NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


1 Comment

Looking Back: What Led up to the Exxon Valdez Oil Spill?

Calendar showing March 1989 and image of Exxon Valdez ship.

In an ironic twist of fate, the Exxon Shipping Company’s safety calendar featured the T/V Exxon Valdez in March 1989, the same month the ship ran aground. Image: From the collection of Gary Shigenaka.

The Exxon Valdez oil spill occurred on March 24, 1989. This spill was a turning point for the nation and a major event in the history of NOAA’s Office of Response and Restoration. It also led to major changes in the federal approach to oil spill response and the technical, policy, and legal outcomes continue to reverberate today.

But before this monumental oil spill happened, there were a series of events around the world building up to this moment. Now, 25 years later, join us for a look at the history which set the stage for this spill.

1968

Atlantic Richfield Company and Humble Oil (which would later become Exxon) confirmed the presence of a vast oil field at Prudhoe Bay, Alaska. Plans for a pipeline were proposed but held up by various environmental challenges.

1973

The 1973 oil embargo plunged the nation into a serious energy crisis, and Alaskan oil became a national security issue. On November 16, 1973, President Richard Nixon signed the Trans-Alaska Pipeline Authorization Act, which prohibited any further legal challenges. This pipeline would connect the developing oil fields of Alaska with the port town of Valdez, where oil could be shipped out on tankers through the Gulf of Alaska.

1977

On August 1, 1977, the tanker ARCO Juneau sailed out of Valdez with the first load of North Slope crude oil.

1981

How prepared for oil spills was Valdez? Despite complaints from the State of Alaska, Alyeska Pipeline Service Company, the corporation running the Trans-Alaska Pipeline, decides to disband its full-time oil spill team and reassign those employees to other operations.

1982

The National Contingency Plan (NCP) is updated from the original 1968 version, which provided the first comprehensive system of accident reporting, spill containment, and cleanup in the United States. The 1982 revisions formally codified NOAA’s role as coordinator of scientific activities during oil spill emergencies. NOAA designated nine Scientific Support Coordinators, or SSCs, to coordinate scientific information and provide critical support to the U.S. Coast Guard, and other federal on-scene commanders.

1984

In May 1984, Alaska Department of Environmental Conservation (DEC) field officers in Valdez write a detailed memo warning that pollution abatement equipment has been dismantled and Alyeska, the pipeline company, does not have the ability to handle a big spill. This document will become part of the Congressional investigation of the Exxon Valdez oil spill.

Later in 1984, Alyeska conducts an oil spill response practice drill that federal and state officials deem a failure. In December 1984, DEC staffers in Valdez write another lengthy memo to their administrators detailing shortcomings in Alyeska’s spill response program.

1986

The T/V Exxon Valdez is delivered to Exxon in December of 1986 and makes its maiden voyage to Alaska. When the Exxon Valdez first arrived at the Port of Valdez later that month, the town celebrated its arrival with a party. “We were quite proud of having that tanker named after the city of Valdez,” recalls former Mayor John Devens.

1987

Captain Joseph Hazelwood becomes master of the Exxon Valdez, which then earns Exxon Fleet safety awards for 1987 and 1988.

In June 1987, the Alaska Department of Environmental Conservation approves Alyeska’s contingency plan without holding another drill. The plan details how Alyeska would handle an 8.4 million gallon oil spill in Prince William Sound. Alyeska says:

“It is highly unlikely that a spill of this magnitude would occur. Catastrophic events of this nature are further reduced because the majority of tankers calling on Port Valdez are of American registry and all of these are piloted by licensed masters or pilots.”

1988

The big news in Alaska is the lingering low price of oil. Nearly one in 10 jobs disappears from the Alaska economy. Oil output peaks on the Trans-Alaska Pipeline at 2.1 million barrels of oil a day.

January 1989

In January 1989 the Valdez terminal has a couple major tests of spill response capacity with two small oil spills, which draw attention to cleanup problems and the condition of their tanker fleet. Alyeska vows to increase its response capacity and decides to buy a high-tech, 122-foot-long skimmer, at a cost of $5 million. The skimmer is scheduled for delivery in August 1990. The company also replaces four 21-foot response boats and arranges to purchase thousands of feet of extra boom for delivery later in the year.

