawaii’s remote Midway Atoll is swimming easier after NOAA recently removed 14 metric tons of debris from its waters (a metric ton equals about 2,204 pounds). The removal team, consisting of members of the NOAA Coral Reef Ecosystem Division, spent 19 days collecting debris both from along the shoreline and in the water around Midway Atoll in the Northwestern Hawaiian Islands. As usual, the bulk of the items recovered were abandoned fishing gear and plastics.

During the 2013 cruise, the NOAA team discovered and hauled away a 23-foot-long boat that was confirmed to have been washed away from Japan during the 2011 earthquake and tsunami. (NOAA)

During the 2013 cruise, the NOAA team discovered and hauled away a 23-foot-long boat that was confirmed to have been washed away from Japan during the 2011 earthquake and tsunami. (NOAA)

Notably, the team also removed a 23-foot-long derelict vessel weighing close to three-quarters of a metric ton. This vessel was confirmed as having been lost from Japan during the 2011 earthquake and resulting tsunami. (Learn more about marine debris from the tsunami.)

This current round of marine debris removal efforts began in 2011 when a plan was put in place to help restore the environment injured after the research ship M/V Casitas ran aground on the coral reefs of Pearl and Hermes Atoll in 2005. This atoll is located in the Northwestern Hawaiian Islands in what is now the Papahanaumokuakea Marine National Monument. Our office, along with our partners, undertook a Natural Resource Damage Assessment for this ship grounding. This process resulted in a legal settlement which provided NOAA with funds to conduct marine debris removal projects over several summers, starting in 2011. The 2011 efforts removed 15 metric tons of marine debris while the 2012 cruise brought in 52 metric tons. Since 2011, NOAA has collected a total of 81 metric tons or 178,000 pounds of debris from the Northwestern Hawaiian Islands.

The 2013 NOAA team collected 14 metric tons of fishing gear, plastic, and other debris from the shoreline and waters around Midway Atoll. (NOAA)

The 2013 NOAA team collected 14 metric tons of fishing gear, plastic, and other debris from the shoreline and waters around Midway Atoll. (NOAA)

Marine debris, particularly discarded and lost fishing gear, is a substantial source of coral damage in the Papahanaumokuakea Marine National Monument. Fishing nets frequently get lodged on corals and smother or break the corals underneath them. NOAA and our partners determined that removing nets from coral reefs in this area would prevent similar injuries to corals as those that occurred during the M/V Casitas grounding and subsequent response.

Learn more about efforts to restore coral reefs after this ship grounding [PDF].


2 Comments

Taking a Closer Look at Marine Debris in Your Backyard

Here's hoping your backyard doesn't look like this: debris scattered on the ocean floor near the Pacific Islands. (NOAA)

Here’s hoping your backyard doesn’t look like this: debris scattered on the ocean floor near the Pacific Islands. (NOAA)

Check out NOAA’s Marine Debris Blog for their ongoing series, Marine Debris in Your Backyard, which examines the unique challenges of marine debris and its impacts on various parts of the United States.

Join them as they “journey across the nation, looking at the nine different regions the NOAA Marine Debris Program spans and the most common types of debris found in them, and how it may have ended up there.”

So far, they have visited the following places:

  • Alaska, where remote beaches, rough seas, and limited fair weather mean volunteers have only a few months each year to remove anywhere from one to 25 tons of debris per mile of shoreline.
  • Great Lakes, where 21 percent of the world’s surface fresh water resides, discarded fishing lines often entangle wildlife, and rumors of a plastic-filled “garbage patch” are beginning to appear.
  • Pacific Islands, where Hawaii, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, and a whole lot of open ocean make up the largest region NOAA supports, but where there is so little space for landfills that NOAA helped establish a public-private partnership in Hawaii to turn abandoned fishing gear into a local electricity source.
  • California, where its 1,100 miles of shoreline vary from coastal mountains in the north to well-populated, sandy beaches in the south, and where the nation’s first “Trash Policy” will attempt to control the flow of garbage in California’s waterways.

