NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Keep Your Holidays Happy and Your Impact Low

Red bows and evergreen bows on a fence on a beach.

Make sure your holidays leave the coasts clean and bright. (Creative Commons: Susan Smith, Attribution-NonCommercial-NoDerivs 2.0 Generic License)

Across the United States, the winter holiday season is upon us and many people are gathering with family and friends to celebrate. But as you go about trimming trees, lighting candles, and nipping eggnog, keep in mind a few tips for lowering your impact on the ocean.

After all, a clean and healthy environment sounds like a great gift to give others—along with world peace.

  • Host a no- or low-waste holiday soiree. Set out reusable dishes for guests or use recyclable items and have a clearly labeled recycling bin at the ready. Compost napkins, half-eaten gingerbread people, and that fruitcake leftover from last year. Get more tips from the Marine Debris Blog. As they point out, “According to the EPA, the volume of household waste in the United States generally increases 25 percent between Thanksgiving and New Year’s Day—about 1 million extra tons.”
  • Do your holiday shopping with reusable bags. Plastic shopping bags are among the top 10 items collected each year at the International Coastal Cleanup.
  • Consider giving gifts that won’t end up on the shelf or in the trash. It takes a lot of oil (which can spill) to produce and transport the many items for sale starting Black Friday. What about giving the people you care about gifts they can experience, such as tickets to a show or gift certificate to their favorite restaurant? Or something they can use with little or no accompanying waste, such as homemade hand salve or your famous family latke recipe, along with a tasty batch to go with it?
  • Keep your gifts under reusable wraps. Skip the plastic ribbons and bows and wrap your gifts in stylish fabric gift bags (which the recipient can then re-gift). At the very least, save what wrappings you can and use them again next time.
  • Avoid giving gifts that contain tiny plastic microbeads. It may be tempting to give your sister-in-law a bottle of Cinnamon Stick Glitterburst Exfoliating Body Scrub, but check the label first. Personal care items, such as cleansers and body wash, often contain “microscrubbers” made of plastic that go down the drain, most times making it past waste treatment and into rivers, lakes, and the ocean. Look for “polyethylene” or “polypropylene” in the ingredient list.
  • If you have a blast, clean it up. If you use fireworks to ring in the New Year, please do so responsibly. Fireworks can shatter into little plastic bits, which can be swept into storm drains and end up in lakes, rivers, and the ocean. Volunteer for a beach cleanup on January 1, track what you pick up, and make sure marine debris doesn’t pollute 2015.
  • Give public transportation the green light. Holly and mistletoe shouldn’t be the only green part of this season. When possible and safe, opt for lower-impact transportation options: walking, biking, or public transportation. NOAA responded to 138 oil and chemical spills in the past year. Less oil used means less oil transported and potentially spilled.

The U.S. Environmental Protection Agency has more great suggestions for greening your holiday season and all winter long. Do you have any tips? How are you keeping your holiday season happy and light on the planet?


Leave a comment

A Final Farewell to Oil Tankers with Single Hulls

January 1, 2015 marks a major milestone in preventing oil spills. That date is the deadline which the landmark Oil Pollution Act of 1990 (OPA-90) specifies for phasing out single-hull tankers in U.S. waters. That act, passed after the 1989 Exxon Valdez oil spill in Prince William Sound, Alaska, required that all new tankers and tank-barges be built with double hulls.

Recently constructed single-hull tankers were allowed to operate, but 25 years after the Exxon Valdez, those vessels are now at the end of their operational life and will no longer be able to carry oil as cargo. The requirement was phased in gradually because of the difficultly of converting existing single-hull tankers to double hulls, and retiring the single-hull tankers more rapidly would have been a major disruption to world shipping.

Counting Down to a New Era

There won’t be a dramatic change-over on New Year’s Eve; most of the tankers calling on U.S. ports have had double hulls years before this deadline. However, one ship which was not switched over to a double hull soon enough was the tanker Athos I. This ship, carrying 13.6 million gallons of heavy crude oil, struck a submerged anchor in the Delaware River and caused a relatively large, complicated oil spill near Philadelphia, Pennsylvania, 10 year ago.

In 1992, two years after the Oil Pollution Act, the International Convention for the Prevention of Pollution from Ships (the MARPOL Convention) was amended to require all newly built tankers have double hulls. MARPOL has been ratified by 150 countries, representing over 99 percent of merchant tonnage shipped worldwide.

