NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Adventures in Developing Tools for Oil Spill Response in the Arctic

This is a post by the Office of Response and Restoration’s Zachary Winters-Staszak. This is the third in a series of posts about the Arctic Technology Evaluation supporting Arctic Shield 2014. Read the first post, “NOAA Again Joins Coast Guard for Oil Spill Exercise in the Arctic” and the second post, “Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics.”

People in a boat lowering orange ball into icy waters.

The crew of the icebreaker Healy lowering an iSphere onto an ice floe to simulate tracking oil in ice. (NOAA/Jill Bodnar)

The Arctic Ocean, sea ice, climate change, polar bears—each evokes a vivid image in the mind. Now what is the most vivid image that comes to mind as you read the word “interoperability”? It might be the backs of your now-drooping eyelids, but framed in the context of oil spill response, “interoperability” couldn’t be more important.

If you’ve been following our latest posts from the field, you know Jill Bodnar and I have just finished working with the U.S. Coast Guard Research and Development Center on an Arctic Technology Evaluation during Arctic Shield 2014. We were investigating the interoperability of potential oil spill response technologies while aboard the Coast Guard icebreaker Healy on the Arctic Ocean.

Putting Square Pegs in Round Holes

As Geographic Information Systems (GIS) map specialists for NOAA’s Office of Response and Restoration, a great deal of our time is spent transforming raw data into a visual map product that can quickly be understood. Our team achieves this in large part by developing a versatile quiver of tools tailored to meet specific needs.

For example, think of a toddler steadfastly—and vainly—trying to shove that toy blue cylinder into a yellow box through a triangular hole. This would be even more difficult if there were no circular hole on that box, but imagine if instead you could create a tool to change those cylinders to fit through any hole you needed. With computer programming languages we can create interoperability between technologies, allowing them to work together more easily. That cylinder can now go through the triangular hole.

New School, New Tools

Different technologies are demonstrated each year during the Arctic Shield exercises and it is common for each technology to have a different format or output, requiring them to be standardized before we can use them in a GIS program like our Environmental Response Management Application, Arctic ERMA.

Taking lessons learned from Arctic Shield 2013, we came prepared with tools in ERMA that would allow us to automate the process and increase our efficiency. We demonstrated these tools during the “oil spill in ice” component of the demonstration. Here, fluorescein dye simulated an oil plume drifting across the water surface and oranges bobbed along as simulated oiled targets.

The first new tool allowed us to convert data recorded by the Puma, a remote-controlled aircraft run by NOAA’s Unmanned Aircraft Systems Program. This allowed us to associate the Puma’s location with the images it was taking precisely at those coordinates and display them together in ERMA. The Puma proved useful in capturing high resolution imagery during the demonstration.

A similar tool was created for the Aerostat, a helium-filled balloon connected to a tether on the ship, which can create images and real-time video with that can track targets up to three miles away. This technology also was able to delineate the green dye plume in the ocean below—a function that could be used to support oil spill trajectory modeling. We could then make these images appear on a map in ERMA.

The third tool received email notifications from floating buoys provided by the Oil Spill Recovery Institute and updated their location in ERMA every half hour. These buoys are incredibly rugged and produced useful data that could be used to track oiled ice floes or local surface currents over time. Each of the tools we brought with us is adaptable to changes on the fly, making them highly valuable in the event of an actual oil spill response.

Internet: Working With or Without You

Having the appropriate tools in place for the situation at hand is vital to any response, let alone a response in the challenging conditions of the Arctic. One major challenge is a lack of high-speed Internet connectivity. While efficient satellite connectivity does exist for simple communication such as text-based email, a robust pipeline to transmit and receive megabytes of data is costly to maintain. Similar to last year’s expedition, we overcame this hurdle by using Stand-alone ERMA, our Internet-independent version of the site that was available to Healy researchers through the ship’s internal network.

NOAA's online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during  the Arctic Technology Evaluation of Arctic Shield 2014.

NOAA’s online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during the Arctic Technology Evaluation of Arctic Shield 2014. (NOAA)

This year we took a large step forward and successfully tested a new tool in ERMA that uses the limited Internet connectivity to upload small packages (less than 5 megabytes) of new data on the Stand-alone ERMA site to the live Arctic ERMA site. This provided updates of the day’s Arctic field activities to NOAA staff back home. During an actual oil spill, this tool would provide important information to decision-makers and stakeholders at a command post back on land and at agency headquarters around the country.