March 1989

On March 22, the Exxon Valdez arrives at the Valdez Marine Terminal, Berth 5 and begins discharging ballast (water used for balancing cargo) and loading crude oil. Loading is completed late on March 23 and a little after 9:00 p.m. the tanker leaves Valdez with 53 million gallons of crude, bound for California.

Early on March 24, 1989, a little over three hours after leaving port, the Exxon Valdez strikes Bligh Reef, spilling approximately 10.9 million gallons of oil into Prince William Sound.


Join us on March 24, 2014 at 12:00 p.m. Pacific/3:00 p.m. Eastern as we remember the Exxon Valdez oil spill 25 years later.

Use Twitter to ask questions of NOAA biologist Gary Shigenaka and learn about this spill’s impacts on Alaska’s environment.

Get the details.


1 Comment

After an Oil Spill, Why Does NOAA Count Recreational Fishing Trips People Never Take?

Families fish off the edge of a seawall.

A perhaps less obvious impact of an oil spill is that people become unable to enjoy the benefits of the affected natural areas. For example, this could be recreational fishing, boating, swimming, or hiking. (NOAA)

From oil-coated birds to oil-covered marshes, the impacts of oil spills can be extremely visual. Our job here at NOAA is to document not only these easy-to-see damages to natural areas and the birds, fish, and wildlife that live there. We also do this for the many impacts of oil spills which may not be as obvious.

For example, after spilled oil washes on shore, people often can no longer swim, picnic, or play at that beach. Or you may see fewer or no recreational fishers on a nearby pier.

Restoring Nature’s Benefits to People

After a spill, these public lands, waters, and wildlife become cut off from people. At NOAA, we have the responsibility to make sure those lost trips to the beach for fishing or swimming are documented—and made up for—along with the oil spill’s direct harm to nature.

Why do we collect the number of fishing trips or days of swimming that don’t occur during a spill? It’s simple. Our job is to work with the organization or person responsible for the oil spill to make sure projects are completed that compensate the public for the time during the spill they could not enjoy nature’s benefits. If people did not fish recreationally in the wake of a spill because a fishery was closed or inaccessible, opportunities for them to fish—and the quality of their fishing experience—after the spill need to be increased. These opportunities may come in the form of building more boat ramps or new public access points to the water or creating healthier waters for fish.

Working with our partners, NOAA develops restoration plans that recommend possible projects that increase opportunities for and public access to activities such as fishing, swimming, or hiking. We then seek public input to make sure these projects are supported by the affected community. The funding for these finalized restoration projects comes from those responsible for the spill.

What Does This Look Like in Practice?

On April 7, 2000, a leak was detected in a 12-inch underground pipeline that supplies oil to the Potomac Electric Power Company’s (PEPCO) Chalk Point generating station in Aquasco, Md. Approximately 140,000 gallons of fuel oil leaked into Swanson Creek, a small tributary of the Patuxent River. About 40 miles of vulnerable downstream creeks and shorelines were coated in oil as a result.

We and our partners assessed the impacts to recreational fishing, boating, and shoreline use (such as swimming, picnicking, and wildlife viewing). We found that 10 acres of beaches were lightly, moderately, or heavily oiled and 125,000 trips on the river were affected. In order to compensate the public for these lost days of enjoying the river, we worked with our partners to implement the following projects:

  • Two new canoe and kayak paddle-in campsites on the Patuxent River.
  • Boat ramp and fishing pier improvements at Forest Landing.
  • Boat launch improvements to an existing fishing pier at Nan’s Cove.
  • Recreational improvements at Maxwell Hall Natural Resource Management Area.
  • An Americans with Disabilities Act (ADA)-accessible kayak and canoe launch at Greenwell State Park.

For more detail, you can learn how NOAA economists count and calculate the amount of restoration needed after pollution is released and also watch a short video lesson in economics and value from NOAA’s National Ocean Service.


Leave a comment

Mapping the Problem After Owners Abandon Ship

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division.

One of the largest vessel removal efforts in Washington history was a former Navy Liberty Ship, the Davy Crockett. In 2011 the Davy Crockett, previously abandoned by its owner on the Washington shore of the Columbia River, began leaking oil and sinking due to improper and unpermitted salvage operations. Its cleanup and removal cost $22 million dollars, and the owner was fined $405,000 by the Washington Department of Ecology and sentenced to four months in jail by the U.S. Attorney, Western District of Washington.