Stay out of Trouble by Going Double

So, what is the big issue around single vs. double-hull ships? Historically, tankers carrying oil were built with a single hull, or single shell.

While we measure oil in barrels, it is not actually shipped that way. Instead, oil is pumped into huge tanks that are part of the structure of tankers and barges. For vessels with a single hull, one plate of steel is all that separates the oil on board from the ocean. If the hull were punctured from a collision or grounding, an oil spill is pretty much guaranteed to follow. On the other hand, a ship with a double hull has two plates of steel with empty space in between them. The second hull creates a buffer zone between the ocean and the cargo of oil.

Naval architects have debated the merits of various hull designs in reducing oil spills, and using a double hull, essentially a hull within a hull, was selected as the preferred vessel design.

Close up of gash in hull on Cosco Busan cargo ship.

The cargo ship Cosco Busan lost 53,000 gallons of fuel oil when the single-hull ship hit the San Francisco-Oakland Bay Bridge in 2007. (U.S. Coast Guard)

However, the double hull requirements only apply to tankers and tank barges. Container ships, freighters, cruise ships, and other types of vessels are still built with single hulls. While these ships carry a lot less oil than a tanker, a large non-tank vessel can still carry a lot of fuel oil, and some have caused some pretty big spills, including the 2007 oil spill caused by the cargo ship Cosco Busan in San Francisco Bay.

Of course, double hulls don’t prevent all oil spills from tankers either, but the design has been credited with reducing the amount spilled, especially in the cases of low-speed groundings and collisions.

And some pretty spectacular collisions have resulted in double-hull tankers not spilling a drop.

Twenty years after the Exxon Valdez oil spill, the Norwegian tanker SKS Satilla collided with a submerged oil rig in the Gulf of Mexico. The collision tore a huge hole in the side of the oil tanker, but, thankfully, none of the 41 million gallons of crude oil it had on board was spilled.


Leave a comment

Science of Oil Spills Training Now Accepting Applications for Winter 2015

Two people talking on a beach with a ferry in the background.

These classes help prepare responders to understand the environmental risks and scientific considerations when addressing oil spills, and also include a field trip to a beach to apply newly learned skills. (NOAA)

NOAA‘s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of February 23–27, 2015 at the NOAA Disaster Response Center in Mobile, Alabama.

We will accept applications for this class through Friday, January 9, 2015, and we will notify applicants regarding their participation status by Friday, January 16, 2015, via email.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

Additional SOS courses will be held in 2015 in Houston, Texas, (April 27–May 1, 2015) and Seattle, Washington (date to be determined).

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

When the Dynamics of an Oil Spill Shut Down a Nuclear Power Plant

Yellow containment boom floats on a river next to a nuclear power plant.

Precautionary containment boom is visible around the water intake system at the Salem Nuclear Generating Station in New Jersey on December 6, 2004. The nuclear plant was shut down for 11 days to prevent the heavy, submerged oil from the Athos spill from clogging the water intakes. (NOAA)

“I’ve never reopened a nuclear power plant,” thought NOAA’s Ed Levine. Despite that, Levine knew it was his job to get the right information to the people who ultimately would make that decision. This was his role as a NOAA Scientific Support Coordinator during oil spills. However, most major oil spills do not affect nuclear power plants. This wintry day in 2004 was an exception.

Forty miles north of the Salem Nuclear Generating Station in New Jersey, an oil tanker called the Athos I had struck an object hidden beneath the Delaware River. As it was preparing to dock at the CITGO refinery near Philadelphia on November 26, the ship began tilting to one side, the engine shut down, and oil started gushing out.

“Not your typical oil spill,” later reflected Jonathan Sarubbi, who served as U.S. Coast Guard Captain of the Port and led the federal response during this incident. Not only did no one immediately know what the ship had hit—or where that object was located in the river channel—but the Athos, now sitting too low in the water to reach the dock, was stuck where it was. And it was still leaking its cargo of heavy Venezuelan crude oil.

Capt. Sarubbi ordered vessel traffic through this busy East Coast shipping channel to stop until the object the Athos hit could be found. Little did Capt. Sarubbi, Levine, and the other responders know that even more challenges would be in store beneath the water and down the river.

