NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

The Earth Is Blue and We’d Like to Keep It That Way

Pod of dolphins swimming.

Spinner dolphins in the lagoon at Midway Atoll National Wildlife Refuge in Papahānaumokuākea Marine National Monument. A pod of over 200 spinner dolphins frequent Midway Atoll’s lagoon. (NOAA/Andy Collins)

Often, you have to leave a place to gain some perspective.

Sometimes, that means going all the way to outer space.

When humans ventured away from this planet for the first time, we came to the stunning realization that Earth is blue. A planet covered in sea-to-shining-sea blue. And increasingly, we began to worry about protecting it. With the creation of the National Marine Sanctuaries system in 1972, a very special form of that protection began to be extended to miles of ocean in the United States. Today, that protection takes the form of 14 marine protected areas encompassing more than 170,000 square miles of marine and Great Lakes waters.

Starting October 23, 2014, NOAA’s Office of National Marine Sanctuaries is celebrating this simple, yet profound realization about our planet—that Earth is Blue—on their social media accounts. You can follow along on Facebook, Twitter, YouTube, and now their brand-new Instagram account @NOAAsanctuaries. Each day, you’ll see an array of striking photos (plus weekly videos) showing off NOAA’s—and more importantly, your—National Marine Sanctuaries, in all of their glory. Share your own photos and videos from the sanctuaries with the hashtag #earthisblue and find regular updates at sanctuaries.noaa.gov/earthisblue.html.

You can kick things off with this video:

Marine sanctuaries are important places which help protect everything from humpback whales and lush kelp forests to deep-sea canyons and World War II shipwrecks. But sometimes the sanctuaries themselves need some extra protection and even restoration. In fact, one of the first marine sanctuaries, the Channel Islands National Marine Sanctuary off of southern California, was created to protect waters once imperiled by a massive oil spill which helped inspire the creation of the sanctuary system in the first place.

Japanese tsunami dock located on beach within Olympic National Park and National Marine Sanctuary.

To minimize damage to the coastline and marine habitat, federal agencies removed the Japanese dock that turned up on the Washington coast in late 2012. In addition to being located within a designated wilderness portion of Olympic National Park, the dock was also within NOAA’s Olympic Coast National Marine Sanctuary and adjacent to the Washington Islands National Wildlife Refuge Complex. (National Park Service)

At times NOAA’s Office of Response and Restoration is called to this role when threats such as an oil spill, grounded ship, or even huge, floating dock endanger the marine sanctuaries and their incredible natural and cultural resources.

Olympic Coast National Marine Sanctuary

In March 2013, we worked with a variety of partners, including others in NOAA, to remove a 185-ton, 65-foot Japanese floating dock from the shores of Washington. This dock was swept out to sea from Misawa, Japan, during the 2011 tsunami and once it was sighted off the Washington coast in December 2012, our oceanographers helped model where it would wash up.

Built out of plastic foam, concrete, and steel, this structure was pretty beat up by the time it ended up inside NOAA’s Olympic Coast National Marine Sanctuary and a designated wilderness portion of Olympic National Park. A threat to the environment, visitors, and wildlife before we removed it, its foam was starting to escape to the surrounding beach and waters, where it could have been eaten by the marine sanctuary’s whales, seals, birds, and fish.

Florida Keys National Marine Sanctuary

In an effort to protect the vibrant marine life of the Florida Keys National Marine Sanctuary, NOAA’s Restoration Center began clearing away illegal lobster fishing devices known as “casitas” in June 2014. The project is funded by a criminal case against a commercial diver who for years used casitas to poach spiny lobsters from the sanctuary’s seafloor. Constructed from materials such as metal sheets, cinder blocks, and lumber, these unstable structures not only allow poachers to illegally harvest huge numbers of spiny lobsters but they also damage the seafloor when shifted around during storms.

A spiny lobster in a casita on the seafloor.

