NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

When the Clock Is Ticking: NOAA Creates Guidelines for Collecting Time-Sensitive Data During Arctic Oil Spills

This is a post by Dr. Sarah Allan, Alaska Regional Coordinator for NOAA’s Office of Response and Restoration, Assessment and Restoration Division.

The risk of an oil spill in the Alaskan Arctic looms large. This far-off region’s rapid changes and growing ship traffic, oil and gas development, and industrial activity are upping those chances for an accident. When Shell’s Arctic drilling rig Kulluk grounded on a remote island in the Gulf of Alaska in stormy seas in December 2012, the United States received a glimpse of what an Arctic oil spill response might entail. While no fuel spilled, the Kulluk highlighted the need to have a science plan ready in case we needed to study the environmental impacts of an oil spill in the even more remote Arctic waters to the north. Fortunately, that was exactly what we were working on.

Soon, the NOAA Office of Response and Restoration’s Assessment and Restoration Division will be releasing a series of sampling guidelines for collecting high-priority, time-sensitive, ephemeral data in the Arctic to support Natural Resource Damage Assessment (NRDA) and other oil spill science. These guidelines improve our readiness to respond to an oil spill in the Alaskan Arctic. They help ensure we collect the appropriate data, especially immediately during or after a spill, to support a damage assessment and help the coastal environment bounce back.

Why Is the Arctic a Special Case?

NOAA’s Office of Response and Restoration is planning for an oil spill response in the unique, remote, and often challenging Arctic environment. Part of responding to an oil spill is carrying out Natural Resource Damage Assessment. During this legal process, state and federal agencies assess injuries to natural and cultural resources and the services they provide. They then implement restoration to help return those resources to what they were before the oil spill.

The first step in the process often includes collecting time-sensitive ephemeral data to document exposure to oil and effects of those exposures. Ephemeral data are types of information that change rapidly over time and may be lost if not collected immediately, such as the concentration of oil chemicals in water or the presence of fish larvae in an area.

It will be especially challenging to collect this kind of data in the Alaskan Arctic because of significant scientific and logistical challenges. The inaccessibility of remote sites in roadless areas, limited resources and infrastructure, extreme weather, and dangerous wildlife make it very difficult to safely deploy a field team to collect information.

However, the uniqueness of the fish, wildlife, and habitats in the Arctic and the lack of baseline data for many of them mean collecting pre- and post-impact ephemeral data is even more important and makes advance planning essential.

What Do We Need and How Do We Get It?

The first step in developing these guidelines was to identify the highest priority ephemeral data needs for damage assessment in the Arctic. We accomplished this by developing a conceptual model of oil exposure and injury, conducting meetings with communities in the Alaskan Arctic, and consulting with NRDA practitioners and Artic experts.

Our guidelines do not cover marine mammals and birds because the NOAA National Marine Fisheries Service and U.S. Fish and Wildlife Service already have developed such guidelines. Instead, our guidelines are focused on nearshore habitats and natural resources, which in the Arctic include sand, gravel, rock, and tundra shorelines and estuarine lagoons. These environments are at risk of being affected by onshore and nearshore oil spills and offshore spills when oil drifts toward the coast. Though Arctic lagoons and coastlines are covered with ice most of the year, they are important habitat for a wide range of organisms, many of which are important subsistence foods for local communities.

Once we defined our high-priority ephemeral data needs, we developed the data collection guidelines based on guidance documents for other regions, published sampling methods, lessons learned from other spills, and shared traditional knowledge. Draft versions of the guidelines were reviewed by NRDA practitioners and Arctic resource experts, including people from federal and state agencies, Alaskan communities, academia, nonprofit organizations, consulting companies, and industry groups.

With their significant and valuable input, we developed 17 guidelines for collecting data from plankton, fish, environmental media (e.g., oil, water, snow, sediments, tissues), and nearshore habitats and the living things associated with them.

What’s in One of These Guidelines?

Marine invertebrate measured next to a ruler.

Arctic isopod collected for a tissue sample along the Chukchi coast in 2014. (NOAA)

Our Arctic ephemeral data collection guidelines cover a lot, from a sampling equipment list and considerations to address before heading out, to field data sheets and detailed sampling strategies and methods. In addition, we developed a document with alternative sampling equipment and methods to address what to do if certain required equipment, facilities, or conditions—such as preservatives for tissue samples—are not available in remote Alaskan Arctic locations.