As I’ve mentioned before, derelict and abandoned vessels like the Davy Crockett are a nationwide problem that is expensive to deal with properly and, if the vessels are left to deteriorate, can cause significant environmental impacts. Unfortunately Washington’s Puget Sound is no exception to this issue.

Agency Collaboration

I’m part of the Derelict Vessel Task Force led by U.S. Coast Guard Sector Puget Sound. Made up of federal, state, and local agencies, this task force aims to identify and remove imminent pollution and hazard-to-navigation threats from derelict vessels and barges within Puget Sound. Among these agencies there are different jurisdictions and enforcement mechanisms related to derelict vessels.

A key player is Washington’s Department of Natural Resources (WA DNR), which manages the state Derelict Vessel Removal Program (DVRP). The DVRP has limited funding for removal of priority vessels. Unfortunately, according to WA DNR [PDF], with the growing number and size of problem vessels, program funding can’t keep up with the rising removal and disposal costs. The backlog of vessels in need of removal continues to grow.

Keeping Track

I’m working with the NOAA Office of Response and Restoration’s Spatial Data Branch to enter this list of derelict vessels into ERMA®. ERMA is a NOAA online mapping tool that integrates both static and real-time data to support environmental planning and response operations. Right now the vessels are primarily tracked in the WA DNR DVRP database. By pulling this data into ERMA, the task force will not only be able to see the vessels displayed on a map but also make use of the various layers of environmental sensitivity data already within ERMA. The hope is that this can help with the prioritizing process and possibly eventually be used as a tool to raise awareness.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington's Puget Sound as well as the colors indicating the shoreline's characteristics and vulnerability to oil.

A view of Pacific Northwest ERMA, a NOAA online mapping tool which can bring together a variety of environmental and response data. Here, you can see the black dots where ports are located around Washington’s Puget Sound as well as the colors indicating the shoreline’s characteristics and vulnerability to oil. (NOAA)

However, there aren’t enough resources within the Derelict Vessel Task Force to gather and continue to track (as the vessels can move) all the data needed in order to map the vessels accurately in ERMA. As a result, the task force is turning to local partners in order to help capture data.

Reaching Out

One such partner is the local Coast Guard Auxiliary Flotillas, a group of dedicated civilians helping the Coast Guard promote safety and security for citizens, ports, and waterways. In order to garner support for data-gathering, I recently attended the USCG Auxiliary Flotilla Seattle-Elliott Bay meeting, along with members of the local Coast Guard Incident Management Division who head the Puget Sound Derelict Vessel Task Force.

I spoke about a few local derelict vessel incidents and their impacts to the environment. I also showed how ERMA can be a powerful tool for displaying and prioritizing this information—if we can get the basic data that’s missing. As a result, this Flotilla will follow up with my Coast Guard colleagues and start collecting missing information on derelict and abandoned vessels on behalf of the Coast Guard and WA DNR.

Gathering data and displaying derelict vessels graphically is a small, but important, step on the way to solving the massive problem of derelict vessels. Once complete I hope that ERMA will be a powerful aid in displaying the issue and helping make decisions regarding derelict vessels in the Puget Sound. Stay tuned.

[Editor's Note: You can see a U.S. Coast Guard video of the start-to-finish process of removing the Davy Crockett from the Columbia River along with the Washington Department of Ecology's photos documenting the response.]

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


Leave a comment

“Gyre: The Plastic Ocean” Exhibit Puts Ocean Trash on Display in Alaska

Last summer, we heard from the NOAA Marine Debris Program’s Peter Murphy as he accompanied other scientists, artists, and educators on the Gyre Expedition, a 500-mile-long collaborative research cruise around the Gulf of Alaska. Along the way, Murphy and the scientists would stop periodically to survey and collect marine debris that had washed on shore.

Meanwhile, the artists with them were observing the same trash through a creative lens. They were taking photos and collecting bits of it to incorporate into the pieces now on exhibit in Gyre: The Plastic Ocean at the Anchorage Museum. This hands-on exhibit opened February 7 and will be available at the Anchorage Museum through September 6, 2014. The Gyre project aims to bring perspective to the global marine debris problem through art and science.

NOAA Marine Debris Program Director Nancy Wallace kicked-off the exhibit’s opening weekend symposium by introducing the topic of marine debris—its origins, composition, and impacts. The symposium, coordinated by Murphy, provided a chance for attendees to participate with scientists, removal experts, and artists in an interactive session exploring the issue of marine debris. They were able to discuss marine debris’ origin and impacts, as well as the cleanup and communication efforts, and how science and art can help us in understanding, capturing, and communicating the issue.