Stay tuned as they continue working their way around the shores of the United States, and ask yourself, what does marine debris look like where you live? How do you help keep it out of the ocean?

And remember, even if you live hundreds of miles from a beach, a piece of litter such as a cigarette butt (which actually contains plastic) or a plastic bag can still make its way through storm drains and rivers to the ocean. This makes marine debris, no matter where you live, truly everyone’s problem.


4 Comments

Is There a Garbage Patch in the Great Lakes?

This is a post by Sarah Opfer, NOAA Marine Debris Program Great Lakes Regional Coordinator.

Plastic debris in the form of fragments, bottle caps, food packaging, and smoking products are commonly found on Great Lake beaches. Here, marine debris has washed up at Maumee Bay State Park on the shores of Lake Erie. (NOAA Marine Debris Program)

Plastic debris in the form of fragments, bottle caps, food packaging, and smoking products are commonly found on Great Lake beaches. Here, marine debris has washed up at Maumee Bay State Park on the shores of Lake Erie. (NOAA Marine Debris Program)

The “Great Pacific Garbage Patch“—a purported island of trash twice the size of Texas floating in the Pacific Ocean—receives a lot of media attention. Recent reports suggest that a similar garbage patch may be developing in the Great Lakes as well.

However, based on research we know that the name “garbage patch” is misleading and that there is no island of trash forming in the middle of the ocean. We also know that there is no blanket of marine trash that is visible using current satellite or aerial photography.

Plastic debris is found in Great Lake waters as well. This debris was pulled from a Lake Erie marina during a cleanup. (NOAA Marine Debris Program)

Plastic debris is found in Great Lake waters as well. This debris was pulled from a Lake Erie marina during a cleanup. (NOAA Marine Debris Program)

Yet, there are places in the ocean where currents bring together lots and lots of floatable materials, such as plastics and other trash. While the types of litter gathering in these areas can vary greatly, from derelict fishing nets to balloons, the kind that is capturing the most attention right now are microplastics. These are small bits of plastic often not immediately evident to the naked eye.

While we know about the so-called “garbage patches” in the Pacific Ocean, could there be a similar phenomenon in other parts of the world, including the Great Lakes? Recent research on the distribution of plastics in the Great Lakes has people now asking that very question.

The Great Lakes are no mere group of puddles. They contain nearly 20% of the world’s surface freshwater and have a coastline longer than the East Coast of the United States. Within the Great Lakes system, water flows from Lake Superior and Lake Michigan, the lakes furthest west and highest in elevation, east into Lake Huron. From there, it travels through Lake St. Clair and the Detroit River into Lake Erie. Then, some 6 million cubic feet of water pass over Niagara Falls each minute and into Lake Ontario before flowing through the St. Lawrence River and into the Atlantic Ocean.

Average summer water circulation patterns in the Great Lakes. Beletsky et al. 1999 (NOAA Great Lakes Environmental Research Laboratory)

Average summer water circulation patterns in the Great Lakes. Beletsky et al. 1999 (NOAA Great Lakes Environmental Research Laboratory)

This water flow influences circulation patterns within and between each of the lakes. Currents within the Great Lakes also are powered by wind, waves, energy from the sun, water density differences, the shape of the lakebed, and the shoreline. These circulation currents have the tendency to create aggregations of garbage and debris in certain areas, just like in the oceans. But, just as in the Pacific Ocean, this doesn’t mean the Great Lakes have floating trash islands either.

In an effort to better identify and understand how plastic debris is spread throughout the Great Lakes, researchers at the University of Waterloo in Canada have partnered with COM DEV on an exploratory research project. COM DEV is a designer and manufacturer of space and remote sensing technology. Researchers are working with this industry partner to develop and test the ability of different remote sensors to detect plastics in the Great Lakes.

