NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Study Shows Gulf Dolphins in Poor Health following Deepwater Horizon Oil Spill

A dolphin is observed with oil on its skin on August 5, 2010, in Barataria Bay, La.

A dolphin is observed with oil on its skin on August 5, 2010, in Barataria Bay, La. (Louisiana Department of Wildlife and Fisheries/Mandy Tumlin)

Barataria Bay, located in the northern Gulf of Mexico, received heavy and prolonged oiling after the 2010 Deepwater Horizon oil spill. This area is also home to many bottlenose dolphins. In the wake of the spill, how healthy are dolphins living in this area? And how do they compare to dolphins living elsewhere?

As part of the Natural Resource Damage Assessment for the Deepwater Horizon oil spill, a team of more than 50 government, academic, and non-governmental researchers assessed the health of bottlenose dolphins living in Louisiana’s Barataria Bay, which received heavy oiling following the Deepwater Horizon spill, and in Florida’s Sarasota Bay, which was not oiled following the spill.

The team of scientists and veterinarians temporarily captured live dolphins, performed comprehensive health examinations on them at the site, and then released them. The health exam included measuring each dolphin’s length and weight; doing a physical exam; sampling skin, blood, and blubber; and performing an ultrasound to evaluate their internal organs, particularly their lung condition and pregnancy status. The team has published the results of this study in the peer-reviewed journal Environmental Science & Technology.

We spoke with two of the NOAA scientists involved, Dr. Lori Schwacke and Dr. Teri Rowles, to learn more about the research and what their findings mean for dolphins in the Gulf of Mexico.

Q: When did you conduct the dolphin health assessments and what did you observe?

Aug 2011: A veterinarian performs an ultrasound to assess a Barataria Bay dolphin’s health.

Aug 2011: A veterinarian performs an ultrasound to assess a Barataria Bay dolphin’s health. (NOAA)

The first health assessments were conducted in the summer of 2011 in Barataria Bay, La., and in Sarasota Bay, Fla. We found that the dolphins in Barataria Bay were in very poor health. Many of them were underweight and their blood tests showed a number of abnormal conditions such as anemia, elevated markers of inflammation, and increased liver enzymes.

Also, one rather unusual condition that we noted in many of the Barataria Bay dolphins was that they had very low levels of some hormones (specifically, cortisol) that are produced by the adrenal gland and are important for a normal stress response. Under a stressful condition, such as being chased by a predator, the adrenal gland produces cortisol, which then triggers a number of physiological responses including an increased heart rate and increased blood sugar. This gives an animal the energy burst that it needs to respond appropriately. In the Barataria Bay dolphins, cortisol levels were unusually low. The concern is that their adrenal glands were incapable of producing appropriate levels of cortisol, and this could ultimately lead to a number of complications and in some situations even death.

We also found significant lung disease. We looked for several different abnormalities based on studies that have been done on captive animals, and what we saw was most consistent with pneumonia. In some of the animals, the lung disease was so severe that we considered it life-threatening for that individual.

Q: How serious were the conditions observed in dolphins from Barataria Bay?

Some of the conditions observed in these dolphins were very serious. Some of the animals had multiple health issues going on, such as lung disease, very high liver enzymes, and indications of chronic inflammation. The veterinarians assigned a prognosis for each animal and nearly half of the Barataria Bay dolphins were given a guarded (uncertain outcome) or worse prognosis. In fact, 17 percent of them were given a poor or grave prognosis, indicating that they weren’t expected to live.

In comparison, in Sarasota we had only one guarded prognosis and the rest were in good or fair condition. Sarasota dolphins were much healthier than Barataria Bay dolphins.

Q: Have you been able to follow up on the status of any of the dolphins examined during these assessments?

We know one of them died. Y12 was a 16-year-old male that we examined in August 2011. He was underweight and many of his blood parameters were out of the expected range. The veterinary team assigned him a grave prognosis. His carcass was recovered by the Louisiana Department of Wildlife and Fisheries in January of 2012. So we know that he only survived a little over five months  after the health assessment was conducted. . But often carcasses aren’t recovered, and there were other dolphins that we examined that we didn’t expect to live for very long.

We’re also conducting photographic monitoring studies to monitor the survival and reproductive success or failure of the dolphins we sampled. Several of the females we sampled in Barataria Bay were pregnant so we’ve been monitoring them around and past their due date to see whether or not we see them with a calf. The gestation period for a dolphin is around 12 months, so these monitoring studies take a little bit longer. We hope to report those results soon.

Q: Are the disease conditions observed in Barataria Bay dolphins—lung disease, compromised stress hormone response—consistent with those expected from exposure to oil?

The decreased cortisol response is something fairly unusual but has been reported from experimental studies of mink exposed to fuel oil. The respiratory issues are also consistent with experimental studies in animals and clinical reports of people exposed to petroleum hydrocarbons.