Learn more about our involvement with the Gyre project and if you can’t make it to Anchorage, take a look at some of the incredible art installations created from marine debris now on exhibit.

A quote by Marine Debris Program Director Nancy Wallace displayed in the Anchorage Museum's "Gyre: The Plastic Ocean" exhibit explains how debris impacts large marine animals such as gray whales.

A quote by Marine Debris Program Director Nancy Wallace displayed in the Anchorage Museum’s “Gyre: The Plastic Ocean” exhibit explains how debris impacts large marine animals such as gray whales. (NOAA)


1 Comment

What Restoration Is in Store for Massachusetts and Rhode Island after 2003 Bouchard Barge 120 Oil Spill?

A large barge is being offloaded next to a tugboat in the ocean.

On April 27, 2003, Bouchard Barge 120 was being offloaded after initial impact with a submerged object, causing 98,000 gallons of oil to spill into Massachusett’s Buzzards Bay. (NOAA)

The Natural Resource Damages Trustee Council for the Bouchard Barge 120 oil spill have released a draft restoration plan (RP) and environmental assessment (EA) [PDF] for shoreline, aquatic, and recreational use resources impacted by the 2003 spill in Massachusetts and Rhode Island.

It is the second of three anticipated plans to restore natural resources injured and uses affected by the 98,000-gallon spill that oiled roughly 100 miles of shoreline in Buzzards Bay. A $6 million natural resource damages settlement with the Bouchard Transportation Co., Inc. is funding development and implementation of restoration, with $4,827,393 awarded to restore shoreline and aquatic resources and lost recreational uses.

The draft plan evaluates alternatives to restore resources in the following categories of injuries resulting from the spill:

  • Shoreline resources, including tidal marshes, sand beaches, rocky coast, and gravel and boulder shorelines;
  • Aquatic resources, including benthic organisms such as American lobster, bivalves, and their habitats, and finfish such as river herring and their habitats; and
  • Lost uses, including public coastal access, recreational shell-fishing, and recreational boating.

The plan considers various alternatives to restore these resources and recommends funding for more than 20 projects throughout Buzzards Bay in Massachusetts and Rhode Island.

Shoreline and aquatic habitats are proposed to be restored at Round Hill Marsh and Allens Pond Marsh in Dartmouth, as well as in the Weweantic River in Wareham. Populations of shellfish, including quahog, bay scallop, and oyster will be enhanced through transplanting and seeding programs in numerous towns in both states. These shellfish restoration areas will be managed to improve recreational shell-fishing opportunities.

Public access opportunities will be created through a variety of projects, including trail improvements at several coastal parks, amenities for universal access, a handicapped accessible fishing platform in Fairhaven, Mass., and acquisition of additional land to increase the Nasketucket Bay State Reservation in Fairhaven and Mattapoisett. New and improved public boat ramps are proposed for Clarks Cove in Dartmouth and for Onset Harbor in Wareham.

A map of the preferred restoration projects for the Bouchard Barge 120 spill, as identified in the second draft restoration plan.

A map of the preferred restoration projects for the Bouchard Barge 120 spill, as identified in the second draft restoration plan. (NOAA)

The draft plan also identifies Tier 2 preferred projects; these are projects that may be funded, if settlement funds remain following the selection and implementation of Tier 1 and/or other restoration projects that will be identified in the Final RP/EA to be prepared and released by the Trustee Council following receipt and consideration of input from the public.

“We continue to make progress, together with our federal and state partners, in restoring this bay and estuary where I have spent so much of my life,” said John Bullard, National Oceanic and Atmospheric Administration (NOAA) Fisheries Northeast Regional administrator. “And, we’re eager to hear what members of the public think of the ideas in this plan, which are intended to further this work. We hope to improve habitats like salt marshes and eelgrass beds in the bay. These will benefit river herring, shellfish and other species and support recreational activities for the thousands of people who use the bay.”

The public is invited to review the Draft RP/EA and submit comments during a 45-day period, extending through Sunday, March 23, 2014. The electronic version of this Draft RP/EA document is available for public review at the following website:

http://www.darrp.noaa.gov/northeast/buzzard/index.html

Comments on the Draft RP/EA should be submitted in writing to:

NOAA Restoration Center
Attention: Buzzards Bay RP/EA Review Coordinator
28 Tarzwell Drive
Narragansett, R.I. 02882
BuzzardsBay.RP.EA.Review@noaa.gov


Leave a comment

Happy Valentine’s Day from NOAA

Man holding a trash bag on a beach and pointing to a heart-shaped piece of wood enscribed with "Love."