If they find the task is feasible and the trial runs prove to be effective, this work could be applied beyond the Great Lakes and across the United States. The NOAA Marine Debris Program, part of the Office of Response and Restoration, is engaged with and following the project. We plan to participate in the next steps of this promising effort. You can learn more about the project and a related workshop on plastic pollution in the Great Lakes.

Sarah Opfer

Sarah Opfer

Sarah Opfer received her bachelor’s and master’s degrees in biology from Bowling Green State University and was a Knauss Sea Grant fellow with NOAA in 2009. She is based in Ohio and enjoys having Lake Erie in her back yard! While away from work she enjoys cooking, reading, kayaking, dreaming of places she wants to travel to, and spending time with her family.


5 Comments

Where Are the Pacific Garbage Patches Located?

Microplastics in sand.

Microplastics, small plastics less than 5 millimeters long, are an increasingly common type of marine debris found in the water column (including the “garbage patches”) and on shorelines around the world. Based on research to date, most commonly used plastics do not fully degrade in the ocean and instead break down into smaller and smaller pieces. (NOAA Marine Debris Program)

The Pacific Ocean is massive. It’s the world’s largest and deepest ocean, and if you gathered up all of the Earth’s continents, these land masses would fit into the Pacific basin with a space the size of Africa to spare.

While the Pacific Ocean holds more than half of the planet’s free water, it also unfortunately holds a lot of the planet’s garbage (much of it plastic). But that trash isn’t spread evenly across the Pacific Ocean; a great deal of it ends up suspended in what are commonly referred to as “garbage patches.”

A combination of oceanic and atmospheric forces causes trash, free-floating sea life (for example, algae, plankton, and seaweed), and a variety of other things to collect in concentrations in certain parts of the ocean. In the Pacific Ocean, there are actually a few “Pacific garbage patches” of varying sizes as well as other locations where marine debris is known to accumulate.

The Eastern Pacific Garbage Patch (aka “Great Pacific Garbage Patch”)

In most cases when people talk about the “Great Pacific Garbage Patch,” they are referring to the Eastern Pacific garbage patch. This is located in a constantly moving and changing swirl of water roughly midway between Hawaii and California, in an atmospheric area known as the North Pacific Subtropical High.

NOAA National Weather Service meteorologist Ted Buehner describes the North Pacific High as involving “a broad area of sinking air resulting in higher atmospheric pressure, drier warmer temperatures and generally fair weather (as a result of the sinking air).”

This high pressure area remains in a semi-permanent state, affecting the movement of the ocean below. “Winds with high pressure tend to be light(er) and blow clockwise in the northern hemisphere out over the open ocean,” according to Buehner.

As a result, plastic and other debris floating at sea tend to get swept into the calm inner area of the North Pacific High, where the debris becomes trapped by oceanic and atmospheric forces and builds up at higher concentrations than surrounding waters. Over time, this has earned the area the nickname “garbage patch”—although the exact content, size, and location of the associated marine debris accumulations are still difficult to pin down.

Map of ocean currents, features, and areas of marine debris accumulation (including "garbage patches") in the Pacific Ocean.

This map is an oversimplification of ocean currents, features, and areas of marine debris accumulation (including “garbage patches”) in the Pacific Ocean. There are numerous factors that affect the location, size, and strength of all of these features throughout the year, including seasonality and El Nino/La Nina. (NOAA Marine Debris Program)

The Western Pacific Garbage Patch

On the opposite side of the Pacific Ocean, there is another so-called “garbage patch,” or area of marine debris buildup, off the southeast coast of Japan. This is the lesser known and studied, Western Pacific garbage patch. Southeast of the Kuroshio Extension (ocean current), researchers believe that this garbage patch is a small “recirculation gyre,” an area of clockwise-rotating water, much like an ocean eddy (Howell et al., 2012).