These guidelines are focused, concise, detailed, Arctic-specific, and adaptable. They are intended to be used by NRDA personnel as well as other scientists doing baseline data collection or collecting samples for damage assessment and oil spill science, and may also be used by emergency responders.

Meanwhile, Out in the Real World

Though we often talk about the Arctic’s weather, wildlife, access, and logistical issues, it is always humbling and instructive to actually work in those conditions. This is why field validating the ephemeral data collection guidelines was an essential part of their development. We needed to make sure they were feasible and effective, improve them based on lessons learned in the field, and gauge the level of effort required to carry them out.

Many of the guidelines can only be used when there is no shore-fast ice present, while others are specific to ice habitats or can be used in any season. We field tested versions of the guidelines’ methods near Barrow, Alaska, in the summer of 2013 and spring and summer of 2014, adding important details and making other corrections as a result. More importantly, we know in practice, not just in theory, that these methods are a reasonable and effective way to collect samples for damage assessment in the Alaskan Arctic.

People preparing an inflatable boat on a shoreline with broken sea ice.

Preparing to deploy a beach seine net around broken sea ice on the Chukchi coast in 2013. (NOAA)

The guidelines for collecting high priority ephemeral data for oil spills in the Arctic will be available soon at response.restoration.noaa.gov/arctic.

Acknowledgements

Thank you to everyone who reviewed the Arctic ephemeral data collection guidelines and provided valuable input to their development.

A special thanks to Kevin Boswell, Ann Robertson, Mark Barton, Sam George, and Adam Zenone for allowing me to join their field team in Barrow and helping me get the samples I needed.

Dr. Sarah Allan.

Dr. Sarah Allan has been working with NOAA’s Office of Response and Restoration Emergency Response Division and as the Alaska Regional Coordinator for the Assessment and Restoration Division, based in Anchorage, Alaska, since February of 2012. Her work focuses on planning for natural resource damage assessment and restoration in the event of an oil spill in the Arctic.


1 Comment

Protecting, Restoring, and Celebrating Estuaries—Where Salt and Freshwater Meet

Collage: lighthouse, kids viewing wildlife, heron, canoe in water, flowers, and meandering wetlands.

Estuaries are ecosystems along the oceans or Great Lakes where freshwater and saltwater mix to create wetlands, bays, lagoons, sounds, or sloughs. (NOAA’s National Estuarine Research Reserves)

As the light, fresh waters of rivers rush into the salty waters of the sea, some incredible things can happen. As these two types of waters meet and mix, creating habitats known as estuaries, they also circulate nutrients, sediments, and oxygen. This mixing creates fertile waters for an array of life, from mangroves and salt-tolerant marsh grasses to oysters, salmon, and migrating birds. These productive areas also attract humans, who bring fishing, industry, and shipping along with them.

All of this activity along estuaries means they are often the site of oil spills and chemical releases. We at NOAA’s Office of Response and Restoration often find ourselves working in estuaries, trying to minimize the impacts of oil spills and hazardous waste sites on these important habitats.

A Time to Celebrate Where Rivers Meet the Sea

September 20–27, 2014 is National Estuaries Week. This year 11 states and the District of Columbia have published a proclamation recognizing the importance of estuaries. To celebrate these critical habitats, Restore America’s Estuaries member organizations, NOAA’s National Estuarine Research Reserve System, and EPA’s National Estuary Program are organizing special events such as beach cleanups, hikes, canoe and kayak trips, cruises, and workshops across the nation. Find an Estuary Week event near you.

You and your family and friends can take a personal stake in looking out for the health and well-being of estuaries by doing these simple things to protect these fragile ecosystems.

How We Are Protecting and Restoring Estuaries

You may be scratching your head wondering whether you know of any estuaries, but you don’t need to go far to find some famous estuaries. The Chesapeake Bay and Delaware Bay are on the east coast, the Mississippi River Delta in the Gulf of Mexico, and San Francisco Bay and Washington’s Puget Sound represent some notable estuarine ecosystems on the west coast. Take a closer look at some of our work on marine pollution in these important estuaries.