Q: How do you know these health impacts weren’t caused by other lingering pollutants in the Gulf?

We analyzed the dolphins’ blubber to evaluate the levels of contaminants that have been previously reported in marine mammal tissues and then also linked with health effects. This covered a fairly broad suite of contaminants and included polychlorinated biphenyls (PCBs) as well as a suite of persistent pesticides that we know accumulate in dolphins over their lifetime, leaving a record of their exposure. We found that the levels of these pollutants in Barataria Bay dolphins were actually lower than the levels in Sarasota Bay dolphins. The levels from Barataria Bay dolphins were also low compared to previously reported levels in dolphins from a number of other coastal sites in the southeastern U.S. Therefore, we don’t think that the health effects we saw can be attributed to these other pollutants that we looked at.

Q: Are there more dolphin health assessments currently taking place or planned for the future?

Yes, in the summer of 2013 we repeated the studies in Sarasota Bay and Barataria Bay and expanded the studies to Mississippi Sound, where we assessed dolphins both in Mississippi and in Alabama waters. Those samples and data are still being analyzed.

Q: Was there anything about this study that you found surprising?

The magnitude of the health effects that we saw was surprising. We’ve done these health assessments in a number of locations across the southeast U.S. coast and we’ve never seen animals that were in this poor of condition.

Q: How does this study relate to or inform the investigation of the high number of marine mammal strandings observed along the Gulf Coast since February 2010 (the Unusual Mortality Event), which pre-dates the Deepwater Horizon oil spill?

Following the Deepwater Horizon oil spill, numerous dolphins were documented encountering oil, such as those in this photo from July 2010.

Following the Deepwater Horizon oil spill, numerous dolphins were documented encountering oil, such as those in this photo from July 2010. (NOAA)

The Unusual Mortality Event that’s underway is in the same general geographic area as the Deepwater Horizon oil spill response and overlaps with the Natural Resource Damage Assessment. These findings overlap with the high number of strandings, particularly in the Barataria Bay or central Louisiana area.

When you have a significant event like an oil spill or an Unusual Mortality Event, being able to study both live and dead animals provides more information about what might be going on as animals get ill and then die. Having access to findings from both of these studies enables us to look for commonalities between what we’re finding in the sick animals and what we’re finding in the dead animals to better evaluate causes and contributing factors.

Q: Outside of NOAA, who else did you work with to perform the health assessment?

This work was part of the Deepwater Horizon Natural Resource Damage Assessment being conducted cooperatively among NOAA, other federal and state trustees, and BP. This wouldn’t have been possible without the help of a number of our partners, including the National Marine Mammal Foundation, Chicago Zoological Society, and Louisiana Department of Wildlife and Fisheries. Also, Seaworld and the Georgia Aquarium provided personnel to support our studies. Their expertise and experience were key to getting these studies done.

We greatly appreciate the efforts of researchers from the Sarasota Dolphin Research Program, which led the dolphin health assessments in Sarasota.

Watch a video of the researchers as they temporarily catch and give health exams to some of the dolphins in Barataria Bay, La., in August of 2011:


2 Comments

Science of Oil Spills Training Now Accepting Applications for Spring 2014

People looking at computer.

These trainings help oil spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. (NOAA)

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of March 3-7, 2014, at NOAA’s Gulf of Mexico Disaster Response Center in Mobile, Ala.

We will accept applications for this class through Friday, January 17, 2014, and we will notify applicants regarding their participation status by Friday, January 31, 2013.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These three-and-a-half-day trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 117 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. The class will be limited to 40 participants.

One additional SOS class is planned during fiscal year 2014 (ending September 30, 2014) in Seattle during the summer. At this time, we are only accepting applications for the Mobile, Ala., class; however, when the application dates for the Seattle class are finalized, we will announce them on this website.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

How Do Oil Spills Affect Coral Reefs?

Coral habitat in the Hawaiian Islands.

Coral habitat in the Hawaiian Islands. (NOAA)

A warming, more acidic ocean. Grounded ships and heavy fishing nets. Coral reefs face a lot of threats from humans. For these tiny animals that build their own limestone homes underwater, oil spills may add insult to injury.

But how does spilled oil reach coral reefs? And what are the effects?

How an oil spill affects corals depends on the species and maturity of the coral (e.g., early stages of life are very sensitive to oil) as well as the means and level of exposure to oil. Exposing corals to small amounts of oil for an extended period can be just as harmful as large amounts of oil for a brief time.

Coral reefs can come in contact with oil in three major ways:

  1. Oil floating on the water’s surface can be deposited directly on corals in an intertidal zone when the water level drops at low tide.
  2. Rough seas can mix lighter oil products into the water column (like shaking up a bottle of salad dressing), where they can drift down to coral reefs.
  3. As heavy oil weathers or gets mixed with sand or sediment, it can become dense enough to sink below the ocean surface and smother corals below.