A spiny lobster in a casita in the Florida Keys National Marine Sanctuary. NOAA is removing these illegal lobster fishing devices which damage seafloor habitat. (NOAA)

Also in the Florida Keys National Marine Sanctuary, our office and several partners ran through what it would be like to respond to an oil spill in the sanctuary waters. In April 2005, we participated in Safe Sanctuaries 2005, an oil spill training exercise that tested the capabilities of several NOAA programs, as well as the U.S. Coast Guard. The drill scenario involved a hypothetical grounding at Elbow Reef, off Key Largo, of an 800-foot cargo vessel carrying 270,000 gallons of fuel. In the scenario, the grounding injured coral reef habitat and submerged historical artifacts, and an oil spill threatened other resources. Watch a video of the activities conducted during the drill.

Papahānaumokuākea Marine National Monument

Even hundreds of miles from the main cluster of Hawaiian islands, the Papahānaumokuākea Marine National Monument does not escape the reach of humans. Each year roughly 50 tons of old fishing nets, plastics, and other marine debris wash up on the sensitive coral reefs of the marine monument. Each year for nearly 20 years, NOAA divers and scientists venture out there to remove the debris.

This year, the NOAA Marine Debris Program’s Dianna Parker and Kyle Koyanagi are documenting the effort aboard the NOAA Ship Oscar Elton Sette. You can learn more about and keep up with this expedition on the NOAA Marine Debris Program website.


2 Comments

Diving for Debris: Washington’s Success Story in Fishing Nets out of the Ocean

The scale of the challenges facing the ocean—such as overfishing, pollution, and acidification—is enormous, and their solutions, achievable but complex. That is why the impressive progress in cleaning up a major problem in one area—Washington’s Puget Sound—can be so satisfying. Get a behind-the-scenes look at this inspiring progress in a new video from NOAA-affiliate Oregon SeaGrant on the Northwest Straits Foundation net removal project.

For over a decade, the Northwest Straits Foundation, supported by the NOAA Marine Debris Program, the U.S. Environmental Protection Agency, state agencies, and many others, has been removing lost and abandoned fishing nets from the inland ocean waters of Puget Sound.

A problem largely invisible to most of us, these fishing nets are a legacy of extensive salmon fishing in the Puget Sound which is now much diminished. Lost during fishing operations, the nets are now suspended in the water column or settled on the seafloor, where they snare dozens of marine species, including marine birds and mammals, and degrade the ocean habitat where they were lost. Made of plastic, these nets do not degrade significantly and continue to catch and kill animals indiscriminately for many years.

Man on a boat removing derelict nets from Puget Sound.

Removing derelict nets south of Pt. Roberts in Washington’s Puget Sound. (NOAA)

However, with the help of highly skilled divers, the foundation has removed over 4,700 of these lost nets from Puget Sound. They estimate there are fewer than 900 left in the area and, working with local commercial fishers, have a good handle on the small number of nets currently lost each year.

The NOAA Marine Debris Program has collaborated on or funded over 200 projects to research, prevent, and remove marine debris from waters around the United States. You can learn more about our other projects, such as the Fishing for Energy program, at clearinghouse.marinedebris.noaa.gov.


Leave a comment

In Oregon, an Innovative Approach to Building Riverfront Property for Fish and Wildlife

This is a post by Robert Neely of NOAA’s Office of Response Restoration.

Something interesting is happening on the southern tip of Sauvie Island, located on Oregon’s Willamette River, a few miles downstream from the heart of Portland. Construction is once again underway along the river’s edge in an urban area where riverfront property typically is prized as a location for luxury housing, industrial activities, and maritime commerce. But this time, something is different.

This project will not produce a waterfront condominium complex, industrial facility, or marina. And as much as it may look like a typical construction project today, the results of all this activity will look quite different from much of what currently exists along the shores of the lower Willamette River from Portland to the Columbia River.

Indeed, when the dust settles, the site will be transformed into a home and resting place for non-human residents and visitors. Of course, I’m not referring to alien life forms, but rather to the fish, birds, mammals, and other organisms that have existed in and around the Willamette River since long before humans set up home and shop here. Yet in the last century, humans have substantially altered the river and surrounding lands, and high-quality habitat is now a scarce commodity for many stressed critters that require it for their survival.