Every Experience Is a Learning Experience

I’ve painted a pretty picture, but this is not to say everything went as planned during our ventures through the Arctic Ocean. Arctic weather conditions lived up to their reputation this year, with fog, winds, and white-cap seas delaying and preventing a large portion of the demonstration. (This was even during the region’s relatively calm, balmy summer months.)

Subsequently, limited data and observations were produced—a sobering exercise for some researchers. I’ve described only a few of the technologies demonstrated during this exercise, but there were unexpected issues with almost every technology; one was even rendered inoperable after being crushed between two ice floes. In addition, troubleshooting data and human errors added to an already full day of work.

Yet every hardship allowed those of us aboard the Healy to learn, reassess, adapt, and move forward with our work. The capacity of human ingenuity and the tools we can create will be tested to their limits as we continue to prepare for an oil spill response in the harsh and unpredictable environs of the Arctic. The ability to operate in these conditions will be essential to protecting the local communities, wildlife, and coastal habitats of the region. The data we generate will help inform crucial and rapid decisions by resource managers, making interoperability along with efficient data management and dissemination fundamental to effective environmental response.

Editor’s note: Use Twitter to chat directly with NOAA GIS specialists Zachary Winters-Staszak and Jill Bodnar about their experience during this Arctic oil spill simulation aboard an icebreaker on Thursday, September 18 at 2:00 p.m. Eastern. Follow the conversation at #ArcticShield14 and get the details: http://1.usa.gov/1qpdzXO.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed me to the Arctic.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed Zachary Winters-Staszak to the Arctic in 2013. (NOAA)

Zachary Winters-Staszak is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


Leave a comment

Science of Oil Spills Training Now Accepting Applications for Fall 2014

Two men standing on a beach with one holding a bin of sand.

These trainings help oil spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions, and also include a field trip to a beach to apply newly learned skills. (NOAA)

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of November 17–21, 2014 in Norfolk, Virginia.

We will accept applications for this class through Friday, October 3, 2014, and we will notify applicants regarding their participation status by Friday, October 17, 2014.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. Classes are generally limited to 40 participants.

Additional SOS courses will be held in 2015 in Houston, Texas; Mobile, Alabama; and Seattle, Washington. Course dates will be posted as they are determined.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

Join NOAA for a Tweetchat on Preparing for Arctic Oil Spills

 

Coast Guard icebreaker in sea ice.

The U.S. Coast Guard Cutter Healy, a state-of-the-art icebreaker and the August 2014 home of a team of researchers evaluating oil spill technologies in the Arctic. (U.S. Coast Guard)

As Arctic waters continue to lose sea ice each summer, shipping, oil and gas exploration, tourism, and fishing will increase in the region. With more oil-powered activity in the Arctic comes an increased risk of oil spills.

In August of 2014, NOAA’s Office of Response and Restoration sent two GIS specialists aboard the U.S. Coast Guard Cutter Healy for an exercise in the Arctic Ocean demonstrating oil spill tools and technologies. This scientific expedition provided multiple agencies and institutions with the invaluable opportunity to untangle some of the region’s knotty logistical challenges on a state-of-the-art Coast Guard icebreaker in the actual Arctic environment. It is one piece of the Coast Guard’s broader effort known as Arctic Shield 2014.

Part of NOAA’s focus in the exercise was to test the Arctic Environmental Response Management Application (ERMA®), our interactive mapping tool for environmental response data, during a simulated oil spill.

Join us as we learn about NOAA’s role in the mission and what life was like aboard an icebreaker. Use Twitter to ask questions directly to NOAA GIS specialists Jill Bodnar and Zachary Winters-Staszak.

Get answers to questions such as:

  • What type of technologies did the Coast Guard Research and Development Center (RDC) and NOAA test while aboard the Healy and what did we learn?
  • What was a typical day like on a ship that can break through ice eight feet thick?
  • Why can’t we just simulate an Arctic oil spill at home? What are the benefits of first-hand experience?

Tweetchat Details: What You Need to Know

What: Use Twitter to chat directly with NOAA GIS specialists Jill Bodnar and Zachary Winters-Staszak.