 

Oil slicks moving onto coral reefs at Galeta at low tide after the Bahia las Minas refinery spill, Panama, in April 1986.

Oil slicks moving onto coral reefs at Galeta at low tide after the Bahia las Minas refinery spill, Panama, in April 1986. (NOAA)

Once oil comes into contact with corals, it can kill them or impede their reproduction, growth, behavior, and development. The entire reef ecosystem can suffer from an oil spill, affecting the many species of fish, crabs, and other marine invertebrates that live in and around coral reefs.

As oil spill responders, NOAA’s Office of Response and Restoration has to take these and many other factors into account during an oil spill near coral reefs. For example, if the spill resulted from a ship running aground on a reef, we need to consider the environmental impacts of the options for removing the ship. Or, if an oil spill occurred offshore but near coral reefs, we would advise the U.S. Coast Guard and other pollution responders to avoid using chemical dispersants to break up the oil spill because corals can be harmed by dispersed oil.

We also provide reports and information for responders and natural resource managers dealing with oil spills and coral reefs:

You can learn more about coral reefs, such as the basic biology of corals, how damaged coral reefs can recover from an oil spill or be restored after a ship grounding, and what we’ve learned about oil spills in tropical reefs.

For lessons a little closer to home, be sure to find out five more things you should know about coral reefs and listen to this podcast about threats to coral health from NOAA’s National Ocean Service.



Leave a comment

NOAA Data on Deepwater Horizon Oil Spill Plume Now Available Online

This is a post by the Office of Response and Restoration’s Ben Shorr and Mark Miller.

Fighting the flames on the Deepwater Horizon drill platform in 2010.

Fighting the flames on the Deepwater Horizon drill platform in 2010. (NOAA)

NOAA Physical Scientist Ben Shorr: It was late April 2010, in the first few days of the Deepwater Horizon/BP oil spill response. It was clear that, in addition to a tragic loss of life, this oil spill was going to be a major event. As I was heading down to the Gulf of Mexico to join my colleagues who were beginning to assess environmental injuries from the spill, I got a call from my supervisor Amy. A research vessel was heading out to collect samples near the leaking wellhead—could I hop on the boat the next day?

That’s how my journey into this oil spill response began and I ended up on the first federal scientific vessel collecting oceanographic and environmental samples, including those from the underwater oil plume. Now, the finalized and standardized analytical chemistry data have been released in NOAA’s online archive. Here’s more about it from the press release:

The dataset, collected to support oil removal activities and assess the presence of dispersants, wraps up a three year process that began with the gathering of water samples and measurements by ships in the Gulf of Mexico during and after the oil release in 2010. NOAA was one of the principal agencies responding to the Macondo well explosion in the Gulf of Mexico, and is the official ocean data archivist for the federal government. While earlier versions of the data were made available during and shortly after the response, it took three years for NOAA employees and contractors to painstakingly catalog each piece of data into this final form.

This Deepwater Horizon Oil Spill dataset, including more than two million chemical analyses of sediment, tissue, water, and oil, as well as toxicity testing results and related documentation, is available to the public online at: http://www.nodc.noaa.gov/deepwaterhorizon/specialcollections.html. A companion dataset, including ocean temperature and salinity data, currents, preliminary chemical results and other properties collected and made available during the response can be found at: http://www.nodc.noaa.gov/deepwaterhorizon/insitu.html.

The Deepwater Horizon Oil Spill response involved the collection of an enormous dataset. The underwater plume of hydrocarbon — a chemical compound that consists only of the elements carbon and hydrogen — was a unique feature of the spill, resulting from a combination of high-pressure discharge from the well near the seafloor and the underwater application of chemical dispersant to break up the oil. …

The effort to detect and track the plume was given to the Deepwater Horizon Response Subsurface Monitoring Unit (SMU), led by NOAA’s Office of Response and Restoration, and included responders from many federal and state agencies and British Petroleum (BP). Between May and November 2010, the SMU coordinated data collection from 24 ships on 129 cruises.

While on this scientific sampling cruise, I found myself working closely with the U.S. Environmental Protection Agency scientists, the ship’s captain and oceanographic technicians, BP’s scientific lead and contractors, and NOAA’s Natural Resource Damage Assessment representative. There were also experts from Canada’s Department of Fisheries and Oceans aboard. The work our team began quickly became the basis for the Subsurface Monitoring Unit within the spill response, which coordinated and provided scientific expertise for sampling, analysis, and mapping of the underwater hydrocarbon plume. Our team was made up of NOAA staff, in addition to others from the EPA, U.S. Geological Survey, and Gulf states.