Chesapeake Bay: NOAA has been working with the U.S. Environmental Protection Agency and Department of Defense on cleaning up and restoring a number of contaminated military facilities around the Chesapeake Bay. Because these Superfund sites are on federal property, we have to take a slightly different approach than usual and are trying to work restoration principles into the cleanup process as early as possible.

Delaware Bay: Our office has responded to a number of oil spills in and adjacent to Delaware Bay, including the Athos oil spill on the Delaware River in 2004. As a result, we are working on implementing several restoration projects around the Delaware Bay, which range from creating oyster reefs to restoring marshes, meadows, and grasslands.

Puget Sound: For Commencement Bay, many of the waterways leading into it—which provide habitat for salmon, steelhead, and other fish—have been polluted by industrial and commercial activities in this harbor for Tacoma, Washington. NOAA and other federal, state, and tribal partners have been working for decades to address the contamination and restore damaged habitat, which involves taking an innovative approach to maintaining restoration sites in the Bay.

Further north in Puget Sound, NOAA and our partners have worked with the airplane manufacturer Boeing to restore habitat for fish, shorebirds, and wildlife harmed by historical industrial activities on the Lower Duwamish River, a heavily used urban river in Seattle. Young Puget Sound Chinook salmon and Steelhead have to spend time in this part of the river, which is a Superfund Site, as they transition from the river’s freshwater to the saltwater of the Puget Sound. Creating more welcoming habitat for these fish gives them places to find food and escape from predators.

San Francisco Bay: In 2007 the M/V Cosco Busan crashed into the Bay Bridge and spilled 53,000 gallons of thick fuel oil into California’s San Francisco Bay. Our response staff conducted aerial surveys of the oil, modeled the path of the spill, and assessed the impacts to the shoreline. Working with our partners, we also evaluated the impacts to fish, wildlife, and habitats, and determined the amount of restoration needed to make up for the oil spill. Today we are using special buoys to plant eelgrass in the Bay as one of the spill’s restoration projects


Leave a comment

10 Unexpected Reasons to Join This Year’s International Coastal Cleanup

Volunteers in a boat use nets to remove debris from waters in Honolulu.

Volunteers collect debris from the water during the 2013 International Coastal Cleanup in Honolulu, Hawaii. (NOAA)

There are plenty of obvious reasons to join the more than half a million other volunteers picking up trash during this year’s International Coastal Cleanup on Saturday, September 20, 2014. Keeping our beaches clean and beautiful. Preventing sea turtles and other marine life from eating plastic. Not adding to the size of the garbage patches.

But just in case you’re looking for a few less obvious incentives, here are 10 more reasons to sign up to cleanup.

Weird finds from the 2013 International Coastal Cleanup. Credit: Ocean Conservancy

Weird finds from the 2013 International Coastal Cleanup. Credit: Ocean Conservancy

After this one day of cleaning up trash on beaches across the world, you could:

  1. Furnish a studio apartment (fridge, TV, complete bed set? Check).
  2. Get ready for an upcoming wedding with the wedding dress and veil, top hat, and bowties that have turned up in the past.
  3. Outfit a baby (including clothes, bottles, high chairs, and baby monitor).
  4. Find your lost cell phone.
  5. Adopt a cyborg sea-kitty.
  6. Make friends with the 200,000+ others participating in the United States.
  7. Get some exercise (and fresh air). In 2013, U.S. volunteers cleaned up 8,322 miles of shoreline.
  8. Create a massive marine debris mosaic mural with the nearly 2.3 million, less-than-an-inch long pieces of plastic, foam, and glass found on beaches worldwide.
  9. Stock up the entire United States with enough fireworks to celebrate Fourth of July (and then organize a Fifth of July cleanup).
  10. Help you and your neighbors benefit millions of dollars by keeping your local beaches spic-and-span.

The NOAA Marine Debris Program is a proud sponsor of the International Coastal Cleanup and we’ll be right there pitching in too. Last year NOAA volunteers across the nation helped clean up more than 1,000 pounds of debris from our Great Lakes, ocean, and waterways in Washington, D.C.; Alabama; Washington; Oregon; California; and Hawaii.