On the site of a former lumber mill, the Alder Creek Restoration Project is the first habitat restoration project [PDF] that will be implemented specifically to benefit fish and wildlife affected by contamination in the Portland Harbor Superfund Site. The project, managed by a habitat development company called Wildlands, will provide habitat for salmon, lamprey, mink, bald eagle, osprey, and other native fish and wildlife living in Portland Harbor.

Mink at a river's edge.

The Alder Creek Restoration Project will benefit Chinook salmon, mink, and other fish and wildlife living in Portland Harbor. (Roy W. Lowe)

Habitat will be restored by removing buildings and fill from the floodplain, reshaping the riverbanks, and planting native trees and shrubs. The project will create shallow water habitat to provide resting and feeding areas for young salmon and lamprey and foraging for birds. In addition, the construction at Alder Creek will restore beaches and wetlands to provide access to water and food for mink and forests to provide shelter and nesting opportunities for native birds.

Driving this project is a Natural Resource Damage Assessment conducted by the Portland Harbor Natural Resource Trustee Council to quantify natural resource losses resulting from industrial contamination of the river with the toxic compounds PCBs, the pesticide DDT, oil compounds known as PAHs, and other hazardous substances. The services, or benefits from nature, provided by the Alder Creek Restoration Project—such as healthy habitat, clean water, and cultural value—will help make up for the natural resources that were lost over time because of contamination.

Young Chinook salmon on river bottom.

Fish and wildlife species targeted for restoration include salmon (such as the juvenile Chinook salmon pictured here), lamprey, sturgeon, bald eagle, osprey, spotted sandpiper, and mink. (U.S. Fish and Wildlife Service)

Wildlands purchased the land in order to create and implement an early restoration project. This “up-front” approach to restoration allows for earlier implementation of projects that provide restored habitat to injured species sooner, placing those species on a trajectory toward recovery. The service credits—ecological and otherwise—that will be generated by this new habitat will be available for purchase by parties that have liability for the environmental and cultural losses calculated in the damage assessment.

Thus when a party reaches an agreement with the Trustee Council regarding the amount of their liability, they can resolve it by purchasing restoration credits from Wildlands. And Wildlands, as the seller of restoration credits, recoups the financial investment it made to build the project. Finally, and most importantly, a substantial piece of land with tremendous potential value for the fish, birds, and other wildlife of the lower Willamette River has been locked in as high-quality habitat and thus protected from future development for other, less ecologically friendly purposes.

Robert NeelyRobert Neely is an environmental scientist with the National Oceanic and Atmospheric Administration’s Office of Response and Restoration. He has experience in ocean and coastal management, brownfields revitalization, Ecological Risk Assessment, and Natural Resource Damage Assessment. He started with NOAA in 1998 and has worked for the agency in Charleston, South Carolina; Washington, DC; New Bedford, Massachusetts; and Seattle, Washington, where he lives with his wife and daughter. He’s been working with his co-trustees at Portland Harbor since 2005.


2 Comments

NOAA Prepares for Bakken Oil Spills as Seattle Dodges Oil Train Explosion

As federal leaders in oil spill response science, NOAA’s Office of Response and Restoration is grateful for each oil spill which does not take place, which was fortunately the case on July 24, 2014 in Seattle, Washington, near our west coast office. A train passing through the city ran off the tracks, derailing three of its 100 tank cars carrying Bakken crude oil from North Dakota to a refinery in the port town of Anacortes, Washington. No oil spilled or ignited in the accident.

However, that was not the case in five high-profile oil train derailments and explosions in the last year, occurring in places such as Casselton, North Dakota, when a train carrying grain derailed into an oil train, causing several oil tank cars to explode in December 2013.