During the first several months of the response, our team worked closely with EPA and other partners to establish common data management protocols that would allow us to coordinate and collect data including chemistry samples, acoustics, particle size, and oceanographic measurements from federal, BP, and academic scientific cruises in the Gulf of Mexico. These datasets were quickly analyzed and used by the scientific advisors and U.S. Coast Guard to make decisions about directing spill response clean-up operations. NOAA’s Office of Response and Restoration and National Coastal Data Development Center (a division of the National Oceanographic Data Center) formed a close partnership, working with federal, state, and university scientists to gather, organize, process, and analyze oceanographic data—in addition to archiving and making these datasets publicly available.

NOAA Physical Scientist Mark Miller: In October of 2010, shortly after returning from Coast Guard headquarters where I worked during the oil spill, I was asked to help prepare for public release the data collected by the Subsurface Monitoring Unit on the research vessels such as the one my colleague Ben Shorr was on. A few months later in January of 2011, I picked up where Ben left off on coordinating this effort.

Now, I had been involved in database development and deployment for 20 years, so I felt prepared for this task. This was naïve. While at Coast Guard headquarters in Washington, DC, I had been closely involved with the group that used some of the same Subsurface Monitoring Unit data to prepare operational reports for the National Incident Commander, Coast Guard Admiral Thad Allen.

Yet, I did not realize the scope and depth of the data collected on these research cruises. When told later in the project that there were over 2 million records collected, I quickly gained a much greater appreciation of the long, rigorous process involved in preparing and making this information public. The National Oceanographic Data Center has been releasing and updating this response data on a dedicated public website since early in the spill, and this process is finally complete. Because these data will be archived for at least 75 years, they will be available to help researchers for decades to come.

Ben Shorr has been a Physical Scientist with NOAA’s Office of Response and Restoration since he came to Seattle (mostly to ski and sail) in 2000. Ben works on a range of topics, from cleanup, damage assessment, and restoration to visualization and spatial analysis. In his spare time, he enjoys hanging out with his 5 and 3 year old kids, which means riding bikes, skiing, and sailing too.

Mark Miller has been with NOAA’s Office of Response and Restoration in the Emergency Response Division for 25 years, starting the year before the Exxon Valdez oil spill. When not wrestling with data from the Deepwater Horizon/BP spill, he supervises the in-house programming staff and is the NOAA Program Manager for the CAMEO software suite used extensively by fire services across the country to respond to chemical release incidents.


Leave a comment

Science of Oil Spills Training Now Accepting Applications for October 2013

People laughing on beach during SOS class field trip.

Student Dana Wetzel of Mote Marine Laboratory shows off the prize she won while playing intertidal organism bingo during the June 2013 Science of Oil Spills class field trip to Olympic Beach, Edmonds, Wash., while fellow student Shaun Ross of the U.S. Coast Guard looks on and laughs. (P.J. Hahn, Plaquemines Parish, La.)

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of October 28, 2013, in Falmouth, Mass.

We will accept applications for this class through Monday, September 23, and we will notify applicants regarding their participation status by Monday, September 30, 2013.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These three-and-a-half-day trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 117 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. The class will be limited to 40 participants.

Other SOS classes planned for fiscal year 2014 (beginning October 1, 2013 and ending September 30, 2014) include classes in Mobile, Ala., in the late winter/early spring and in Seattle in the summer. At this time, we are not accepting applications for classes other than the Falmouth, Mass., class.

For more information, and to learn how to apply for the class, visit the SOS Classes page on the Office of Response and Restoration website.


Leave a comment

Watching Chemical Dispersants at Work in an Oil Spill Research Facility

Aerial view of Ohmsett and its 2.6 million-gallon salt water tank.

The Ohmsett facility is located at Naval Weapons Station Earle, Waterfront. The research and training facility centers around a 2.6 million-gallon saltwater tank. (Bureau of Safety and Environmental Enforcement)

Last week I had the chance to go back to Leonardo, New Jersey, to observe an oil spill dispersant exercise at the National Oil Spill Response Research and Renewable Energy Test Facility known as Ohmsett (the Oil and Hazardous Material Simulated Environmental Test Tank). Ohmsett is operated by the U.S. Bureau of Safety and Environmental Enforcement (BSEE). The facility features a large saltwater test tank that allows for full-scale testing of oil spill response equipment and technologies. This tank has a large wave generator to simulate the type of conditions seen in the open ocean.

Dispersant use became a national topic of discussion following the explosion and subsequent well blowout on the Deepwater Horizon drilling rig on April 20, 2010. The unprecedented use of chemical dispersants on and below the ocean’s surface during this oil spill raised scientific, public, and political questions about both their effectiveness and their potential consequences for ecosystems and marine life in the Gulf of Mexico.

Although dispersants get a lot of attention, I’ve worked on hundreds of oil spills over the past 20 years, and during that time, I’ve only worked on a handful of spills where dispersants were used. Furthermore, I’ve never had a chance to observe directly how dispersants work. The Ohmsett facility provided that opportunity in a controlled setting that still simulated real-world, open ocean conditions.

Here is a series of photos I took from one of the tests:

Freshly spilled crude oil in the Ohmsett saltwater test tank.