Join us on Saturday, September 20 from 9:00 a.m. to noon and help keep our seas free of trash with any one (or all) of these 10 easy steps:

10 things you can do for trash-free seas. Credit: Ocean Conservancy

10 things you can do for trash-free seas. Credit: Ocean Conservancy

You can find more trashy facts in the Ocean Conservancy’s 2014 Ocean Trash Index.


Leave a comment

Adventures in Developing Tools for Oil Spill Response in the Arctic

This is a post by the Office of Response and Restoration’s Zachary Winters-Staszak. This is the third in a series of posts about the Arctic Technology Evaluation supporting Arctic Shield 2014. Read the first post, “NOAA Again Joins Coast Guard for Oil Spill Exercise in the Arctic” and the second post, “Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics.”

People in a boat lowering orange ball into icy waters.

The crew of the icebreaker Healy lowering an iSphere onto an ice floe to simulate tracking oil in ice. (NOAA/Jill Bodnar)

The Arctic Ocean, sea ice, climate change, polar bears—each evokes a vivid image in the mind. Now what is the most vivid image that comes to mind as you read the word “interoperability”? It might be the backs of your now-drooping eyelids, but framed in the context of oil spill response, “interoperability” couldn’t be more important.

If you’ve been following our latest posts from the field, you know Jill Bodnar and I have just finished working with the U.S. Coast Guard Research and Development Center on an Arctic Technology Evaluation during Arctic Shield 2014. We were investigating the interoperability of potential oil spill response technologies while aboard the Coast Guard icebreaker Healy on the Arctic Ocean.

Putting Square Pegs in Round Holes

As Geographic Information Systems (GIS) map specialists for NOAA’s Office of Response and Restoration, a great deal of our time is spent transforming raw data into a visual map product that can quickly be understood. Our team achieves this in large part by developing a versatile quiver of tools tailored to meet specific needs.

For example, think of a toddler steadfastly—and vainly—trying to shove that toy blue cylinder into a yellow box through a triangular hole. This would be even more difficult if there were no circular hole on that box, but imagine if instead you could create a tool to change those cylinders to fit through any hole you needed. With computer programming languages we can create interoperability between technologies, allowing them to work together more easily. That cylinder can now go through the triangular hole.

New School, New Tools

Different technologies are demonstrated each year during Arctic Shield’s Technology Evaluations and it is common for each technology to have a different format or output, requiring them to be standardized before we can use them in a GIS program like our Environmental Response Management Application, Arctic ERMA.

Taking lessons learned from Arctic Shield 2013’s Technology Evaluation, we came prepared with tools in ERMA that would allow us to automate the process and increase our efficiency. We demonstrated these tools during the “oil spill in ice” component of the evaluation. Here, fluorescein dye simulated an oil plume drifting across the water surface and oranges bobbed along as simulated oiled targets.

The first new tool allowed us to convert data recorded by the Puma, a remote-controlled aircraft run by NOAA’s Unmanned Aircraft Systems Program. This allowed us to associate the Puma’s location with the images it was taking precisely at those coordinates and display them together in ERMA. The Puma proved useful in capturing high resolution imagery during the demonstration.

A similar tool was created for the Aerostat, a helium-filled balloon connected to a tether on the ship, which can create images and real-time video with that can track targets up to three miles away. This technology also was able to delineate the green dye plume in the ocean below—a function that could be used to support oil spill trajectory modeling. We could then make these images appear on a map in ERMA.

The third tool received email notifications from floating buoys provided by the Oil Spill Recovery Institute and updated their location in ERMA every half hour. These buoys are incredibly rugged and produced useful data that could be used to track oiled ice floes or local surface currents over time. Each of the tools we brought with us is adaptable to changes on the fly, making them highly valuable in the event of an actual oil spill response.

Internet: Working With or Without You

Having the appropriate tools in place for the situation at hand is vital to any response, let alone a response in the challenging conditions of the Arctic. One major challenge is a lack of high-speed Internet connectivity. While efficient satellite connectivity does exist for simple communication such as text-based email, a robust pipeline to transmit and receive megabytes of data is costly to maintain. Similar to last year’s expedition, we overcame this hurdle by using Stand-alone ERMA, our Internet-independent version of the site that was available to Healy researchers through the ship’s internal network.

NOAA's online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during  the Arctic Technology Evaluation of Arctic Shield 2014.