North Pacific Subtropical Convergence Zone

While not called a “garbage patch,” the North Pacific Subtropical Convergence Zone is another place in the Pacific Ocean where researchers have documented concentrations of marine debris. A combination of oceanic and atmospheric forces create this convergence zone, which is positioned north of the Hawaiian Islands but moves seasonally and dips even farther south toward Hawaii during El Niño years (Morishige et al., 2007, Pichel et al., 2007). The North Pacific Convergence Zone is an area where many open-water marine species live, feed, or migrate and where debris has been known to accumulate (Young et al. 2009). Hawaii’s islands and atolls end up catching a notable amount of marine debris as a result of this zone dipping southward closer to the archipelago (Donohue et al. 2001, Pichel et al., 2007).

But the Pacific Ocean isn’t the only ocean with marine debris troubles. Trash from humans is found in every ocean, from the Arctic (Bergmann and Klages, 2012) to the Antarctic (Eriksson et al., 2013), and similar oceanic processes form high-concentration areas where debris gathers in the Atlantic Ocean and elsewhere.

You can help keep trash from becoming marine debris by (of course) reducing, reusing, and recycling; by downloading the NOAA Marine Debris Tracker app for your smartphone; and by learning more at http://marinedebris.noaa.gov.

Carey Morishige, Pacific Islands regional coordinator for the NOAA Marine Debris Program, also contributed to this post.

Literature Cited

Bergmann, M. and M. Klages. 2012. Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Marine Pollution Bulletin, 64: 2734-2741.

Donohue, M.J., R.C. Boland, C.M. Sramek, and G.A Antonelis. 2001. Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems. Marine Pollution Bulletin, 42 (12): 1301-1312.

Eriksson, C., H. Burton, S. Fitch, M. Schulz, and J. van den Hoff. 2013. Daily accumulation rates of marine debris on sub-Antarctic island beaches. Marine Pollution Bulletin, 66: 199-208.

Howell, E., S. Bograd, C. Morishige, M. Seki, and J. Polovina. 2012. On North Pacific circulation and associated marine debris concentration. Marine Pollution Bulletin, 65: 16-22.

Morishige, C., M. Donohue, E. Flint, C. Swenson, and C. Woolaway. 2007. Factors affecting marine debris deposition at French Frigate Shoals, Northwestern Hawaiian Islands Marine National Monument, 1990-2002. Marine Pollution Bulletin, 54: 1162-1169.

Pichel, W.G., J.H. Churnside, T.S. Veenstra, D.G. Foley, K.S. Friedman, R.E. Brainard, J.B. Nicoll, Q. Zheng and P. Clement-Colon. 2007. Marine debris collects within the North Pacific Subtropical Convergence Zone [PDF]. Marine Pollution Bulletin, 54: 1207-1211.

Young L. C., C. Vanderlip, D. C. Duffy, V. Afanasyev, and S. A. Shaffer. 2009. Bringing home the trash: do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses? PLoS ONE 4 (10).


Leave a comment

An Insider’s Look at How NOAA Keeps Trash out of the Ocean

Most of us have seen marine debris in its smaller forms—water bottles, plastic bags and other consumer waste. But it can also take the form of abandoned vessels, drifting fishing nets, and even lost crab pots on the ocean bottom, still catching sea life long after they are lost.

Peter Murphy has some fun teaching a child about trash in our oceans.

NOAA marine debris expert Peter Murphy has some fun teaching a child about trash in our oceans. (NOAA)

Peter Murphy is the Alaska Coordinator for the NOAA Marine Debris Program, which supports national and global efforts to research, prevent, and reduce the impacts of marine debris. Murphy and his colleagues work to understand these impacts and communicate them to policy-makers, stakeholders, and the public. Alaska, with its massive and remote coastline, significant coastal resources, and strong marine economy and culture, is a dynamic and important part of the marine debris landscape.

Here, Murphy gives us the insider view of working at NOAA and what it takes to help keep trash off our coasts and out of the ocean.