Freshly spilled crude oil in the Ohmsett saltwater test tank.

A few minutes after dispersants applied. Note that some of the oil is still black, but some is turning brown.

A few minutes after dispersants were applied. Note that some of the oil is still black, but some is turning brown.

Now most of the oil is brown, and instead of being on the surface, it is now suspended in small droplets in the top couple feet of the pool.

Now most of the oil is brown, and instead of being on the surface, it is now suspended in small droplets in the top couple feet of the pool.

Now the oil is completely mixed in the water.

Now the oil is completely mixed in the water.

So what do these tests demonstrate? Dispersants can be effective in removing oil from the surface of the water. Breaking the oil into tiny droplets doesn’t remove oil from the water, but it does help to increase the rate of biodegradation.

What these tests don’t tell you is the biological effect of mixing the oil in the water, as opposed to leaving it on the sea surface. Leaving oil on the surface will increase the potential exposure to birds, mammals, and shorelines, while dispersing oil will increase exposure to fish and other animals living in the water column. The decision to use dispersants or other response strategies will always involve a careful evaluation of the environmental benefits and trade-offs of the particular situation and location.

To help answer some of these trade-off questions, NOAA, in between spills, continues to study dispersants and their potential effects on the marine resources that we are trying to protect.


Leave a comment

Historic New England Town, Once Plagued by Tack Factory’s Toxic Pollution, Enjoys Revitalized Coastal Marshes

In spring of 2013, the transformation of the polluted Atlas Tack Superfund site into vibrant coastal habitat is hard to miss. Here, you can see the new freshwater marsh with the town of Fairhaven, Mass., in the background. (NOAA)

In spring of 2013, the transformation of the polluted Atlas Tack Superfund site into vibrant coastal habitat is hard to miss. Here, you can see the new freshwater marsh with the town of Fairhaven, Mass., in the background. (NOAA)

For much of the 20th century, the Atlas Tack Corporation was the main employer in the historic coastal town of Fairhaven, Mass., a place settled in the 1650s by Plymouth colonists. But the presence of this tack factory, shuttered in 1985, left more than a history of paychecks for the area’s residents. It also left saltwater marshes so stocked with cyanide and heavy metals that the U.S. Environmental Protection Agency (EPA) listed the location of the factory as a Superfund site in 1990 and slated it for three intensive rounds of cleanup.

A Brief History of Atlas Tack

Atlas Tack Corporation became one of the nation’s largest manufacturers of wire tacks, bolts, shoe eyelets, bottle caps, and other small hardware. January 17, 1955. (Spinner Publications/All rights reserved)

Atlas Tack Corporation became one of the nation’s largest manufacturers of wire tacks, bolts, shoe eyelets, bottle caps, and other small hardware. Unfortunately, these decades of production left a toxic legacy for Fairhaven’s coastal marshes. January 17, 1955. (Spinner Publications/All rights reserved)

Henry H. Rogers, Standard Oil multimillionaire and friend of famed American author Mark Twain, formed the Atlas Tack Corporation after consolidating several tack manufacturing companies in 1895. The Fairhaven company became one of the nation’s largest manufacturers of wire tacks, bolts, shoe eyelets, bottle caps, and other small hardware.

However, decades of acids, metals, and other chemical wastes oozing through the factory floor boards and being dumped in building drains, the nearby Boys Creek marsh, and an unlined lagoon left the property contaminated with hazardous substances. Found in the soils, waters, and surrounding marsh were volatile organic compounds, cyanide, heavy metals such as arsenic, pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (a toxic oil compound).

EPA led the Superfund cleanup (referred to as a “remedy”) of this hazardous waste site, and the Office of Response and Restoration, through NOAA’s Damage Assessment, Remediation, and Restoration Program, contributed scientific and technical guidance to the EPA during the cleanup and restoration of the site’s coastal marshes.

Determining the Remedy: Scalpel vs. Cleaver

Before restoration: A June 2007 view of the area north of the hurricane dike, following the removal of contaminated sediments. (NOAA)

Before restoration: A June 2007 view of the area north of the hurricane dike, following the removal of contaminated sediments. (NOAA)

The original cleanup goals would have required excavating the entire marsh—ripping out the whole thing, despite some areas still functioning as habitat for the area’s plants and animals. As a result, NOAA, EPA, and U.S. Army Corps of Engineers were reluctant to excavate the entire wetland. Instead, the agencies took a more targeted approach, beginning in 2001 and 2002.

First, they completed a bioavailability study to determine where natural resources were adversely exposed to contaminants from the old tack factory. This study determined which areas of the existing marsh could be preserved while removing the toxic sediment that posed a risk to human health and the environment.

