NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

In Oregon, an Innovative Approach to Building Riverfront Property for Fish and Wildlife

This is a post by Robert Neely of NOAA’s Office of Response Restoration.

Something interesting is happening on the southern tip of Sauvie Island, located on Oregon’s Willamette River, a few miles downstream from the heart of Portland. Construction is once again underway along the river’s edge in an urban area where riverfront property typically is prized as a location for luxury housing, industrial activities, and maritime commerce. But this time, something is different.

This project will not produce a waterfront condominium complex, industrial facility, or marina. And as much as it may look like a typical construction project today, the results of all this activity will look quite different from much of what currently exists along the shores of the lower Willamette River from Portland to the Columbia River.

Indeed, when the dust settles, the site will be transformed into a home and resting place for non-human residents and visitors. Of course, I’m not referring to alien life forms, but rather to the fish, birds, mammals, and other organisms that have existed in and around the Willamette River since long before humans set up home and shop here. Yet in the last century, humans have substantially altered the river and surrounding lands, and high-quality habitat is now a scarce commodity for many stressed critters that require it for their survival.

On the site of a former lumber mill, the Alder Creek Restoration Project is the first habitat restoration project [PDF] that will be implemented specifically to benefit fish and wildlife affected by contamination in the Portland Harbor Superfund Site. The project, managed by a habitat development company called Wildlands, will provide habitat for salmon, lamprey, mink, bald eagle, osprey, and other native fish and wildlife living in Portland Harbor.

Mink at a river's edge.

The Alder Creek Restoration Project will benefit Chinook salmon, mink, and other fish and wildlife living in Portland Harbor. (Roy W. Lowe)

Habitat will be restored by removing buildings and fill from the floodplain, reshaping the riverbanks, and planting native trees and shrubs. The project will create shallow water habitat to provide resting and feeding areas for young salmon and lamprey and foraging for birds. In addition, the construction at Alder Creek will restore beaches and wetlands to provide access to water and food for mink and forests to provide shelter and nesting opportunities for native birds.

Driving this project is a Natural Resource Damage Assessment conducted by the Portland Harbor Natural Resource Trustee Council to quantify natural resource losses resulting from industrial contamination of the river with the toxic compounds PCBs, the pesticide DDT, oil compounds known as PAHs, and other hazardous substances. The services, or benefits from nature, provided by the Alder Creek Restoration Project—such as healthy habitat, clean water, and cultural value—will help make up for the natural resources that were lost over time because of contamination.

Young Chinook salmon on river bottom.

Fish and wildlife species targeted for restoration include salmon (such as the juvenile Chinook salmon pictured here), lamprey, sturgeon, bald eagle, osprey, spotted sandpiper, and mink. (U.S. Fish and Wildlife Service)

Wildlands purchased the land in order to create and implement an early restoration project. This “up-front” approach to restoration allows for earlier implementation of projects that provide restored habitat to injured species sooner, placing those species on a trajectory toward recovery. The service credits—ecological and otherwise—that will be generated by this new habitat will be available for purchase by parties that have liability for the environmental and cultural losses calculated in the damage assessment.

Thus when a party reaches an agreement with the Trustee Council regarding the amount of their liability, they can resolve it by purchasing restoration credits from Wildlands. And Wildlands, as the seller of restoration credits, recoups the financial investment it made to build the project. Finally, and most importantly, a substantial piece of land with tremendous potential value for the fish, birds, and other wildlife of the lower Willamette River has been locked in as high-quality habitat and thus protected from future development for other, less ecologically friendly purposes.

Robert NeelyRobert Neely is an environmental scientist with the National Oceanic and Atmospheric Administration’s Office of Response and Restoration. He has experience in ocean and coastal management, brownfields revitalization, Ecological Risk Assessment, and Natural Resource Damage Assessment. He started with NOAA in 1998 and has worked for the agency in Charleston, South Carolina; Washington, DC; New Bedford, Massachusetts; and Seattle, Washington, where he lives with his wife and daughter. He’s been working with his co-trustees at Portland Harbor since 2005.


Leave a comment

On the Chesapeake Bay, Overcoming the Unique Challenges of Bringing Restoration to Polluted Military Sites

Transformations are taking place at more than 10 government facilities, mostly owned by the Department of Defense, across the Chesapeake Bay and its tributaries. These properties typically include large, relatively undisturbed natural areas, which often serve as key habitats for endangered fish, birds, and wildlife. Yet the same federal facilities also have become Superfund sites, slated for cleanup under CERCLA, with pollution at levels which threaten the health of humans and the environment.

Heavy equipment clearing a former landfill for restoration.