Getting Mixed up

Most oils, most of the time, float on the surface of water. This was precisely what responders expected the oil coming out of the Athos to do. But within a couple days of the spill, they realized that was not the case. This oil was a little on the heavier side. As it shot out of the ship’s punctured bottom, some of the oil mixed with sediment from the river bottom. It didn’t have far to go; thanks to an extremely low tide pulling the river out to sea, the Athos was passing a mere 18 inches above the bottom of the river when it sprung a leak.

Now mixed with sediment, some of the spilled oil became as dense as or denser than water. Instead of rising to the river surface, it sank to the bottom or drifted in the water column. Even some of the oil that floated became mixed with sediment along the shoreline, later sinking below the surface. For the oil suspended in the water, the turbulence of the Delaware River kept it moving with the currents increasingly toward the Salem nuclear plant, perched on the river’s edge.

NOAA’s oil spill trajectory model GNOME forecasts the spread of oil by assuming the oil is floating on the water’s surface. Normally, our oceanographers can verify how well the forecasts are doing by calibrating the model against twice-a-day aerial surveys of the oil’s movement. The trouble with oil that does not float is that it is harder to see, especially in the murky waters of the Delaware River.

Responders were forced to improvise. To track oil underwater, they created new sampling methods, one of which involved dropping weighted ropes into the water column at various points along the river. The ropes were lined with what looked like cheerleader pom-poms made of oil-attracting plastic strips that would pick up oil as it passed by.

Nuclear Ambitions

Nuclear plants like the Salem facility rely on a steady flow of freshwater to cool their reactors. A thin layer of floating oil was nearing the plant by December 1, 2004, with predictions that the heavier, submerged oil would not be far behind. By December 3, small, sticky bits of oil began showing up in the screens on the plant’s cooling water intakes. To keep them from becoming clogged, the plant decided to shut down its two nuclear reactors the next day. That was when NOAA’s Ed Levine was tasked with figuring out when the significant threats due to the oil had passed.

Eleven days later, the Salem nuclear plant operators, the State of New Jersey, and the Nuclear Regulatory Commission allowed the plant to restart. A combination of our modeling and new sampling methods for detecting underwater oil had shown a clear and significant drop in the amount of oil around the plant. Closing this major electric generating facility cost $33.1 million out of more than $162 million in claims paid to parties affected by the Athos spill. But through our innovative modeling and sampling, we were able to reduce the time the plant was offline, minimizing the disruption to the power grid and reducing the economic loss.

Levine recalled this as an “eye-opening” experience, one yielding a number of lessons for working with nuclear power plants should an oil spill threaten one in the future. To learn more about the Athos oil spill, from response to restoration, visit response.restoration.noaa.gov/athos.

A special thanks to NOAA’s Ed Levine and Chris Barker, former U.S. Coast Guard Captain Jonathan Sarubbi, and Henry Font, Donna Hellberg, and Thomas Morrison of the Coast Guard National Pollution Funds Center for sharing information and data which contributed to this post.


Leave a comment

OR&R Defines the Issues Surrounding Oil Spill Dispersant Use

Oil floating on water's surface.

Oil on the water’s surface. (NOAA)

I recently had the opportunity to attend an interesting seminar on the use of dispersants in oil spill response. On August 8, 2014, OR&R Emergency Response Division marine biologist, Gary Shigenaka, and Dr. Adrian C. Bejarano, aquatic toxicologist, made presentations to a group of oil spill response professionals as part of the Science of Oil Spills class, offered by OR&R in Seattle last week.

Mr. Shigenaka introduced the subject, giving the students background on the history of dispersant use in response to oil spills, starting with the first use in England at the Torrey Canyon spill. Because the first generation of oil dispersants were harsh and killed off intertidal species, the goal since has been to reduce their inherent toxicity while maintaining effectiveness at moving oil from the surface of the water into the water column. He gave an overview of the most prevalent commercial products, including Corexit 9527 and Corexit 9500, manufactured by Nalco, and Finasol OSR52, a French product.

Aerial view of testing facility with long pool.

The Ohmsett facility is located at Naval Weapons Station Earle, Waterfront. The research and training facility centers around a 2.6 million-gallon saltwater tank. (Bureau of Safety and Environmental Enforcement)

Shigenaka reviewed the U.S. EPA product schedule of dispersants as well as Ohmsett – National Oil Spill Response Research Facility in Leonardo, N.J. Ohmsett is run by the U.S. Department of Interior’s Bureau of Safety and Environmental Enforcement. He showed video clips of oil dispersant tests conducted recently at the facility by the American Petroleum Institute.