NOAA’s Nir Barnea, Marine Debris West Coast Regional Coordinator, finds a bit of marine debris “love” at the 2007 International Coastal Cleanup held in Seattle, Wash. (NOAA)

At NOAA, we put our heart into our work every day of the year—whether we’re cleaning up marine debris from beaches or modeling the (at times) curiously shaped paths of spilled oil.

But on some days, we take this a little more literally than others. As you can see in this video, our oceanographers have used the NOAA oil spill forecast model GNOME to show what it looks like when they put their heart into their work for Valentine’s Day.

Perhaps this hypothetical scenario might be what we should expect if a shipment of candy hearts were to spill off the coast of Washington?

Happy Valentine’s Day from NOAA!


Leave a comment

How Do You Solve a Problem Like Abandoned Ships?

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division.

Two rusted ships partially sunk in water and surrounded by containment boom.

The old fishing vessel Helena Star has been allowed to become derelict, leaking oil and pulling down its neighboring vessel, the Golden West. (NOAA)

A rusted green hull, punched full of holes and tilted on its side, sits forlornly in the Hylebos Waterway of Tacoma, Washington. The dilapidated boat’s name, Helena Star, is partially obscured because the vessel is half sunk. The boat it is chained to, the equally rusted ship Golden West, is being drawn down into the waters with it. Bright yellow boom and a light sheen of oil surround the vessels. Meanwhile, the owners are nowhere in sight.

This is just one example of the nationwide problem of derelict vessels. These neglected ships often pose significant threats to fish, wildlife, and nearby habitat, in addition to becoming eyesores and hazards to navigation. Derelict vessels are a challenge to deal with properly because of ownership accountability issues, potential chemical and oil contamination, and the high cost of salvage and disposal. Only limited funds are available to deal with these types of vessels before they start sinking. In Washington’s Puget Sound alone, the NOAA Office of Response and Restoration’s Emergency Response Division has had several recent responses to derelict vessels that either sank or broke free of their moorings.

Many of these recent responses have come with colorful backstories, including a pair of retired Royal Canadian Navy vessels, a fishing boat that at one time housed the largest marijuana seizure by the U.S. Coast Guard (F/V Helena Star), the first American-designed and –built diesel tugboat (Tug Chickamauga), and the boat that carried author John Steinbeck and biologist Ed Ricketts on their famous trip through the Sea of Cortez (Western Flyer).

Unfortunately, all these vessels have met the end of their floating lives either through the deliberate action or negligence of their owners. Had the owners taken responsibility for maintaining them, the environmental impacts from leaked fuel, hazardous waste, and crushing impacts to the seabed could have been avoided, as well as the costly multi-agency response and removal operations that resulted.

heavy machinery is brought in to raise a sunken vessel from the sea floor.

In May 2012, the derelict fishing boat Deep Sea caught fire and sank near Washington’s Whidbey Island. The boat ended up leaking diesel fuel into waters near a Penn Cove Shellfish Company mussel farm, and the company took the precautionary measure of stopping the harvest. NOAA worked with them to sample mussels in the area for diesel contamination. Here, heavy machinery is brought in to raise the sunken vessel from the sea floor. (NOAA)

Yet there is hope that we can prevent these problems before they start. In Washington state there is momentum to combat the derelict vessel issue through measures to prevent boats from becoming derelict or environmental hazards, and by holding vessel owners accountable for what they own.

Washington State House bill 2457 is currently in the Washington State Legislature. Among other measures, the proposed bill:

  • “Establishes a fee on commercial moorage to fund the state’s derelict and abandoned vessel program.”
  • “Creates new penalties for failure to register a vessel.”

Additionally, Washington’s San Juan County is developing a new Derelict Vessel Prevention program, using a grant from the Puget Sound Partnership. San Juan County, a county composed of small rural Pacific Northwest islands, has a high number of derelict vessels [PDF]. This program is going to be used not only in San Juan County but throughout counties bordering Puget Sound.