NOAA’s online mapping tool Arctic ERMA displays ice conditions, bathymetry (ocean depths), and the ship track of the U.S. Coast Guard Cutter Healy during the Arctic Technology Evaluation of Arctic Shield 2014. (NOAA)

This year we took a large step forward and successfully tested a new tool in ERMA that uses the limited Internet connectivity to upload small packages (less than 5 megabytes) of new data on the Stand-alone ERMA site to the live Arctic ERMA site. This provided updates of the day’s Arctic field activities to NOAA staff back home. During an actual oil spill, this tool would provide important information to decision-makers and stakeholders at a command post back on land and at agency headquarters around the country.

Every Experience Is a Learning Experience

I’ve painted a pretty picture, but this is not to say everything went as planned during our ventures through the Arctic Ocean. Arctic weather conditions lived up to their reputation this year, with fog, winds, and white-cap seas delaying and preventing a large portion of the demonstration. (This was even during the region’s relatively calm, balmy summer months.)

Subsequently, limited data and observations were produced—a sobering exercise for some researchers. I’ve described only a few of the technologies demonstrated during this exercise, but there were unexpected issues with almost every technology; one was even rendered inoperable after being crushed between two ice floes. In addition, troubleshooting data and human errors added to an already full day of work.

Yet every hardship allowed those of us aboard the Healy to learn, reassess, adapt, and move forward with our work. The capacity of human ingenuity and the tools we can create will be tested to their limits as we continue to prepare for an oil spill response in the harsh and unpredictable environs of the Arctic. The ability to operate in these conditions will be essential to protecting the local communities, wildlife, and coastal habitats of the region. The data we generate will help inform crucial and rapid decisions by resource managers, making interoperability along with efficient data management and dissemination fundamental to effective environmental response.

Editor’s note: Use Twitter to chat directly with NOAA GIS specialists Zachary Winters-Staszak and Jill Bodnar about their experience during this Arctic oil spill simulation aboard an icebreaker on Thursday, September 18 at 2:00 p.m. Eastern. Follow the conversation at #ArcticShield14 and get the details: http://1.usa.gov/1qpdzXO.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed me to the Arctic.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed Zachary Winters-Staszak to the Arctic in 2013. (NOAA)

Zachary Winters-Staszak is a GIS Specialist with the Office of Response and Restoration’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


1 Comment

Diving for Debris: Washington’s Success Story in Fishing Nets out of the Ocean

The scale of the challenges facing the ocean—such as overfishing, pollution, and acidification—is enormous, and their solutions, achievable but complex. That is why the impressive progress in cleaning up a major problem in one area—Washington’s Puget Sound—can be so satisfying. Get a behind-the-scenes look at this inspiring progress in a new video from NOAA-affiliate Oregon SeaGrant on the Northwest Straits Foundation net removal project.

For over a decade, the Northwest Straits Foundation, supported by the NOAA Marine Debris Program, the U.S. Environmental Protection Agency, state agencies, and many others, has been removing lost and abandoned fishing nets from the inland ocean waters of Puget Sound.

A problem largely invisible to most of us, these fishing nets are a legacy of extensive salmon fishing in the Puget Sound which is now much diminished. Lost during fishing operations, the nets are now suspended in the water column or settled on the seafloor, where they snare dozens of marine species, including marine birds and mammals, and degrade the ocean habitat where they were lost. Made of plastic, these nets do not degrade significantly and continue to catch and kill animals indiscriminately for many years.

Man on a boat removing derelict nets from Puget Sound.

Removing derelict nets south of Pt. Roberts in Washington’s Puget Sound. (NOAA)

However, with the help of highly skilled divers, the foundation has removed over 4,700 of these lost nets from Puget Sound. They estimate there are fewer than 900 left in the area and, working with local commercial fishers, have a good handle on the small number of nets currently lost each year.

The NOAA Marine Debris Program has collaborated on or funded over 200 projects to research, prevent, and remove marine debris from waters around the United States. You can learn more about our other projects, such as the Fishing for Energy program, at clearinghouse.marinedebris.noaa.gov.


2 Comments

Overcoming the Biggest Hurdle During an Oil Spill in the Arctic: Logistics

Ship breaking ice in Arctic waters.