Why is your work important?

Marine debris is an everyday, global problem that can have big impacts on natural resources, the economy, navigation, and even human health and safety. For example, derelict nets and traps can continue to fish for years after they’re lost, and microplastics can be ingested by many different species.

However, there’s something people can do about it by making more sustainable choices in what they use, how they use it, and how they dispose of it. Doing research on the impacts and finding ways to communicate those findings to change behaviors is an important link that we work to make in the Marine Debris Program. I focus on Alaska, which has more coastline than the rest of the United States combined and a huge amount of natural resources, so there is even more opportunity for impact and for action.

What part of your job with NOAA did you least expect to be doing?

Working with detection technologies—satellites, radar, and especially sonar—was definitely an unexpected element of my work, but a very rewarding one. Translating sonar tracks into a map that guides divers to retrieve and examine crab pots 100 feet below the surface is a fun challenge.

If you could invent any tool to make your work more efficient and cost were no object, what would it be? Why?

First: A remote sensor that could definitively and reliably detect debris greater than one millimeter in size. One of our challenges is that we know there are areas of concentration in the open ocean, but when they go undetected, we don’t know if it is because there isn’t anything there to detect (unlikely) or because our sensors can’t pick up everything that’s there (more likely). Knowing that would help our work in assessing density, impacts, and behavior of debris.

Second: A small, sturdy, reliable, and inexpensive device to convert plastics (including Styrofoam) into liquid fuel. Small communities in Alaska often do beach cleanups, but have nowhere to put the debris—primarily plastics—that washes ashore from all over the Pacific Rim. This would give them a way to not only empty their landfills, but provide a direct benefit in the form of energy for the work they do.

How did you become interested in communicating about science?

As I learned more about the oceans and the fascinating interconnections across the many systems that make it all work, I wanted to be able to explain and share that information in an accessible way. Seeing a concept—derelict fishing gear, ocean circulation, or plastic degradation—click for somebody at a booth we’re hosting or during a presentation we’re giving is a great feeling.

When did you know you wanted to pursue a career in science?

I was always fascinated with how things worked. My grandfather, an engineer at Boeing, gave me a subscription to Popular Mechanics as a kid, and I became fascinated with how people worked to innovate and solve problems using science. That respect and fascination stuck with me all through school.


2 Comments

With Skiff Found off Maui, NOAA and Partners Confirm Hawaii’s Latest Reports of Japan Tsunami Marine Debris

Skiff covered in barnacles towed behind a boat.

After finding the 20-by-6-foot skiff covered in barnacles floating northeast of Maui, the crew of the F/V Zephyr towed it in and cleaned it up. This skiff is Hawaii’s second confirmed piece of marine debris connected to the 2011 Japan tsunami. (Peter Grillo, F/V Zephyr)

On the heels of Hawaii’s first confirmed report of Japan tsunami debris, NOAA and our partners are already examining the second confirmed item: a barnacled skiff which a fisherman found off the Hawaii coast—and which he wants to keep.

Using the skiff’s registration number, NOAA worked through the Japan Consulate in Hawaii to track down its owner, who expressed no interest in having it returned or in whom took possession of it.

The Zephyr, a longline fishing vessel, discovered the 20-by-6-foot skiff approximately 700 nautical miles northeast of Maui and reported it to the U.S. Coast Guard on September 29. After cleaning the aquatic species from its hull, the crew took it aboard and arrived with it in Honolulu Harbor the morning of October 5.

“We appreciate that this fisherman reached out to us and our partners at the Coast Guard and State of Hawaii to alert us of the skiff and determine appropriate measures to take,” said Carey Morishige, NOAA’s Marine Debris Program Pacific Islands regional coordinator. “Boaters are our eyes on the water and we need their help to be on the lookout for marine debris.”