On January 15, 2014, Washington’s Attorney General Bob Ferguson and Commissioner of Public Lands Peter Goldmark (who leads the Department of Natural Resources) announced the state was pursuing criminal charges against the owners of the Helena Star, which sank in Tacoma’s Hylebos Waterway, and the Tugboat Chickamauga, which sank in Eagle Harbor. Both vessels released oil and other pollutants when they sank.

It is an ongoing battle to hold accountable the owners of derelict and abandoned vessels and prevent them from causing problems in our nation’s waterways. Yet with cooperation, prevention, and increased accountability we can help manage the problem, and in the end reduce impacts to Washington’s cherished Puget Sound.

Editor’s note: Stay tuned for more information about how LTJG Drury is working with Washington’s Derelict Vessel Task Force to tackle this growing problem in Puget Sound.

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


1 Comment

PCBs: Why Are Banned Chemicals Still Hurting the Environment Today?

Heavy machinery removes soil and rocks in a polluted stream.

PCB contamination is high in the Housatonic River and New Bedford Harbor in Massachusetts. How high? The “highest concentrations of PCBs ever documented in a marine environment.” (U.S. Fish and Wildlife Service)

For the United States, the 20th century was an exciting time of innovation in industry and advances in technology. We were manufacturing items such as cars, refrigerators, and televisions, along with the many oils, dyes, and widgets that went with them. Sometimes, however, technology races ahead of responsibility, and human health and the environment can suffer as a result.

This is certainly the case for the toxic compounds known as polychlorinated biphenyls, or PCBs. From the 1920s until they were banned in 1979, the U.S. produced an estimated 1.5 billion pounds of these industrial chemicals. They were used in a variety of manufacturing processes, particularly for electrical parts, across the country. Wastes containing PCBs were often improperly stored or disposed of or even directly discharged into soils, rivers, wetlands, and the ocean.

Unfortunately, the legacy of PCBs for humans, birds, fish, wildlife, and habitat has been a lasting one. As NOAA’s National Ocean Service notes:

Even with discontinued use, PCBs, or polychlorinated biphenyls, are still present in the environment today because they do not breakdown quickly. The amount of time that it takes chemicals such as PCBs to breakdown naturally depends on their size, structure, and chemical composition. It can take years to remove these chemicals from the environment and that is why they are still present decades after they have been banned.

Sign by Hudson River warning against eating contaminated fish.

According to a NOAA, U.S. Fish and Wildlife Service, and State of New York report on the Hudson River, “Fish not only absorb PCBs directly from the river water but are also exposed through the ingestion of contaminated prey, such as insects, crayfish, and smaller fish…New York State’s “eat none” advisory and the restriction on taking fish for this section of the Upper Hudson has been in place for 36 years.” (NOAA)

PCBs are hazardous even at very low levels. When fish and wildlife are exposed to them, this group of highly toxic compounds can travel up the food chain, eventually accumulating in their tissues, becoming a threat to human health if eaten. What happens after animals are exposed to PCBs? According to a NOAA, U.S. Fish and Wildlife Service, and State of New York report [PDF], PCBs are known to cause:

  • Cancer
  • Birth defects
  • Reproductive dysfunction
  • Growth impairment
  • Behavioral changes
  • Hormonal imbalances
  • Damage to the developing brain
  • Increased susceptibility to disease

Because of these impacts, NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) works on a number of damage assessment cases to restore the environmental injuries of PCBs. Some notable examples include:

Yet the list could go on—fish and birds off the southern California coast, fish and waterfowl in Wisconsin’s Sheboygan River, a harbor in Massachusetts with the “highest concentrations of PCBs ever documented in a marine environment.”

These and other chemical pollutants remain a challenge but also a lesson for taking care of the resources we have now. While PCBs will continue to be a threat to human and environmental health, NOAA and our partners are working hard to restore the damage done and protect people and nature from future impacts.


Leave a comment

45 Years after the Santa Barbara Oil Spill, Looking at a Historic Disaster Through Technology

Forty-five years ago, on January 28, 1969, bubbles of black oil and gas began rising up out of the blue waters near Santa Barbara, Calif. On that morning, Union Oil’s new drilling rig Platform “A” had experienced a well blowout, and while spill responders were rushing to the scene of what would become a monumental oil spill and catalyzing moment in the environmental movement, the tools and technology available for dealing with this spill were quite different than today.