Oil production continues to grow in North America, in large part due to new extraction technologies such as hydraulic fracturing (fracking) opening up massive new oil fields in the Bakken region of North Dakota and Montana. The Bakken region lacks the capacity to transport this increased oil production by the most common methods: pipeline or tanker. Instead, railroads are filling this gap, with the number of tank cars carrying crude oil in the United States rising more than 4,000 percent between 2009 (9,500 carloads) and 2013 (407,761).

Just a day before this derailment, Seattle City Council signed a letter to the U.S. Secretary of Transportation, urging him to issue an emergency stop to shipping Bakken crude oil in older model tank train cars (DOT-111), which are considered less safe for shipping flammable materials. (However, some of the proposed safer tank car models have also been involved in oil train explosions.) According to the Council’s press release, “BNSF Railway reports moving 8-13 oil trains per week through Seattle, all containing 1,000,000 or more gallons of Bakken crude.” The same day as the Council’s letter, the Department of Transportation proposed rules to phase out the older DOT-111 model train cars for carrying flammable materials, including Bakken crude, over a two-year period.

NOAA’s Office of Response and Restoration is examining these changing dynamics in the way oil is moved around the country, and we recently partnered with the University of Washington to research this issue. These changes have implications for how we prepare our scientific toolbox for responding to oil spills, in order to protect responders, the public, and the environment.

The fireball that followed the derailment and explosion of two trains, one carrying Bakken crude oil, on December 30, 2013, outside Casselton, N.D.

The fireball that followed the derailment and explosion of two trains, one carrying Bakken crude oil, on December 30, 2013, outside Casselton, N.D. (U.S. Pipeline and Hazardous Materials Safety Administration)

For example, based on our knowledge of oil chemistry, we make recommendations to responders about potential risks during spill cleanup along coasts and waterways. We need to know whether a particular type of oil, such as Bakken crude, will easily ignite and pose a danger of fire or explosion, and whether chemical components of the oil will dissolve into the water, potentially damaging sensitive fish populations.

Our office responded to a spill of Bakken crude oil earlier this year on the Mississippi River. On February 22, 2014, the barge E2MS 303 carrying 25,000 barrels of Bakken crude collided with a towboat 154 miles north of the river’s mouth. A tank of oil broke open, spilling approximately 31,500 gallons (750 barrels) of its contents into this busy waterway, closing it down for several days. NOAA provided scientific support to the response, for example, by having our modeling team estimate the projected path of the spilled oil.

Barge leaking oil on a river.

Barge E2MS 303 leaking 750 barrels of Bakken crude oil into the lower Mississippi River on February 22, 2014. (U.S. Coast Guard)

We also worked with our partners at Louisiana State University to analyze samples of the Bakken crude oil. We found the oil to have a low viscosity (flows easily) and to be highly volatile, meaning it readily changes from liquid to gas at moderate temperatures. It also contains a high concentration of the toxic components known as polycyclic aromatic hydrocarbons (PAHs) that easily dissolve into the water column. For more information about NOAA’s involvement in this incident, visit IncidentNews.


1 Comment

Who Is Biking to Work in America? NOAA Is!

May is National Bike to Work Month. As usual, those of us at the National Oceanic and Atmospheric Administration (NOAA) have been donning our two-wheelers and helmets to join in the fun that often starts this month but in Seattle can go year-round. In addition, this year the U.S. Census Bureau has released its first-ever report on biking and walking to work. It holds some interesting insights into the shifts occurring in how people get around town:

Although changes in rates of bicycle commuting vary across U.S. communities, many cities have experienced relatively large increases in bicycle commuting in recent years. The total number of bike commuters in the U.S. increased from about 488,000 in 2000 to about 786,000 during the period from 2008 to 2012, a larger percentage increase than that of any other commuting mode.

Take a look at the top 15 big cities for people biking to work:

Top 15 large cities with the highest percentage of people biking to work.

Top 15 large U.S. cities with the highest percentage of people biking to work.