The corporate proprietary aspects of the exact formulation of dispersants were described by Shigenaka as one of the reasons for the controversy surrounding the use of dispersants on oil spills.

Dispersant Use in Offshore Spill Response

Dr. Bejarano’s presentation, “Dispersant Use in offshore Oil Spill Response,” started with a list of advantages of dispersant use such as reduced oil exposure to workers; reduced impacts on shoreline habitats; minimal impacts on wildlife with long life spans; and keeping the oil away from the nearshore area thus avoiding the need for invasive cleanup. She followed with some downside aspects such as increased localized concentration of hydrocarbons; higher toxicity levels in the top 10 meters of the water column; increased risk to less mobile species; and greater exposure to dispersed oil to species nearer to the surface.

Dr. Bejarano is working on a comprehensive publicly-available database that will include source evaluation and EPA data as well as a compilation of data from 160 sources scored on applicability to oil spill response (high, moderate, low and different exposures).

Her presentation concluded with a summary of trade-offs associated with dispersant use:

  • Shifting risk to water column organisms from shoreline, which recover more quickly (weeks or months).
  • Toxicity data are not perfect.
  • Realistic dose and duration are different from lab to field environment.
  • Interpretation of findings must be in the context of particular oil spill considerations.

Dr. Bejarano emphasized the need for balanced consideration in reaching consensus for the best response to a particular spill.

Following the formal presentations, there was a panel discussion with experts from NOAA, EPA, and State of Washington, and the audience had an opportunity to ask questions. Recent research from the NOAA National Marine Fisheries Service/ Montlake Laboratory was presented, focusing on effects of oil and dispersants on larval fish. The adequacy of existing science underlying trade-offs and net environmental benefit was also discussed.

Read our related blog on dispersants, “Help NOAA Study Chemical Dispersants and Oil Spills.”


Leave a comment

NOAA Again Joins Coast Guard for Oil Spill Exercise in the Arctic

This is a post by NOAA Environmental Scientist Dr. Amy Merten.

Large ship offshore.

U.S. Coast Guard icebreaker Healy.

It is no mystery anymore that the Arctic is undergoing unprecedented change and the extent of summer sea ice continues to shrink. As the ice contracts, shipping within and across the Arctic, oil and gas exploration, and tourism likely will increase, as will fishing, if fisheries continue migrating north to cooler waters. With more oil-powered activity in the Arctic and potentially out-of-date nautical charts, the region also will see an increased risk of oil spills.

Although the Arctic may have “ice-free” summers, it will remain a difficult place to respond to spills, still facing conditions such as low visibility, mobilized icebergs, and extreme cold. Much of the increased activity exploits the longer amount of time between the sea ice breaking up in the spring and freezing up in the fall. Accidents on either end of this longer window could mean responding to oil spills complicated by sea ice.

Ready, Set, (Pretend to) Spill

With these challenging circumstances in mind, NOAA’s Office of Response and Restoration again will be sending spatial data specialists aboard the Coast Guard icebreaker Healy for an Arctic Technology Evaluation, a month-long scientific expedition to the Arctic Ocean to demonstrate and evaluate oil spill tools, technologies, and techniques as part of Arctic Shield 2014. The ship leaves for the edge of the sea ice from Seward, Alaska, on August 8. We will be working with the U.S. Coast Guard Research and Development Center (RDC) to operate Arctic ERMA, our mapping tool geared at oil spill response. Normally an online tool, a special internet-independent version of ERMA, known as Stand-alone ERMA, will serve as the common operational picture for scientific data during this Arctic Technology Evaluation.

NOAA provides scientific support to the Coast Guard during oil and chemical spills, and ERMA is an extension of that support. This Arctic Technology Evaluation is an opportunity to work with the Coast Guard in as realistic conditions as possible—on a ship in the Arctic Ocean. Once the Healy makes it far enough north, the Coast Guard RDC will deploy a simulated oil spill so they can test oil spill detection and recovery technologies in ice conditions. The team will test unmanned technology platforms (both airborne and underwater) to detect where the spilled “oil” is and to collect ocean condition data, such as sea temperature, currents, and the areas where oil is mixing and spreading in the water column. In this case the simulated oil will be fluorescein dye, an inert tracer used for other simulated spills and water transport studies in the ocean and rivers. (Other simulated spilled “oils” have included peat moss, rubber ducks, and oranges.)