The next part of the remedy was undertaken in three phases from 2006 to 2008. Phase one included demolishing several buildings, sheds, and the power plant and excavating 775 cubic yards of contaminated soil and sludge from 10 acres of the designated commercial area of the manufacturing site. Phase two excavated and disposed off-site 38,000 cubic yards of contaminated soil and debris.  With NOAA’s scientific and technical assistance—and later with help from the Army Corps—EPA, as part of phase three, excavated and later restored 5.4 acres of saltwater and freshwater marsh.

More Than a Remedy: Working Toward Revitalization

After restoration: A newly created northern salt marsh, shown in June 2013, at the site of the former Atlas Tack factory. Bare spots are filling in but a fully covered wetland landscape is likely still a few years away. (NOAA)

After restoration: A newly created northern salt marsh, shown in June 2013, at the site of the former Atlas Tack factory. Bare spots are filling in but a fully covered wetland landscape is likely still a few years away. (NOAA)

While planning to remove the contaminated wetland sediments, we recognized that the culvert running under the hurricane dike prevented the nearby Atlantic Ocean’s tide from replenishing the upstream native saltwater marsh. As a result, invasive reeds were taking over the marsh above the dike.

Reconstructing the culvert would have cost millions of dollars, so the agencies got creative. They designed a new strip of land that would divide the existing, poorly functioning saltwater marsh into a smaller, productive saltwater marsh that could be supported with the existing saltwater supply and a new freshwater wetland supported by rainfall and groundwater. The agencies also removed contaminated sediment from and then replanted a salt marsh south of the dike. Across all three marshes, more than 14,000 native marsh plants were planted, providing valuable habitat for birds and other animals.

By working together, NOAA, EPA, and Army Corps created an effective cleanup solution for the polluted factory site while enhancing the environment by returning this contaminated marsh to a functioning and sustainable habitat, a process known as ecological revitalization. Today, NOAA, along with the EPA, Army Corps, and Massachusetts Department of Environmental Protection, is helping observe and monitor the success of the restoration projects. A recent visit revealed that two of the marshes already are brimming with healthy plants and wildlife, while the salt marsh which had contaminants removed is showing considerable improvement.


1 Comment

NOAA Report Identifies Shipwrecks with the Potential to Pollute

On May 14, 1942, the U.S. Army Air Corps photographed the location of the burning tanker Potrero del Llano. (National Archives)

On May 14, 1942, the U.S. Army Air Corps photographed the location of the burning tanker Potrero del Llano. (National Archives)

Over the past couple years I’ve talked about the threat of oil spills from historic shipwrecks, including the S/S Edmund Fitzgerald in the Great Lakes and the S/S Montebello off southern California. But we know that these wrecks are just the tip of the iceberg.

The past century of commerce and warfare has dotted our waters with shipwrecks, many of which have never been surveyed. Since 2010, my office, working with the Office of National Marine Sanctuaries and the U.S. Coast Guard, has been systematically looking at which of these wrecks might pose a substantial threat of leaking oil still on board. This work is part of NOAA’s Remediation of Underwater Legacy Environmental Threats (RULET) project.

We used a tiered approach to develop an initial priority list of vessels for risk assessment. This process narrowed down the estimated 20,000 vessels in U.S. waters to 573 that met the initial criteria. The ships had to be over 1,000 gross tons (making them about 200 feet or longer), built to carry or use oil as fuel, and made of a durable material such as steel.

Understanding how a shipwreck site formed helps explain why vessels, like the Dixie Arrow which initially carried approximately 86,136 barrels of crude oil, but was demolished during World War II, no longer remain intact and are no longer potentially polluting shipwrecks. (NOAA)

Understanding how a shipwreck site formed helps explain why vessels, like the Dixie Arrow which initially carried approximately 86,136 barrels of crude oil, but was demolished during World War II, no longer remain intact and are no longer potentially polluting shipwrecks. (NOAA)

Additional research revealed the actual number posing a substantial pollution threat was lower because of the violent nature in which some ships sank (many were lost in World War II). This is because, for example, a ship hit and sunk by torpedoes would be less likely to still have intact tanks of oil. And other vessels were taken off our radar because they have fallen apart or were demolished because they were navigational hazards.

We also used computer models to predict the environmental and economic consequences of oil spills from these vessels. Those results then helped us sort out which wrecks might pose the biggest risks.

A map showing the name, location, and priority level of shipwrecks recommended to the U.S. Coast Guard for further pollution assessment. (NOAA)

A map showing the name, location, and priority level of shipwrecks recommended to the U.S. Coast Guard for further pollution assessment. (NOAA)

On May 20, we released both an overall report describing this work and our recommendations and 87 individual wreck assessments. The individual risk assessments highlight not only concerns about potential ecological and socio-economic impacts, but they also characterize most of the vessels as being historically significant. In addition, many of them are grave sites, both civilian and military.

The national report and the 87 risk assessments are available at http://sanctuaries.noaa.gov/protect/ppw/.