As you can see, Seattle, Washington, is in the top five, and NOAA’s Seattle contingent is doing its part to help get there. In 2012, NOAA had 132 people riding bikes in the Northwest Federal Bike-to-Work Challenge, landing us the prestigious “Pink Jersey” award—referring to Italy’s Giro d’Italia bike race in May where the leader wears a pink jersey—for our overall participation among federal agencies in the region.

This year, about half-way into Bike Month, it looks like NOAA has roughly 139 people on 12 teams who have been biking to work already. We’ve logged more than 600 trips to and from work and ridden nearly 9,000 miles. That’s a lot of miles not driven in cars, pounds of pollution not emitted, and gallons of petroleum not burned. Let’s not forget the health benefits of integrating bicycling into an active lifestyle too. Many people who bike commute also enjoy being outside, hearing the birds, seeing the change of seasons, having more energy during the work day, and slowing down and unplugging after work.

Six people wearing bike helmets and standing next to bikes.

My Bike to Work Month team stopped for breakfast burritos and then rode in the rest of the way to work together on a brisk May morning in 2013.

Personally, I bought my bicycle about two weeks into my first Bike to Work Month in 2011 (better late than never!). I was a little nervous but more excited. Growing up in the car-friendly suburbs of the Midwest didn’t prepare me at all for biking in a city like Seattle. Fortunately, I had a friend to help ease me into biking, showing me how fun and easy it could be, along with introducing me to some simple biking protocols for staying safe. It also helped to live in Washington, which has been ranked the #1 most bike-friendly state seven years in a row.

That first month of biking to NOAA back in 2011, I was hoping to commute once or even twice a week if I could, but this year, I’m going for three, maybe even four times a week. While my commute isn’t super short—nearly 8 miles each way— I’m lucky enough that I can ride almost the entire way on the Burk-Gilman Trail, a dedicated bike path that “carries as many people during peak hours as a high-performing lane of a major freeway.”

A white bicycle and helmet.

My bike, when it was shiny and new. It’s still pretty shiny, but less new, and with more bike racks and fenders.

It was not so long ago that I thought, “Biking around town? Me? I’ll stick to the bus, thanks.” Now, thanks to a lot of support, I know it’s not a huge deal. The more people there are biking, the safer it becomes for everyone on the road [PDF]. I know I can ride my bike to work (and elsewhere) and I can even do it while wearing a dress and a smile.

Do you bike to work? What do you enjoy about it? Would you bike to work if you could?

Get even more data on biking to work from this video discussion between the U.S. Census Bureau and the League of American Bicyclists.


Leave a comment

Booms, Beams, and Baums: The History Behind the Long Floating Barriers to Oil Spills

Oiled boom on Louisiana beach.

Oiled boom is cleaned so that it can be used to contain oil over and over again. (NOAA)

One of the iconic images of spill preparedness and response is oil boom. You’ve probably seen these long ribbons of orange, yellow, or white material stockpiled on a pier, strung around a leaking vessel, or stretched across a channel to protect sensitive areas threatened by an advancing oil slick. Made of plastic, metal, or other materials, booms are floating, physical barriers to oil, meant to slow the spread of oil and keep it contained.

As we describe on our website, there are three main types of boom:

Hard boom is like a floating piece of plastic that has a cylindrical float at the top and is weighted at the bottom so that it has a “skirt” under the water. If the currents or winds are not too strong, booms can also be used to make the oil go in a different direction (this is called “deflection booming”).

Sorbent boom looks like a long sausage made out of a material that absorbs oil. If you were to take the inside of a disposable diaper out and roll it into strips, it would act much like a sorbent boom. Sorbent booms don’t have the “skirt” that hard booms have, so they can’t contain oil for very long.

Fire boom is not used very much. It looks like metal plates with a floating metal cylinder at the top and thin metal plates that make the “skirt” in the water. This type of boom is made to contain oil long enough that it can be lit on fire and burned up.