When: Thursday, September 18, 2014 from 11:00 a.m. Pacific to 12:00 p.m. Pacific (2:00 p.m. Eastern to 3:00 p.m. Eastern).

How: Tweet questions to @NOAAcleancoasts using hashtag #ArcticShield14. You can also submit questions in advance via orr.rsvp.requests@noaa.gov, at www.facebook.com/noaaresponserestoration, or in the comments here.

About NOAA’s Spatial Data Branch

Jill Bodnar is a GIS specialist in the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. She is an experienced oil spill responder and has been mapping data during oil spills for more than a decade. This is her first trip to the Arctic.

Zachary Winters-Staszak is a GIS specialist in the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. While not aboard the Healy, he co-leads an effort to manage data and foster partnerships for Arctic ERMA. This is his second time participating in the annual Arctic Technology Evaluation in support of Arctic Shield. You can listen to him discuss this exercise and NOAA’s participation in a NOAA’s Ocean Service audio podcast from August 2014.

About Oil Spills and NOAA

Every year NOAA’s Office of Response and Restoration (OR&R) responds to more than a hundred oil and chemical spills in U.S. waters. OR&R is a center of expertise in preparing for, evaluating, and responding to threats to coastal environments, including oil and chemical spills, releases from hazardous waste sites, and marine debris. This work also includes determining damage to coastal lands and waters after oil spills and other releases and rotecting and restoring marine and coastal areas, including coral reefs.

Learn more about how NOAA responds to oil spills and the full range of OR&R’s activities in the Arctic.


2 Comments

Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics

Ship breaking ice in Arctic waters.

The U.S. Coast Guard Cutter Healy breaks ice in Arctic waters. A ship like this would be the likely center of operations for an oil spill in this remote and harsh region. (NOAA)

August in the Arctic can mean balmy weather and sunny skies or, fifteen minutes later, relentless freezing rain and wind blowing off ice floes, chilling you to the core. If you were headed to an oil spill there, your suitcase might be carrying a dry suit, down parka, wool sweaters and socks, your heaviest winter hat and gloves, and even ice traction spikes for your boots. Transit could mean days of travel by planes, car, and helicopter to a ship overseeing operations at the edge of the oil spill. Meanwhile, the oil is being whipped by the wind and waves into the nooks and crannies on the underside of sea ice, where it could be frozen into place.

Even for an experienced oil spill responder like Jill Bodnar, the complexity of working in such conditions goes far beyond the usual response challenges of cleaning up the oil, gathering data about the spill, and minimizing the impacts to marine life and their sensitive habitats. Rather, in the Arctic, everything comes down to logistics.

The unique logistics of this extreme and remote environment drive to the heart of why Bodnar, a NOAA Geographic Information Systems (GIS) specialist, and her colleague Zachary Winters-Staszak are currently on board the U.S. Coast Guard Cutter Healy, at the edge of the sea ice north of Alaska. They are participating in an Arctic Technology Evaluation, an exercise conducted by the U.S. Coast Guard Research and Development Center (RDC) in support of the Coast Guard’s broader effort known as Arctic Shield 2014.

Building on what was learned during the previous year’s exercise, the advanced technologies being demonstrated in this evaluation could potentially supplement those tools and techniques responders normally would rely on during oil spills in more temperate and accessible locations. This Arctic Technology Evaluation provides multiple agencies and institutions, in addition to NOAA, the invaluable opportunity to untangle some of the region’s knotty logistical challenges on a state-of-the-art Coast Guard icebreaker in the actual Arctic environment.

Getting from A to B: Not as Easy as 1-2-3

Bodnar has been mapping data during oil spills for more than a decade, but this exercise is her first trip to the Arctic. While preparing for it, she found it sobering to learn just how many basic elements of a spill response can’t be taken for granted north of the Arctic Circle. In addition to the scarcity of roads, airports, and hotels, other critical functions such as communications are subject to the harsh Arctic conditions and limited radio towers and satellite coverage. Out at sea ships depend on satellites for phone calls and some Internet connectivity, but above the 77th parallel those satellites often drop calls and can only support basic text email.