The groundwork was still being laid for the digital, scientific mapping and data management tools we now employ without second thought. In 1969, many of the advances in this developing field were coming out of U.S. intelligence and military efforts during the Cold War, including a top-secret satellite reconnaissance project known as CORONA. A decade later NOAA’s first oil spill modeling software, the On-Scene Spill Model (OSSM) [PDF], was being written on the fly during the IXTOC I well blowout in the Gulf of Mexico in 1979. Geographic Information Systems (GIS) software didn’t begin to take root in university settings until the mid-1980s.

To show just how far this technology has come in the past 45 years, we’ve mapped the Santa Barbara oil spill in Southwest ERMA, NOAA’s online environmental response mapping tool for coastal California. In this GIS tool, you can see:

  • The very approximate extent of the oiling.
  • The location and photos of the drilling platform and affected resources (e.g., Santa Barbara Harbor).
  • The areas where seabirds historically congregate. Seabirds, particularly gulls and grebes, were especially hard hit by this oil spill, with nearly 3,700 birds confirmed dead and many more likely unaccounted for.

Even though the well would be capped after 11 days, a series of undersea faults opened up as a result of the blowout, continuing to release oil and gas until December 1969. As much as 4.2 million gallons of crude oil eventually gushed from both the well and the resulting faults. Oil from Platform “A” was found as far north as Pismo Beach and as far south as Mexico.

Nowadays, we can map the precise location of a wide variety of data using a tool like ERMA, including photos from aerial surveys of oil slicks along the flight path in which they were collected. The closest responders could come to this in 1969 was this list of aerial photos of oil and a printed chart with handwritten notes on the location of drilling platforms in Santa Barbara Channel.

A list of historical overflight photos of the California coast and accompanying map of the oil platforms in the area of the Platform "A" well blowout in early 1969.

A list of historical overflight photos of the California coast and accompanying map of the oil platforms in the area of the Platform “A” well blowout in early 1969. (Courtesy of the University of California Santa Barbara Map and Image Library) Click to view larger.

Yet, this oil spill was notable for its technology use in one surprising way. It was the first time a CIA spy plane had ever been used for non-defense related aerial photography. While classified information at the time, the CIA and the U.S. Geological Survey were actually partnering to use a Cold War spy plane to take aerial photos of the Santa Barbara spill (they used a U-2 plane because they could get the images more quickly than from the passing CORONA spy satellite). But that information wasn’t declassified until the 1990s.

While one of the largest environmental disasters in U.S. waters, the legacy of the Santa Barbara oil spill is lasting and impressive and includes the creation of the National Environmental Policy Act, U.S. Environmental Protection Agency, and National Marine Sanctuaries system (which soon encompassed California’s nearby Channel Islands, which were affected by the Santa Barbara spill).

Another legacy is the pioneering work begun by long-time spill responder, Alan A. Allen, who started his career at the 1969 Santa Barbara oil spill. He became known as the scientist who disputed Union Oil’s initial spill volume estimates by employing methods still used today by NOAA. Author Robert Easton documents Allen’s efforts in the book, Black tide: the Santa Barbara oil spill and its consequences:

Others…were questioning Union’s estimates. At General Research Corporation, a Santa Barbara firm, a young scientist who flew over the slick daily, Alan A. Allen, had become convinced that Union’s estimates of the escaping oil were about ten times too low. Allen’s estimates of oil-film thickness were based largely on the appearance of the slick from the air. Oil that had the characteristic dark color of crude oil was, he felt confident from studying records of other slicks, on the order of one thousandth of an inch or greater in thickness. Thinner oil would take on a dull gray or brown appearance, becoming iridescent around one hundred thousandth of an inch.  Allen analyzed the slick in terms of thickness, area, and rate of growth. By comparing his data with previous slicks of known spillage, and considering the many factors that control the ultimate fate of oil on seawater, he estimated that leakage during the first days of the Santa Barbara spill could be conservatively estimated to be at least 5,000 barrels (210,000 gallons) per day.

And in a lesson that history repeats itself: Platform “A” leaked 1,130 gallons of crude oil into Santa Barbara Channel in 2008. Our office modeled the path of the oil slicks that resulted. Learn more about how NOAA responds to oil spills today.


4 Comments

When the North Cape Ran Aground off Rhode Island, an Unexpected Career Took Off

This is a post by the Office of Response and Restoration’s Acting Chief of Staff Kate Clark.