The U.S. Coast Guard Cutter Healy breaks ice in Arctic waters. A ship like this would be the likely center of operations for an oil spill in this remote and harsh region. (NOAA)

August in the Arctic can mean balmy weather and sunny skies or, fifteen minutes later, relentless freezing rain and wind blowing off ice floes, chilling you to the core. If you were headed to an oil spill there, your suitcase might be carrying a dry suit, down parka, wool sweaters and socks, your heaviest winter hat and gloves, and even ice traction spikes for your boots. Transit could mean days of travel by planes, car, and helicopter to a ship overseeing operations at the edge of the oil spill. Meanwhile, the oil is being whipped by the wind and waves into the nooks and crannies on the underside of sea ice, where it could be frozen into place.

Even for an experienced oil spill responder like Jill Bodnar, the complexity of working in such conditions goes far beyond the usual response challenges of cleaning up the oil, gathering data about the spill, and minimizing the impacts to marine life and their sensitive habitats. Rather, in the Arctic, everything comes down to logistics.

The unique logistics of this extreme and remote environment drive to the heart of why Bodnar, a NOAA Geographic Information Systems (GIS) specialist, and her colleague Zachary Winters-Staszak are currently on board the U.S. Coast Guard Cutter Healy, at the edge of the sea ice north of Alaska. They are participating in an Arctic Technology Evaluation, an exercise conducted by the U.S. Coast Guard Research and Development Center (RDC) in support of the Coast Guard’s broader effort known as Arctic Shield 2014.

Building on what was learned during the previous year’s exercise, the advanced technologies being demonstrated in this evaluation could potentially supplement those tools and techniques responders normally would rely on during oil spills in more temperate and accessible locations. This Arctic Technology Evaluation provides multiple agencies and institutions, in addition to NOAA, the invaluable opportunity to untangle some of the region’s knotty logistical challenges on a state-of-the-art Coast Guard icebreaker in the actual Arctic environment.

Getting from A to B: Not as Easy as 1-2-3

Bodnar has been mapping data during oil spills for more than a decade, but this exercise is her first trip to the Arctic. While preparing for it, she found it sobering to learn just how many basic elements of a spill response can’t be taken for granted north of the Arctic Circle. In addition to the scarcity of roads, airports, and hotels, other critical functions such as communications are subject to the harsh Arctic conditions and limited radio towers and satellite coverage. Out at sea ships depend on satellites for phone calls and some Internet connectivity, but above the 77th parallel those satellites often drop calls and can only support basic text email.

The remoteness of the Arctic questions how hundreds of responders would get there, along with all the necessary equipment—such as boom, skimmers, and vessels—not already in the area. Once deployed to the spill, response equipment has the potential to ice-over, encounter high winds, or be grounded from dense fog. Communicating with responders and decision makers on other ships, on shore at a command post, or even farther away in the lower 48 states would be an enormous challenge.

For example, if an oil spill occurs in the Beaufort Sea, north of Alaska, the nearest and “largest” community is Barrow, population 4,429. However, Barrow has very limited accommodations. For comparison, 40,000 people, including Bodnar, responded to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. This was possible because of the spill’s proximity to large cities with hotel space and access to food and communications infrastructure.

This is not the case for small Arctic villages, where most of their food, fuel, and other resources have to be shipped in when the surrounding waters are relatively free of ice. But to respond to a spill in the Arctic, the likely center of operations would be on board a ship, yet another reason working with the Coast Guard during Arctic Shield is so important for NOAA.

NOAA’s Role in Arctic Shield 2014

During this August’s Arctic Technology Evaluation, the Coast Guard is leading tests of four key areas of Arctic preparedness. NOAA’s area focuses on how oil disperses at the edge of the sea ice and collects under the older, thicker ice packs. NOAA’s Office of Response and Restoration is working with NOAA’s Unmanned Aircraft Systems (UAS) program to develop techniques for quickly identifying and delineating a simulated oil spill in the Arctic waters near the ice edge. The Coast Guard will be using both an unreactive, green fluorescein dye and hundreds of oranges as “simulated oil” for the various tools and technologies to detect.

Normally during an oil spill, NOAA or the Coast Guard would send people up in a plane or helicopter to survey the ocean for the oil’s precise location, which NOAA also uses to improve its models of the oil’s expected behavior. However, responders can’t count on getting these aircraft to a spill in the Arctic in the first place—much less assume safe conditions for flying once there.