The remoteness of the Arctic questions how hundreds of responders would get there, along with all the necessary equipment—such as boom, skimmers, and vessels—not already in the area. Once deployed to the spill, response equipment has the potential to ice-over, encounter high winds, or be grounded from dense fog. Communicating with responders and decision makers on other ships, on shore at a command post, or even farther away in the lower 48 states would be an enormous challenge.

For example, if an oil spill occurs in the Beaufort Sea, north of Alaska, the nearest and “largest” community is Barrow, population 4,429. However, Barrow has very limited accommodations. For comparison, 40,000 people, including Bodnar, responded to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. This was possible because of the spill’s proximity to large cities with hotel space and access to food and communications infrastructure.

This is not the case for small Arctic villages, where most of their food, fuel, and other resources have to be shipped in when the surrounding waters are relatively free of ice. But to respond to a spill in the Arctic, the likely center of operations would be on board a ship, yet another reason working with the Coast Guard during Arctic Shield is so important for NOAA.

NOAA’s Role in Arctic Shield 2014

During this August’s Arctic Technology Evaluation, the Coast Guard is leading tests of four key areas of Arctic preparedness. NOAA’s area focuses on how oil disperses at the edge of the sea ice and collects under the older, thicker ice packs. NOAA’s Office of Response and Restoration is working with NOAA’s Unmanned Aircraft Systems (UAS) program to develop techniques for quickly identifying and delineating a simulated oil spill in the Arctic waters near the ice edge. The Coast Guard will be using both an unreactive, green fluorescein dye and hundreds of oranges as “simulated oil” for the various tools and technologies to detect.

Normally during an oil spill, NOAA or the Coast Guard would send people up in a plane or helicopter to survey the ocean for the oil’s precise location, which NOAA also uses to improve its models of the oil’s expected behavior. However, responders can’t count on getting these aircraft to a spill in the Arctic in the first place—much less assume safe conditions for flying once there.

Instead, the UAS group is testing the feasibility of using unmanned, remote-controlled aircraft such as the Puma to collect this information and report back to responders on the ship. Bodnar and Winters-Staszak will be pulling these data streams from the Puma into Arctic ERMA®, NOAA’s mapping tool for environmental response data. They’ll be creating a data-rich picture of where the oil spill dye and oranges are moving in the water and how they are behaving, particularly among the various types of sea ice.

Once the oil spill simulation is complete, Bodnar and Winters-Staszak will be reporting back on how it went and what they have learned. Stay tuned for the expedition’s progress in overcoming the many logistical hurdles of a setting as severe as the Arctic here and at oceanservice.noaa.gov/arcticshield.


Leave a comment

OR&R Defines the Issues Surrounding Oil Spill Dispersant Use

Oil floating on water's surface.

Oil on the water’s surface. (NOAA)

I recently had the opportunity to attend an interesting seminar on the use of dispersants in oil spill response. On August 8, 2014, OR&R Emergency Response Division marine biologist, Gary Shigenaka, and Dr. Adrian C. Bejarano, aquatic toxicologist, made presentations to a group of oil spill response professionals as part of the Science of Oil Spills class, offered by OR&R in Seattle last week.

Mr. Shigenaka introduced the subject, giving the students background on the history of dispersant use in response to oil spills, starting with the first use in England at the Torrey Canyon spill. Because the first generation of oil dispersants were harsh and killed off intertidal species, the goal since has been to reduce their inherent toxicity while maintaining effectiveness at moving oil from the surface of the water into the water column. He gave an overview of the most prevalent commercial products, including Corexit 9527 and Corexit 9500, manufactured by Nalco, and Finasol OSR52, a French product.

Aerial view of testing facility with long pool.

The Ohmsett facility is located at Naval Weapons Station Earle, Waterfront. The research and training facility centers around a 2.6 million-gallon saltwater tank. (Bureau of Safety and Environmental Enforcement)

Shigenaka reviewed the U.S. EPA product schedule of dispersants as well as Ohmsett – National Oil Spill Response Research Facility in Leonardo, N.J. Ohmsett is run by the U.S. Department of Interior’s Bureau of Safety and Environmental Enforcement. He showed video clips of oil dispersant tests conducted recently at the facility by the American Petroleum Institute.

The corporate proprietary aspects of the exact formulation of dispersants were described by Shigenaka as one of the reasons for the controversy surrounding the use of dispersants on oil spills.