Leave a comment

Over a Century after Texas Strikes Oil, Marsh Restoration Completed for an Old Refinery’s Pollution

This is a post by the Office of Response and Restoration’s Jessica White.

On January 10, 1910, the famous Lucas gusher, named after the persistent oil explorer who drilled the well, struck oil at Spindletop Hill in a geyser that launched more than 100 feet in the air for nine days. This kicked off the Texas oil boom and was the impetus for opening the nearby Gulf Oil Company refinery. (John Trost)

On January 10, 1910, the famous Lucas gusher, named after the persistent oil explorer who drilled the well, struck oil at Spindletop Hill in a geyser that launched more than 100 feet in the air for nine days. This kicked off the Texas oil boom and was the impetus for opening the nearby Gulf Oil Company refinery. (John Trost)

About five miles from the Texas-Louisiana border sits what was once the Gulf Oil Company’s refinery. It’s now owned by Valero, by way of Chevron. But this century-old refinery in Port Arthur, Texas, has been operating since a year after the famous discovery of oil at Spindletop in 1901, which came in the form of a more than 100-foot-high, nine-day-long oil gusher.

Spindletop is the salt dome oil field that sparked the oil boom in Texas, ushering in the exploration of oil in the region that has persisted to this day. It also paved the way for oil to become a significant energy source.

Oil Boom not Necessarily a Boon

With the oil boom came a number of hazardous substances to the former Gulf Oil refinery site and its surrounding areas. Historically, the refinery produced jet fuel, gasoline, petrochemicals, and a variety of other oil and chemical products. But this took a toll on the site’s soil, water, and aquatic habitats. Ecological risk assessment studies led by the state of Texas have revealed the presence of polycyclic aromatic hydrocarbons (PAHs, a toxic component of oil), lead, zinc, nickel, cadmium, copper, and more in the water and sediment on the site.

In 2004, NOAA, U.S. Fish and Wildlife Service, and the Texas natural resource trustees, working cooperatively with Chevron, determined that the public was owed ecological restoration for the contaminated surface water, soil, and sediments at the former Gulf Oil refinery [PDF]. Our assessment showed that we could accomplish this by constructing 83 acres of tidal wetland and 30 acres of coastal wet prairie and improving 1,332 acres of coastal wetlands via new water control structures in the Sabine Lake/Neches River basin.

A black-necked Stilt and Snowy Egrets in the restored wetland habitat. (Photo provided courtesy of Chevron.)

A black-necked Stilt and Snowy Egrets in the restored wetland habitat.
(Photo provided courtesy of Chevron.)

Based on this information, the natural resource trustees negotiated with Chevron (which assumed the legal responsibility of the former Gulf Oil site) a $4.4 million settlement of state and federal natural resource damage claims related to the site. This money would go toward implementing the environmental restoration.

The settlement included three projects meant to restore coastal habitat to compensate the public for natural resources lost or injured by historical contamination from the refinery. Two of the projects involved restoring a natural hydrology to coastal wetlands by installing water flow enhancement structures and berms. The third project aimed to create intertidal estuarine marsh and coastal wet prairie by using nearby dredge material.

These projects were a significant undertaking for Chevron and their contractors. They involved several different restoration techniques, some of which had to be modified in the middle of construction to adapt to changes in the field.

Clumps of planted marsh grass in restored estuarine marsh, looking towards Bridge City. February 1, 2013 (NOAA/ National Marine Fisheries Service/Jamie Schubert)

Clumps of planted marsh grass in restored estuarine marsh, looking towards Bridge City. February 1, 2013 (NOAA/National Marine Fisheries Service/Jamie Schubert)

Building Marsh out of Mud Pancakes

In 2002, Chevron set up a pilot project to determine the feasibility of constructing marsh habitat by placing local dredge material into open-water habitat. The resulting constructed marsh terrace was able to maintain the necessary elevation for native marsh vegetation to take root.

Based on the successful pilot, the full-scale project for building marsh planned to mix dredge material with water, forming slurry that could then be pumped into open water to form mounds and terraces. Once they reached the suitable elevation, the mounds and terraces would later be planted with native marsh grasses. On the other hand, the coastal wet prairie would be constructed by removing dredged sediment to lower the elevation and make it suitable for supporting vegetation found in that habitat type.

Established estuarine marsh in the Old River South marsh complex. Note the elevated mounds of mud beneath the marsh grass. (NOAA/ National Marine Fisheries Service/Jamie Schubert)

Established estuarine marsh in the Old River South marsh complex. Note the elevated mounds of mud beneath the marsh grass. (NOAA/National Marine Fisheries Service/Jamie Schubert)

Full-scale construction for the projects kicked off in 2007. This timeline was pushed back a few years from the pilot project because in 2005 Hurricanes Katrina and Rita increased demand for the heavy equipment used in the marsh environment and also damaged habitat and vegetation at the project site.