January 19, 1996 was a Friday. I was a senior at the University of Rhode Island, pursuing an ocean engineering degree. I had no idea what I would do with it once I got it, but I loved the ocean, I had a tuition waiver since my dad taught there, and, hey, they had a well-known engineering program. I was living with roommates “down the line” in the fishing village of Point Judith in Narragansett, R.I.

When my friends and I returned home from a night out, it was the usual weather I was accustomed to during a coastal Rhode Island winter storm: foggy, rainy, and windy. But what I was not accustomed to was the nauseating smell of gasoline in the air and the helicopter traffic overhead.

Nudist Beach to Oiled Wreck

I woke on January 20 to the news that a ship had run aground, roughly four miles east on Moonstone Beach in South Kingstown. Being Rhode Island–born and Rhode Island–bred (as the fight song goes), I was all too familiar with Moonstone Beach, so called for the numerous ocean-polished silicate rocks that lined the beach. This town beach where I grew up was idyllic for families because the shallow, warm salt ponds that sat right behind the thin strip of sandy beach were perfect for young kids. As a child I spent long summer days there combing the beach for shells and jellyfish.

However, other sections of Moonstone Beach were well known throughout the 1970s and 1980s as a popular nudist beach. When public access to Moonstone Beach was closed by the U.S. Fish and Wildlife Service in 1988 to save habitat for endangered least tern and piping plover, it shut down the East Coast’s last fully staffed oceanic nudist beach.

The tank-barge that grounded on Moonstone Beach during that harsh winter storm in 1996 was called the North Cape. Its hull ripped open and spilled 828,000 gallons of home heating oil into the pounding surf. That strong smell of oil in the air around the southern shores of South Kingstown and Narragansett was soon replaced by the stench of rotting crustaceans, shellfish, and starfish that died from the oil and washed up in droves along the beaches of Block Island Sound.

In the weeks that followed, the local fishing and lobstering economy was brought to its knees as 250 square miles of Block Island Sound was closed to fishing. Families I had grown up with and classmates who went to work fishing after high school struggled to make ends meet.

Lessons for Life

During the spring of 1996, I was in need of a topic for my required senior project. At that time, the chair of the Ocean Engineering Department was interested in using media reports and other sources to do a hindcast investigation into the reported volume of oil spilled. I worked on it for several months that spring and became extremely familiar with the details of the incident. Ultimately, the project was a non-starter and I moved on to a different project. (If you’re doing the math, yes, it took me more than four years to graduate).

A large pile of dead lobsters in the bed of a pickup truck.

Dead lobsters collected from Rhode Island beaches after the North Cape oil spill, which killed 9 million lobsters. (Rhode Island Department of Environmental Management)

While I did this research, I knew nothing about oil spill response or assessing damages to natural resources, but the seed was planted. One thing I learned was that the North Cape spill was unique in the way the heavy surf thoroughly mixed the spilling oil into the water column, pounded it into the substrate, and ultimately carried it offshore to deliver a staggering blow to Block Island Sound’s thriving bottom-dwelling sea life.

Once I joined the work force after graduation, it seems all roads led back to oil spill preparedness, response, and restoration. It began with planting eel grass with funds from the World Prodigy oil spill and continued with consulting on containment and spill prevention for the Department of Defense. As I was finishing up graduate school at Louisiana State University, I came across a job opportunity to work for NOAA’s Office of Response and Restoration (OR&R) conducting Natural Resource Damage Assessments along the Gulf Coast. That was 12 years ago and I have worked at OR&R ever since.

An Environment for Success

The environmental damages from the North Cape oil spill resulted in $7.8 million for restoration along Rhode Island’s coast, which went to lobster and shellfish restoration, seabird and piping plover habitat protection, water quality improvements, and recreational fishing enhancements. The success of these projects required innovation, teamwork, and perseverance on the behalf of federal and state trustees, local officials, fishermen, and the public.

The last of the successful restoration projects wrapped up well after I started working for OR&R. I was pleased to be involved at times in this damage assessment and restoration work, though certainly not as involved as many of my colleagues. Still, it felt as though I had come full circle. The North Cape oil spill that devastated a local community and its natural resources 18 years ago this month set the course for my career. As the Grateful Dead song goes, “Once in a while you get shown the light. In the strangest of places if you look at it right.”

Kate Clark.Kate Clark finally graduated with an ocean engineering degree from the University of Rhode Island and went on to complete a masters degree in oceanography from the Louisiana State University. She is now the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.

Follow

Get every new post delivered to your Inbox.

Join 336 other followers