State marine invasive species experts have already examined the skiff for signs of remaining aquatic life, especially those which may be invasive to Hawaii. Although no items connected to the 2011 Japan tsunami have shown above-normal radiation levels, out of an abundance of caution, state Department of Health officials also checked the boat for radiation.

Plastic bin being towed in to pier off Oahu.


NOAA’s Hawaii Undersea Research Laboratory tows in the 4-by-4-foot plastic bin which was the first confirmed item of Japan tsunami marine debris in Hawaii. It was spotted at sea off the eastern coast of Oahu, Hawaii, on September 18, 2012. (Hawaii Undersea Research Laboratory)

Just a few weeks ago, the first confirmed piece of Japan tsunami debris in Hawaii [PDF]—a blue seafood storage bin—showed up off the southeast coast of Oahu. The bin belonged to the Japanese seafood wholesaler Y.K. Suisan, Co., Ltd., whose offices were affected by the 2011 Japan tsunami.

On the morning of September 18, personnel from Makai Ocean Engineering pointed out the buoyant blue container, which is used to transport seafood, near a pier on the southeastern shore of Oahu, and NOAA’s Hawaii Undersea Research Laboratory fished the 4-by-4-foot box out of the water.

A closeup of the seafood storage bin from Japan found near Oahu and encrusted with marine life.

A close examination of the seafood storage bin from Japan found near Oahu revealed a variety of wildlife both inside (Hawaiian red-footed boobies) and out (gooseneck barnacles and two species of open-water crabs). (Hawaii Undersea Research Laboratory)

While the lower, submerged portion of the bin was covered in gooseneck barnacles and crabs common in the open sea, a NOAA marine invertebrate scientist joined state aquatic invasive species experts in examining and confirming that none of the organisms were invasive. When the Hawaii Undersea Research Laboratory towed in the bin, they also found five Hawaiian red-footed boobies inside; three of which were dead, though two successfully managed to fly off.

Because both the skiff and the seafood bin have unique identifying information, both items have been definitively traced back to Japan and confirmed as lost during the tsunami of March 2011. These items were confirmed with the assistance of the Japan Consulate in Honolulu and Government of Japan.

However, the assorted flotsam which Hawaii residents have reported recently is often nearly impossible to connect to the tsunami. It includes everything from unusual light bulbs and a hard hat to plastic containers and pieces of Styrofoam. Marine debris is an everyday problem, and items like these have been known to wash up on Hawaiian shores long before the 2011 tsunami.

While fishermen reportedly saw a floating concrete dock near the Main Hawaiian Islands, it has not been sighted again [PDF] since initial reports on September 19. In the meantime, NOAA has coordinated with the U.S. Coast Guard, State of Hawaii, and other agencies to prepare for its possible reappearance and support the state in its plan to deal with the dock before it makes landfall.

The 30-by-50-foot dock appears similar to one that washed ashore in Oregon last June, which, when it arrived encrusted in sea life, prompted concerns about the possibility of aquatic invasive species from Japan. If this latest dock reappeared and proved to be a match, it would be the second of three docks reported missing from Japan following the March 2011 tsunami.

However, despite aerial surveys by the U.S. Coast Guard and Hawaii’s Department of Land and Natural Resources to identify the dock’s location, no additional sightings have surfaced. NOAA’s Office of Response and Restoration oceanographers have used our GNOME model to forecast the dock’s possible movement using data on currents from the University of Hawaii’s Regional Ocean Modeling System (ROMS) and wind forecasts from NOAA’s National Weather Service. However, the accuracy of the model’s predictions is unknown due to the lack of observational data on where the dock was traveling over time. In addition, NOAA has prepared two satellite tracking buoys for Hawaii to use in case the dock is relocated.

Hawaii’s Department of Land and Natural Resources, the state’s lead agency for responding to possible Japan tsunami marine debris, is asking that boaters, fishers, and pilots keep an eye out for debris. If sighted, the agency says to call in reports immediately to 1.808.587.0400. The NOAA Marine Debris Program also is gathering sightings of potential Japan tsunami marine debris at DisasterDebris@noaa.gov.