Instead, the UAS group is testing the feasibility of using unmanned, remote-controlled aircraft such as the Puma to collect this information and report back to responders on the ship. Bodnar and Winters-Staszak will be pulling these data streams from the Puma into Arctic ERMA®, NOAA’s mapping tool for environmental response data. They’ll be creating a data-rich picture of where the oil spill dye and oranges are moving in the water and how they are behaving, particularly among the various types of sea ice.

Once the oil spill simulation is complete, Bodnar and Winters-Staszak will be reporting back on how it went and what they have learned. Stay tuned for the expedition’s progress in overcoming the many logistical hurdles of a setting as severe as the Arctic here and at oceanservice.noaa.gov/arcticshield.


Leave a comment

OR&R Defines the Issues Surrounding Oil Spill Dispersant Use

Oil floating on water's surface.

Oil on the water’s surface. (NOAA)

I recently had the opportunity to attend an interesting seminar on the use of dispersants in oil spill response. On August 8, 2014, OR&R Emergency Response Division marine biologist, Gary Shigenaka, and Dr. Adrian C. Bejarano, aquatic toxicologist, made presentations to a group of oil spill response professionals as part of the Science of Oil Spills class, offered by OR&R in Seattle last week.

Mr. Shigenaka introduced the subject, giving the students background on the history of dispersant use in response to oil spills, starting with the first use in England at the Torrey Canyon spill. Because the first generation of oil dispersants were harsh and killed off intertidal species, the goal since has been to reduce their inherent toxicity while maintaining effectiveness at moving oil from the surface of the water into the water column. He gave an overview of the most prevalent commercial products, including Corexit 9527 and Corexit 9500, manufactured by Nalco, and Finasol OSR52, a French product.

Aerial view of testing facility with long pool.

The Ohmsett facility is located at Naval Weapons Station Earle, Waterfront. The research and training facility centers around a 2.6 million-gallon saltwater tank. (Bureau of Safety and Environmental Enforcement)

Shigenaka reviewed the U.S. EPA product schedule of dispersants as well as Ohmsett – National Oil Spill Response Research Facility in Leonardo, N.J. Ohmsett is run by the U.S. Department of Interior’s Bureau of Safety and Environmental Enforcement. He showed video clips of oil dispersant tests conducted recently at the facility by the American Petroleum Institute.

The corporate proprietary aspects of the exact formulation of dispersants were described by Shigenaka as one of the reasons for the controversy surrounding the use of dispersants on oil spills.

Dispersant Use in Offshore Spill Response

Dr. Bejarano’s presentation, “Dispersant Use in offshore Oil Spill Response,” started with a list of advantages of dispersant use such as reduced oil exposure to workers; reduced impacts on shoreline habitats; minimal impacts on wildlife with long life spans; and keeping the oil away from the nearshore area thus avoiding the need for invasive cleanup. She followed with some downside aspects such as increased localized concentration of hydrocarbons; higher toxicity levels in the top 10 meters of the water column; increased risk to less mobile species; and greater exposure to dispersed oil to species nearer to the surface.

Dr. Bejarano is working on a comprehensive publicly-available database that will include source evaluation and EPA data as well as a compilation of data from 160 sources scored on applicability to oil spill response (high, moderate, low and different exposures).

Her presentation concluded with a summary of trade-offs associated with dispersant use:

  • Shifting risk to water column organisms from shoreline, which recover more quickly (weeks or months).
  • Toxicity data are not perfect.
  • Realistic dose and duration are different from lab to field environment.
  • Interpretation of findings must be in the context of particular oil spill considerations.

Dr. Bejarano emphasized the need for balanced consideration in reaching consensus for the best response to a particular spill.

Following the formal presentations, there was a panel discussion with experts from NOAA, EPA, and State of Washington, and the audience had an opportunity to ask questions. Recent research from the NOAA National Marine Fisheries Service/ Montlake Laboratory was presented, focusing on effects of oil and dispersants on larval fish. The adequacy of existing science underlying trade-offs and net environmental benefit was also discussed.

Read our related blog on dispersants, “Help NOAA Study Chemical Dispersants and Oil Spills.”

Follow

Get every new post delivered to your Inbox.

Join 417 other followers