Dispersant Use in Offshore Spill Response

Dr. Bejarano’s presentation, “Dispersant Use in offshore Oil Spill Response,” started with a list of advantages of dispersant use such as reduced oil exposure to workers; reduced impacts on shoreline habitats; minimal impacts on wildlife with long life spans; and keeping the oil away from the nearshore area thus avoiding the need for invasive cleanup. She followed with some downside aspects such as increased localized concentration of hydrocarbons; higher toxicity levels in the top 10 meters of the water column; increased risk to less mobile species; and greater exposure to dispersed oil to species nearer to the surface.

Dr. Bejarano is working on a comprehensive publicly-available database that will include source evaluation and EPA data as well as a compilation of data from 160 sources scored on applicability to oil spill response (high, moderate, low and different exposures).

Her presentation concluded with a summary of trade-offs associated with dispersant use:

  • Shifting risk to water column organisms from shoreline, which recover more quickly (weeks or months).
  • Toxicity data are not perfect.
  • Realistic dose and duration are different from lab to field environment.
  • Interpretation of findings must be in the context of particular oil spill considerations.

Dr. Bejarano emphasized the need for balanced consideration in reaching consensus for the best response to a particular spill.

Following the formal presentations, there was a panel discussion with experts from NOAA, EPA, and State of Washington, and the audience had an opportunity to ask questions. Recent research from the NOAA National Marine Fisheries Service/ Montlake Laboratory was presented, focusing on effects of oil and dispersants on larval fish. The adequacy of existing science underlying trade-offs and net environmental benefit was also discussed.

Read our related blog on dispersants, “Help NOAA Study Chemical Dispersants and Oil Spills.”


Leave a comment

NOAA Again Joins Coast Guard for Oil Spill Exercise in the Arctic

This is a post by NOAA Environmental Scientist Dr. Amy Merten.

Large ship offshore.

U.S. Coast Guard icebreaker Healy.

It is no mystery anymore that the Arctic is undergoing unprecedented change and the extent of summer sea ice continues to shrink. As the ice contracts, shipping within and across the Arctic, oil and gas exploration, and tourism likely will increase, as will fishing, if fisheries continue migrating north to cooler waters. With more oil-powered activity in the Arctic and potentially out-of-date nautical charts, the region also will see an increased risk of oil spills.

Although the Arctic may have “ice-free” summers, it will remain a difficult place to respond to spills, still facing conditions such as low visibility, mobilized icebergs, and extreme cold. Much of the increased activity exploits the longer amount of time between the sea ice breaking up in the spring and freezing up in the fall. Accidents on either end of this longer window could mean responding to oil spills complicated by sea ice.

Ready, Set, (Pretend to) Spill

With these challenging circumstances in mind, NOAA’s Office of Response and Restoration again will be sending spatial data specialists aboard the Coast Guard icebreaker Healy for an Arctic Technology Evaluation, a month-long scientific expedition to the Arctic Ocean to demonstrate and evaluate oil spill tools, technologies, and techniques as part of Arctic Shield 2014. The ship leaves for the edge of the sea ice from Seward, Alaska, on August 8. We will be working with the U.S. Coast Guard Research and Development Center (RDC) to operate Arctic ERMA, our mapping tool geared at oil spill response. Normally an online tool, a special internet-independent version of ERMA, known as Stand-alone ERMA, will serve as the common operational picture for scientific data during this Arctic Technology Evaluation.

NOAA provides scientific support to the Coast Guard during oil and chemical spills, and ERMA is an extension of that support. This Arctic Technology Evaluation is an opportunity to work with the Coast Guard in as realistic conditions as possible—on a ship in the Arctic Ocean. Once the Healy makes it far enough north, the Coast Guard RDC will deploy a simulated oil spill so they can test oil spill detection and recovery technologies in ice conditions. The team will test unmanned technology platforms (both airborne and underwater) to detect where the spilled “oil” is and to collect ocean condition data, such as sea temperature, currents, and the areas where oil is mixing and spreading in the water column. In this case the simulated oil will be fluorescein dye, an inert tracer used for other simulated spills and water transport studies in the ocean and rivers. (Other simulated spilled “oils” have included peat moss, rubber ducks, and oranges.)