Ship with small aircraft in front of it.

NOAA’s remote-controlled Puma aircraft. (NOAA)

One major objective is for NOAA’s Unmanned Aircraft Systems group to fly their 8.5 foot wingspan, remote-controlled Puma, instead of an airplane with a human observer, to delineate the extent of the “oil” plume. ERMA’s job will be to display the data from the Puma and other unmanned technologies so all of the team can see where measurements have been taken and identify insights into how they could hypothetically clean up a spill in the remote, icy environment.

Arriving at the Arctic

In many ways, our office is a newcomer to the Arctic, and we still have a lot to learn about past research and current ways of life in the region. As the NOAA co-director for the Coastal Response Research Center (a joint partnership with the University of New Hampshire), I worked with my co-director, UNH professor Nancy Kinner, to promote understanding of the risks the Arctic is facing. In 2007, we participated in a joint industry study which brought me to the Arctic at the SINTEF lab on Svalbard in Norway. Here, I saw firsthand how difficult it can be to find oil mixed in ice and then try to do something about it, such as burn it. The temperature extremes in the Arctic limit mobility and the amount of time one can be outside responding to a spill—if you can get to the spill in the first place.

At the same time, we were developing ERMA® (Environmental Response Management Application), a web-based mapping tool for environmental response, which is customized for various regions in the United States. As NOAA’s Office of Response and Restoration began developing strategies for working in the Arctic, support emerged for customizing ERMA for the Arctic region. We worked with several organizations, including Arctic communities, to develop Arctic ERMA, taking care to make connections and build relationships with the people who live in and know the region and its natural resources. ERMA also will use the Healy’s onboard satellite communications to relay data back to the live Arctic ERMA website, allowing people outside the vessel to stay up-to-date with the mission.

Responding to Reality

image of broken ice on the water's surface. (NOAA)I’m excited for my ERMA colleagues, Jill Bodnar and Zach Winters-Staszak, to experience this extreme and special environment firsthand. Academically, you can think through the challenges a spill in the Arctic would present, but actually experiencing it quickly reveals what will and will not work. Partnering with the Coast Guard is helping those of us at NOAA be proactive responders in general, and in particular, is teaching the ERMA team how to pull into this tool data from multiple platforms and improve response decision-making.

We’re all connected to the Arctic; weather and oceanographic patterns are changing world wide because of the rapidly changing Arctic. Oil and gas coming from the Arctic will fuel the U.S. economy and current way of life for the foreseeable future. We hope that Arctic Shield and other oil spill exercises will better prepare us for whatever happens next.  Follow along with NOAA’s efforts during Arctic Shield at http://oceanservice.noaa.gov/arcticshield/.

Amy Merten with kids from Kivalina, Alaska.

Dr. Amy Merten is pictured here with children from the Alaskan village of Kivalina. She was in Alaska for an oil spill workshop in the village of Kotzebue.

Amy Merten is the Spatial Data Branch Chief in NOAA’s Office of Response and Restoration. Amy developed the concept for the online mapping tool ERMA (Environmental Response Mapping Application). ERMA was developed in collaboration with the University of New Hampshire. She expanded the ERMA team at NOAA to fill response and natural resource trustee responsibilities during the 2010 Deepwater Horizon/BP oil spill. Amy oversees data management of the resulting oil spill damage assessment. She received her doctorate and master’s degrees from the University of Maryland.

 


Leave a comment

Mysterious Oil Spill Traced to Vessel Sunk in 1942 Torpedo Attack

Aerial photo of an oil sheen on the ocean.

U.S. Coast Guard overflight photo, taken on July 17, 2014. (USCG)

A few weeks ago a North Carolina fisherman had a sinking feeling as he saw “black globs” rising to the ocean surface about 48 miles offshore of Cape Lookout. From his boat, he also could see the tell-tale signs of rainbow sheen and a dark black sheen catching light on the water surface—oil. But looking around at the picturesque barrier islands to the west and Atlantic’s open waters to the east, he couldn’t figure out where it was coming from. What was the source of this mysterious oil?