Keep up with NOAA’s latest efforts surrounding the issue of Japan tsunami marine debris at http://marinedebris.noaa.gov/tsunamidebris/.


Leave a comment

Lost Your Cell Phone? Try Looking at the Beach on September 15

This is a post by the NOAA Marine Debris Program’s Asma Mahdi.

Last year on a September Saturday, nearly 600,000 people combed the world’s beaches and uncovered 195 lost cell phones at the International Coastal Cleanup. (Along with a few other strange finds—155 toilet seats??)

Weird finds from the 2011 International Coastal Cleanup

Weird finds from the 2011 International Coastal Cleanup. Click to enlarge.

Want to guess how many total pounds of trash were picked up during this concerted cleanup effort? In 2011, volunteers found 9,184,428 pounds of garbage, with cigarette butts leading the charge as the top item collected:

Top ten items found worldwide during the 2011 International Coastal Cleanup.

Top ten items found worldwide during the 2011 International Coastal Cleanup. Click to enlarge.

This will mark the 27th year for the annual International Coastal Cleanup put on by Ocean Conservancy, and for the past seven years, the NOAA Marine Debris Program has helped fund this effort.  Volunteers in more than 96 participating countries will head out to clean up their local beaches, waterways, and even neighborhoods. Over the past 26 years, more than 9 million volunteers have removed 153,790,918 pounds of trash!

How much trash will you help clean up this year?

Mark your calendar for Saturday, September 15th and sign up to clean up on the largest one-day volunteer ocean cleanup! Find a site near you and help keep the sea free of debris.

Asma Mahdi is an Outreach and Communications Specialist for the NOAA Marine Debris Program, a division of the Office of Response and Restoration.


4 Comments

What to Do If You Find Marine Debris from the Japan Tsunami

Midway Atoll beach with fishing float.

During a recent trip to Midway Atoll in the Northwestern Hawaiian Islands, NOAA Marine Debris Program staff, in partnership with the Papahānaumokuākea Marine National Monument, examined the beaches for significant or unusual marine debris items, which may be related to the Japan tsunami. None were found. (NOAA Marine Debris Program/Carey Morishige)

Ever since the first few items—an unmanned fishing boat, a childhood soccer ball—from the 2011 Japan earthquake and tsunami began turning up in North America, people have been asking what they should do if they find something themselves.

If you see small, disposable debris, such as bottles, aluminum, or Styrofoam, remove it from the beach and recycle or dispose of it properly.

If you suspect that the marine debris you found may be from the Japan tsunami (which is very difficult to tell), let us know! Email DisasterDebris@noaa.gov to report it to the NOAA Marine Debris Program, with as much information as possible.

You can view a NOAA map [PDF] (generated using our nifty ERMA® tool) of all of the debris possibly related to the tsunami reported to NOAA since December 2011. This includes both potential and confirmed tsunami marine debris sightings, and we provide close-up maps [PDF] for each of the Pacific coast states as well. However, out of hundreds of sightings, only 10 have confirmed connections to the Japan tsunami.

Some pieces of marine debris may be too big (for example, a 66 foot long concrete dock) or too hazardous to handle. In this case, leave the debris alone (it could be a safety risk) and report it to the local authorities, depending on where you live.

If you are in Oregon, you can find dozens of designated disposal stations along Oregon beaches where you can drop off bags of tsunami debris. And, the state of Oregon says, “If you see debris larger than what you can put in a bag—tires, refrigerators, and so on—don’t bring it to the disposal station. Report its location by calling 211 (1-800-SAFENET).”

For Washington residents, you can call 1-855-WACOAST (or 1-855-922-6278) to report oil, hazardous items, floating debris items that might pose a boating or navigation hazard to the National Response Center and Washington Department of Ecology. They will also give instructions for reporting debris that is not large or hazardous.