Ship with small aircraft in front of it.

NOAA’s remote-controlled Puma aircraft. (NOAA)

One major objective is for NOAA’s Unmanned Aircraft Systems group to fly their 8.5 foot wingspan, remote-controlled Puma, instead of an airplane with a human observer, to delineate the extent of the “oil” plume. ERMA’s job will be to display the data from the Puma and other unmanned technologies so all of the team can see where measurements have been taken and identify insights into how they could hypothetically clean up a spill in the remote, icy environment.

Arriving at the Arctic

In many ways, our office is a newcomer to the Arctic, and we still have a lot to learn about past research and current ways of life in the region. As the NOAA co-director for the Coastal Response Research Center (a joint partnership with the University of New Hampshire), I worked with my co-director, UNH professor Nancy Kinner, to promote understanding of the risks the Arctic is facing. In 2007, we participated in a joint industry study which brought me to the Arctic at the SINTEF lab on Svalbard in Norway. Here, I saw firsthand how difficult it can be to find oil mixed in ice and then try to do something about it, such as burn it. The temperature extremes in the Arctic limit mobility and the amount of time one can be outside responding to a spill—if you can get to the spill in the first place.

At the same time, we were developing ERMA® (Environmental Response Management Application), a web-based mapping tool for environmental response, which is customized for various regions in the United States. As NOAA’s Office of Response and Restoration began developing strategies for working in the Arctic, support emerged for customizing ERMA for the Arctic region. We worked with several organizations, including Arctic communities, to develop Arctic ERMA, taking care to make connections and build relationships with the people who live in and know the region and its natural resources. ERMA also will use the Healy’s onboard satellite communications to relay data back to the live Arctic ERMA website, allowing people outside the vessel to stay up-to-date with the mission.

Responding to Reality

image of broken ice on the water's surface. (NOAA)I’m excited for my ERMA colleagues, Jill Bodnar and Zach Winters-Staszak, to experience this extreme and special environment firsthand. Academically, you can think through the challenges a spill in the Arctic would present, but actually experiencing it quickly reveals what will and will not work. Partnering with the Coast Guard is helping those of us at NOAA be proactive responders in general, and in particular, is teaching the ERMA team how to pull into this tool data from multiple platforms and improve response decision-making.

We’re all connected to the Arctic; weather and oceanographic patterns are changing world wide because of the rapidly changing Arctic. Oil and gas coming from the Arctic will fuel the U.S. economy and current way of life for the foreseeable future. We hope that Arctic Shield and other oil spill exercises will better prepare us for whatever happens next.  Follow along with NOAA’s efforts during Arctic Shield at http://oceanservice.noaa.gov/arcticshield/.

Amy Merten with kids from Kivalina, Alaska.

Dr. Amy Merten is pictured here with children from the Alaskan village of Kivalina. She was in Alaska for an oil spill workshop in the village of Kotzebue.

Amy Merten is the Spatial Data Branch Chief in NOAA’s Office of Response and Restoration. Amy developed the concept for the online mapping tool ERMA (Environmental Response Mapping Application). ERMA was developed in collaboration with the University of New Hampshire. She expanded the ERMA team at NOAA to fill response and natural resource trustee responsibilities during the 2010 Deepwater Horizon/BP oil spill. Amy oversees data management of the resulting oil spill damage assessment. She received her doctorate and master’s degrees from the University of Maryland.

 


Leave a comment

Mysterious Oil Spill Traced to Vessel Sunk in 1942 Torpedo Attack

Aerial photo of an oil sheen on the ocean.

U.S. Coast Guard overflight photo, taken on July 17, 2014. (USCG)

A few weeks ago a North Carolina fisherman had a sinking feeling as he saw “black globs” rising to the ocean surface about 48 miles offshore of Cape Lookout. From his boat, he also could see the tell-tale signs of rainbow sheen and a dark black sheen catching light on the water surface—oil. But looking around at the picturesque barrier islands to the west and Atlantic’s open waters to the east, he couldn’t figure out where it was coming from. What was the source of this mysterious oil?

Describing what he saw, the fisherman filed a pollution report with the U.S. Coast Guard. On July 17, 2014, a U.S. Coast Guard C-130 aircraft flew over the site and confirmed the presence of a sheen of oil in the same vicinity. Based on the location and persistence of the sheens, the responders suspected the oil possibly could be leaking from the sunken wreck of the steamship W.E. Hutton, 140 feet below the water surface. Shortly after, archeologists confirmed that to be the case.