Describing what he saw, the fisherman filed a pollution report with the U.S. Coast Guard. On July 17, 2014, a U.S. Coast Guard C-130 aircraft flew over the site and confirmed the presence of a sheen of oil in the same vicinity. Based on the location and persistence of the sheens, the responders suspected the oil possibly could be leaking from the sunken wreck of the steamship W.E. Hutton, 140 feet below the water surface. Shortly after, archeologists confirmed that to be the case.

Balck and white photo of a ship in 1942.

A 1942 photo of the W.E. Hutton. (USCG)

At the Bottom of the Graveyard of the Atlantic

This area off of North Carolina’s Outer Banks is known as the Graveyard of the Atlantic. The combination of harsh storms, piracy, and warfare have left these waters littered with shipwrecks, and because of the conditions that led to their demise, many of them are broken in pieces. In the midst of World War II, on March 18, 1942, the W.E. Hutton was one of three U.S. vessels in the area torpedoed by German U-boats. Tragically, 13 of the 23 crewmembers aboard the ship were killed. The Hutton’s survivors were rescued by the Port Halifax, a British ship.

When the steam-powered tanker was hit by German torpedoes, the Hutton was en route from Smiths Bluff, Texas, to Marcus Hook, Pennsylvania, with a cargo of 65,000 barrels of #2 heating oil. An initial torpedo hit the starboard bow, and the second hit to the port side came 10 minutes later. The ship sank an hour after the first hit, eventually settling onto the seafloor. Today, it is reportedly upside down, with the port side buried in sand but with the starboard edge and some of its railing visible.

The wreck of the W.E. Hutton also is located in the NOAA Remediation to Undersea Legacy Environmental Threats (RULET) Database. Evaluated in the 2013 NOAA report “Risk Assessment for Potentially Polluting Wrecks in U.S. Waters,” this wreck was considered a low potential for a major oil spill because dive surveys “show all tanks open to the sea and no longer capable of retaining oil.”  However, as the fisherman could observe from the waters above, some oil clearly remains trapped in the wreckage.

This shipwreck was described by wreck diver and historian Gary Gentile as having “enough large cracks to permit easy entry into the vast interior.” Another wreck diver and historian, Roderick Farb, noted that the largest point of entry into the hull is “about 150 feet from the stern,” through a “huge crack in the hull full of rubble, iron girders, twisted hull plates and other wreckage.”  This wreck is the closest one to the spot where the fisherman first saw the leaking oil, and given the Hutton’s inverted position and such cracks, we now realize the possibility that the inverted hull has been trapping some of the 65,000 barrels of its oil cargo as well as its own fuel.

An image of the wreck of the W.E. Hutton laying on the ocean floor.

A multibeam scan of the wreck of the W.E. Hutton taken in 2010. (NOAA)

Solving the Problems with Sunken Shipwrecks 

On July 21, 2014, a commercial dive company contracted by the U. S. Coast Guard sent down multiple dive teams to the Hutton’s wreck to assess the scope and quantity of the leaking oil. The contractor developed and implemented a containment and mitigation plan, which stopped the flow of oil from a finger-sized hole in the rusted hull. It is not known how much oil escaped into the ocean or how long it had been leaking before the passing fisherman noticed it in the first place.

NOAA’s Office of Response and Restoration, led by Scientific Support Coordinator Frank Csulak, provided the U.S. Coast Guard access to historical data about shipwrecks off of North Carolina, survey information, including underwater and archival research, and the animals, plants, and habitats at risk from the leaking oil. Our office frequently provides scientific support in this way when a maritime problem occurs due to sunken wrecks. They may pose a significant threat to the environment, human health, and navigational safety (as an obstruction to navigation). Or, as in this case, shipwrecks can threaten to discharge oil or hazardous substances into the marine environment.

Last May, our office released an overall report describing this work and our recommendations, along with 87 individual wreck assessments. The individual risk assessments highlight not only concerns about potential ecological and socio-economic impacts, but they also characterize most of the vessels as being historically significant. In addition, many of them are grave sites, both civilian and military. The national report, including the 87 risk assessments, is available at “Potentially Polluting Wrecks in U.S. Waters.” Several of those higher-risk wrecks also lie in the Graveyard of the Atlantic, but as we discovered, it is difficult to predict where and when a rusted wreck might release its oily secrets to the world.

OR&R’s Doug Helton and Frank Csulak contributed to this post.

 

Follow

Get every new post delivered to your Inbox.

Join 467 other followers