Another challenge came after Chevron pumped the dredged sediments into the open water to create marsh mounds. Unlike during the pilot project, when the pumped-in sediment stacked well, the sediment used in the marsh construction spread out and formed pancakes instead of the desired mounds. To prevent the sediment from spreading, the restoration team tried changing the pump’s spout, but spraying the dredge slurry into mounds was still a challenge. The mounds became mudflats.

Changing the construction technique again, they next pumped in dredged sediments and then excavated mounds and terraces. This technique had greater success, but in the end, it was still necessary to pump in additional sediment to some areas to achieve the necessary elevations. Because the team was using so much more dredge material than originally planned, they had to find an alternative sediment source from a nearby canal. If they continued taking sediment from the original source, they would have risked lowering the elevation of the area, which was adjacent to the coastal wet prairie and could affect its hydrology.

View of Rainbow Bridge from restored estuarine marsh. (NOAA/National Marine Fisheries Service/Jamie Schubert)

View of Rainbow Bridge from restored estuarine marsh. (NOAA/National Marine Fisheries Service/Jamie Schubert)

Despite a number of setbacks, the restoration projects were finished in 2009 and after a monitoring period, the trustees certified them as successfully completed in February of 2013. These projects will improve the fish and shellfish abundance in this part of southeast Texas, provide habitat for wildlife and fish, increase recreational opportunities for bird watching and fishing, and improve the habitat for waterfowl (a benefit for hunters).

The area is also highly visible for anyone driving south through the Beaumont-Port Arthur area. Just look out your window as you cross the Neches River and you’ll see the marsh mounds, coastal wet prairie, and maybe even a few Snowy Egrets on display.

Jessica White.

Jessica White.

Jessica White is a Regional Resource Coordinator with the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. She has been working with NOAA in the Gulf since 2003 and recently relocated to the Gulf of Mexico Disaster Response Center. Jessica has assessed and restored Superfund sites in Texas and Louisiana and has supported oil spill and marine debris cleanup. She has a B.S. in Biology from Texas Tech University and a M.S. in Environmental Science from the University of North Texas.


Leave a comment

NOAA Hosts Forum Exploring Oil Sands and the Challenges of When They Spill

Water and sediment sampling on Morrow Lake near Battle Creek, Mich., during the response to the Enbridge pipeline spill of oil sands product. August 2, 2010 (U.S. Coast Guard)

Water and sediment sampling on Morrow Lake near Battle Creek, Mich., during the response to the Enbridge pipeline spill of oil sands product. August 2, 2010 (U.S. Coast Guard)

Unless there is a big spill or accident, most people probably don’t think much about different types of crude oil, where it comes from, or how it is transported.

Yet there is an ongoing national debate about Canada’s Alberta oil sands and whether to complete the Keystone XL pipeline that would carry Alberta oil sands products to refineries in the U.S. Gulf Coast. This proposed pipeline has gotten a lot of attention, but there are existing pipelines carrying oil sands products around Canada and across the border into the U.S., as well as tanker, barge, and rail operations doing the same.

The Exxon Pegasus pipeline spill in Mayflower, Ark., on March 29, 2013, was a reminder that oil sands are already being transported and, whenever oil is transported, there is risk of a spill.

Oil sands are considered an unconventional oil type that has been growing in prominence as oil prices fluctuate and production technologies improve. As a result, there are many questions about how best to respond to spills of crude oil products derived from oil sands. One of the major concerns is the buoyancy of oil sands products, and their potential to sink, especially in sediment-laden waters. The U.S. Environmental Protection Agency is still cleaning up submerged oil from the July 2010 Enbridge pipeline spill in Michigan’s Kalamazoo River.

Last week, NOAA’s Office of Response and Restoration participated in an Oil Sands Products Forum held at NOAA’s Western Regional Center in Seattle, Wash. The forum was sponsored by the Washington State Department of Ecology Spills Program, U.S. Coast Guard, and the Pacific States/British Columbia Oil Spill Task Force. The University of New Hampshire Center for Spills in the Environment facilitated the forum.

The two-day meeting included a full day of presentations and discussions about oil sands (also known as tar sands or bitumen) and their related products—covering everything from extraction, refining, and transportation to chemistry, how they move and react in the environment, and recent case studies of spill responses. Over 50 environmental specialists, oil spill planners, and responders attended from government agencies, tribal governments, nongovernmental organizations, and industry.  Several oil sands experts from Canadian agencies and organizations also attended and presented.

On the second day, spill responders were presented with four different spill scenarios involving oil sands products, and the potential issues and challenges highlighted by the different spill situations were thoroughly discussed and recorded. Presentations and meeting notes will be made available through the Center for Spills in the Environment.  The focus of this forum was not to discuss whether or not oil sands should be exploited as a resource, but rather, how to prepare better for and then deal effectively with a spill of oil sands products when it happens.

Follow

Get every new post delivered to your Inbox.

Join 336 other followers