Balck and white photo of a ship in 1942.

A 1942 photo of the W.E. Hutton. (USCG)

At the Bottom of the Graveyard of the Atlantic

This area off of North Carolina’s Outer Banks is known as the Graveyard of the Atlantic. The combination of harsh storms, piracy, and warfare have left these waters littered with shipwrecks, and because of the conditions that led to their demise, many of them are broken in pieces. In the midst of World War II, on March 18, 1942, the W.E. Hutton was one of three U.S. vessels in the area torpedoed by German U-boats. Tragically, 13 of the 23 crewmembers aboard the ship were killed. The Hutton’s survivors were rescued by the Port Halifax, a British ship.

When the steam-powered tanker was hit by German torpedoes, the Hutton was en route from Smiths Bluff, Texas, to Marcus Hook, Pennsylvania, with a cargo of 65,000 barrels of #2 heating oil. An initial torpedo hit the starboard bow, and the second hit to the port side came 10 minutes later. The ship sank an hour after the first hit, eventually settling onto the seafloor. Today, it is reportedly upside down, with the port side buried in sand but with the starboard edge and some of its railing visible.

The wreck of the W.E. Hutton also is located in the NOAA Remediation to Undersea Legacy Environmental Threats (RULET) Database. Evaluated in the 2013 NOAA report “Risk Assessment for Potentially Polluting Wrecks in U.S. Waters,” this wreck was considered a low potential for a major oil spill because dive surveys “show all tanks open to the sea and no longer capable of retaining oil.”  However, as the fisherman could observe from the waters above, some oil clearly remains trapped in the wreckage.

This shipwreck was described by wreck diver and historian Gary Gentile as having “enough large cracks to permit easy entry into the vast interior.” Another wreck diver and historian, Roderick Farb, noted that the largest point of entry into the hull is “about 150 feet from the stern,” through a “huge crack in the hull full of rubble, iron girders, twisted hull plates and other wreckage.”  This wreck is the closest one to the spot where the fisherman first saw the leaking oil, and given the Hutton’s inverted position and such cracks, we now realize the possibility that the inverted hull has been trapping some of the 65,000 barrels of its oil cargo as well as its own fuel.

An image of the wreck of the W.E. Hutton laying on the ocean floor.

A multibeam scan of the wreck of the W.E. Hutton taken in 2010. (NOAA)

Solving the Problems with Sunken Shipwrecks 

On July 21, 2014, a commercial dive company contracted by the U. S. Coast Guard sent down multiple dive teams to the Hutton’s wreck to assess the scope and quantity of the leaking oil. The contractor developed and implemented a containment and mitigation plan, which stopped the flow of oil from a finger-sized hole in the rusted hull. It is not known how much oil escaped into the ocean or how long it had been leaking before the passing fisherman noticed it in the first place.

NOAA’s Office of Response and Restoration, led by Scientific Support Coordinator Frank Csulak, provided the U.S. Coast Guard access to historical data about shipwrecks off of North Carolina, survey information, including underwater and archival research, and the animals, plants, and habitats at risk from the leaking oil. Our office frequently provides scientific support in this way when a maritime problem occurs due to sunken wrecks. They may pose a significant threat to the environment, human health, and navigational safety (as an obstruction to navigation). Or, as in this case, shipwrecks can threaten to discharge oil or hazardous substances into the marine environment.

Last May, our office released an overall report describing this work and our recommendations, along with 87 individual wreck assessments. The individual risk assessments highlight not only concerns about potential ecological and socio-economic impacts, but they also characterize most of the vessels as being historically significant. In addition, many of them are grave sites, both civilian and military. The national report, including the 87 risk assessments, is available at “Potentially Polluting Wrecks in U.S. Waters.” Several of those higher-risk wrecks also lie in the Graveyard of the Atlantic, but as we discovered, it is difficult to predict where and when a rusted wreck might release its oily secrets to the world.

OR&R’s Doug Helton and Frank Csulak contributed to this post.

 

Follow

Get every new post delivered to your Inbox.

Join 406 other followers