But why is it called “boom”? Does it make a sound? Every industry has jargon, and the spill response community, at the intersection of the maritime and oil industry, has more than its fair share. There are whole dictionaries devoted to maritime terms, and others devoted to the oil industry. (Remember “top kill” and “junk shot”—industry terms used to describe attempts to stop the flow of oil from a damaged wellhead?) But when I looked for the origins of the word “boom,” I had to do some digging. I guess boom is such a common term in the response business, nobody thinks much about its derivation. Kind of like asking a chef why spoons are called spoons.

The word “boom” is the Dutch word for tree. German is similar: “baum.” Remember “O Tannenbaum,” a Christmas carol of German origin? From these roots, we get the word “beam” as in a long wooden timber, and of course, a part of a sailboat, the “boom,” that holds the foot of the sail and was traditionally made of wood. Around the Northwest it is pretty common to see a tug boat pulling a big raft of logs to a mill—a log boom.

But what do trees have to do with oil boom? Back to the Dutch. In the Middle Ages, logs were chained together and used as a floating barrier across a waterway to protect a harbor from attack or to force passing ships to stop and pay a toll. During the American Revolution, for example, the Hudson River was boomed with logs to prevent the British from sailing upriver. Similar fortifications were used during the Civil War, and even in World War II to protect U.S. West Coast ports from foreign submarines.

How log booms evolved into oil containment booms is unclear, but we know that every major spill has resulted in a flurry of inventions and improvements, often on the fly as responders adapted available resources to combat the spill. As concern over oil pollution increased over the past century, some of these were patented and form the basis for today’s technologies, but unfortunately there is still no silver bullet; once oil is spilled in the sea, it is a challenge to control and clean up. Learn more about how responders use boom during oil spills [PDF], including the ways to use boom effectively.


Leave a comment

NOAA and Partners Invest in an Innovative New Stewardship Program for Washington’s Commencement Bay

A group of people holding a giant check for $4.9 million.

NOAA hands off a $4.9 million check to the nonprofit EarthCorps, which will use the funding for planning, restoration, monitoring, and maintenance at 17 restoration sites across Washington’s Commencement Bay. U.S. Representatives Dennis Heck (WA), Derek Kilmer (WA), and Peter DeFazio (OR) were also in attendance. (NOAA)

Last week, NOAA and partners awarded $4.9 million to EarthCorps for long-term stewardship of restoration sites in Commencement Bay near Tacoma, Washington. The Commencement Bay Stewardship Collaborative is part of a larger investment that will conserve habitat for fish and wildlife and give local urban communities access to the shoreline.

EarthCorps, which was competitively selected for this funding, is a non-profit organization that trains environmental leaders through local service projects.

Volunteers plant ferns at a restoration site in Commencement Bay.

Volunteers restore a site in Commencement Bay. (NOAA)

The funding will support planning, restoration, monitoring, and maintenance at 17 sites across the Bay. These sites were restored over the past 20 years as part of the ongoing Commencement Bay natural resource damage assessment (NRDA) case. This is the first time that a third party has received funding to launch a comprehensive stewardship program as part of a NRDA case. We hope it will become a model of stewardship for future cases.

Commencement Bay is the harbor for Tacoma, Washington, at the southern end of Puget Sound. Many of the waterways leading into the Bay—which provide habitat for salmon, steelhead, and other fish—have been polluted by industrial and commercial activities. NOAA and other federal, state, and tribal partners have been working for decades to address the contamination and restore damaged habitat.

One of the sites that EarthCorps will maintain is the Sha Dadx project on the bank of the Puyallup River. The lower Puyallup River was straightened in the early 20th century, leaving little off-channel habitat—which juvenile salmon use for rearing and foraging. The project reconnected the river to a curve that had been cut off by levees. This restored 20 acres of off-channel habitat, and fish and wildlife are using the site.

Most of the parties responsible for the contamination have settled and begun implementing restoration. NOAA and its partners are evaluating options for pursuing parties that haven’t settled yet. As new sites are added, stewardship funds will be secured at settlement and likely added to the overall long-term effort.

This story was originally posted on NOAA’s National Marine Fisheries Service Habitat Conservation website.

Follow

Get every new post delivered to your Inbox.

Join 432 other followers