If an item you find appears to have sentimental value to its previous owner, we ask that you move the item to a safe place and email us details at DisasterDebris@noaa.gov. The NOAA Marine Debris Program website has a full set of guidelines for how to handle different types of debris. And the Oregon Parks and Recreation Department has a similar handy pocket guide [PDF] for when you may be combing the beach for debris.


Leave a comment

NOAA Hauls 50 Metric Tons of Debris out of Hawaiian Waters

Scientists load onto a small boat marine debris collected at Midway Atoll in Papahānaumokuākea Marine National Monument.

Scientists load onto a small boat marine debris collected at Midway Atoll in Papahānaumokuākea Marine National Monument. (NOAA)

With their eyes on the ocean, a team of 17 NOAA scientists recently removed nearly 50 metric tons of marine debris—mostly abandoned fishing nets and plastics—from the turquoise waters of Papahānaumokuākea Marine National Monument in the Northwestern Hawaiian Islands.

Part of an annual effort to restore the area’s coral ecosystems, this latest sweep of marine debris also scanned for items which might have been carried there from the 2011 Japan tsunami. However, nothing could be linked directly to the tragedy.

“While we did not find debris with an obvious connection to last year’s tsunami, this mission was a great opportunity to leverage activities that had already been planned and see what we might find,” said Carey Morishige, Pacific Islands regional coordinator for the NOAA Marine Debris Program, part of the Office of Response and Restoration. “It’s also an important reminder that marine debris is an everyday problem, especially here in the Pacific.”

NOAA divers cut a Hawaiian green sea turtle free from a derelict fishing net during a recent mission to collect marine debris in the Northwestern Hawaiian Islands.

NOAA divers cut a Hawaiian green sea turtle free from a derelict fishing net during a recent mission to collect marine debris in the Northwestern Hawaiian Islands. (NOAA)

Through NOAA’s Damage Assessment, Restoration, and Remediation Program, the Office of Response and Restoration is helping restore coral reefs here after the M/V Casitas grounded on Pearl and Hermes Atoll in the Northwestern Hawaiian Islands in July 2005. Part of the funding for the marine debris removal survey comes from the legal settlement for the Casitas ship grounding, as well as from the NOAA Marine Debris Program and Papahānaumokuākea Marine National Monument.

This recurring issue of marine debris threatens Hawaiian monk seals, sea turtles and other marine life in the coral reef ecosystems of the Northwestern Hawaiian Islands.  The scientists on this mission loaded the massive amounts of collected debris on to the 224-ft. NOAA Ship Oscar Elton Sette.

NOAA collected nearly 50 metric tons of marine debris, piled on ship's deck.

NOAA collected nearly 50 metric tons of marine debris, shown here with researchers sitting on top of the piles of nets aboard the ship Oscar Elton Sette during a July 2012 survey in the Northwestern Hawaiian Islands. (NOAA)

“What surprises us is that after many years of marine debris removal in Papahānaumokuākea and more than 700 metric tons of debris later, we are still collecting a significant amount of derelict fishing gear from the shallow coral reefs and shorelines,” said Kyle Koyanagi, marine debris operations manager at NOAA Fisheries’ Pacific Islands Fisheries Science Center and chief scientist for the mission. “The ship was at maximum capacity and we did not have any space for more debris.”

This year, marine debris was collected from waters and shorelines around the islands and atolls of the Northwestern Hawaiian Islands: Kure Atoll, Midway Atoll, Pearl and Hermes Atoll, Lisianski Island and Laysan Island.

Marine debris removed during this project will be used to create electricity through Hawaii’s Nets to Energy Program, a public-private partnership. Since 2002, it has collected and converted more than 730 metric tons of abandoned fishing gear into electricity—enough to power nearly 350 Hawaii homes for a year.

Follow

Get every new post delivered to your Inbox.

Join 337 other followers