Naval Amphibious Base Little Creek, a major base for the Navy’s Atlantic fleet, is one of the facilities that was slate for cleanup on the Chesapeake Bay. Here, heavy equipment prepare a former landfill for restoration post-cleanup in 2006. (U.S. Navy)

Yet in spite of some unique challenges, these areas are being cleaned up and restored to become healthy places for all once more. Success has stemmed largely from two critical pieces of the process: collaborating closely among numerous government agencies and incorporating restoration into the process as early and often as possible.

According to Paula Gilbertson of the U.S. Navy, “The close partnership among the many federal and state agencies involved has provided a framework for success. Great things can happen when people work together toward a common goal.”

Moving Past the Past

Past activities leading to pollution at U.S. Army, Air Force, and Navy sites on Chesapeake Bay were many and varied, and included: incineration, landfilling, ship and airplane repair and maintenance, military testing, and pesticide and munitions disposal. As a result, beginning in the 1980s, entire facilities along the bay became Superfund sites and listed for priority cleanup.

Typically during the Superfund process, the party responsible for polluting has to work with the U.S. Environmental Protection Agency (EPA), which leads the cleanup, and other state and federal agencies—known as trustees—which represent affected public lands and waters.

A landfill on the Little Creek naval base before cleanup.

A landfill on the Little Creek naval base before cleanup in 2006. (U.S. Navy)

But in these cases, the Department of Defense has to play multiple roles: trustee of natural resources on the property, entity responsible for contamination, and lead cleanup agency. In addition, the EPA still oversees the effectiveness of the Superfund cleanup, and the military branches at each site still have to coordinate with the other trustees: NOAA, the U.S. Fish and Wildlife Service, and state agencies.

NOAA and the Fish and Wildlife Service also are part of a special technical group run by the EPA (the Biological Technical Assistance Group, or BTAG), which coordinates trustee participation and offers scientific review throughout the ecological risk assessment and cleanup process at each site.

According to Bruce Pluta, coordinator of the EPA BTAG, “The collaborative efforts of the EPA Project Team, including the BTAG, and our partners at the Department of Defense have resulted in model projects which integrate remediation and ecological restoration.”

Working Together for the Future

What does not change during this process is that the trustees are working to protect and restore the “trust resources,” including lands, waters, birds, fish, and wildlife affected by contamination coming from these military sites. This can include natural areas adjacent to the sites and the animals that could migrate onto the federal properties, such as striped bass, herring, blue crabs, eagles, and herons.

Other important differences exist governing how all these government entities work together in the Superfund cleanup process. For example, NOAA often works to evaluate ecological risks and determine environmental injuries resulting from hazardous material releases at Superfund sites. Then we implement restoration projects to compensate for the injuries to coastal and marine natural resources and the benefits they provide to the public. This is the Natural Resource Damage Assessment process. NOAA seeks legal damages (payment) or works with those responsible for the pollution through cooperative agreements to restore, replace, or acquire the equivalent natural resources.

Restored wetlands.

A site transformed: Immediately after completion of cleanup and restoration activities at a landfill on the Little Creek naval base on the Chesapeake Bay. (U.S. Environmental Protection Agency)

As federal trustees, we are significantly limited in our ability to conduct a formal damage assessment against a fellow federal agency doing cleanup because we are both trustees of the affected natural resources. However, all federal and state trustees can work together with EPA to protect the lands, waters, and living things during cleanup, maximize the potential for restoration at each site, and develop measures to ensure both environmental recovery and resilience.

“By considering restoration early in the process and getting input from natural resource managers, many simple, common sense measures are being incorporated that benefit ecosystems, reduce overall costs, and improve the effectiveness of the cleanup,” says Simeon Hahn of NOAA.

Overcoming Challenges

Having so many government agencies involved in overlapping but distinct roles requires a great deal of collaboration and communication. This became clear early in the process if each case were to achieve multiple objectives:

  • Cleaning up the military sites and returning the lands and waters to productive uses.
  • Performing cleanups using environmentally friendly strategies to remove, recycle, and reuse materials while also addressing climate resiliency.
  • Protecting and restoring natural resources.
  • Accomplishing everything within a reasonable budget and timeframe.

Despite the many challenges, the process of cleaning up and restoring these contaminated military facilities has been going well. EPA, the Department of Defense, and fellow trustees have collaborated to protect and restore affected natural resources while also helping adapt these areas to the threats and impacts of climate change. By integrating restoration into cleanup planning early and often, we have made significant progress toward a healthier Chesapeake Bay—at lower costs and in less time.

Map of hazardous waste sites on federal properties in the Chesapeake Bay area.

Hazardous waste sites on federal properties in the Chesapeake Bay area. (NOAA)

Over the coming months, we will be sharing more about these successes here on the blog. We will recount the removal and recycling of thousands of tons of concrete; the restoration of hundreds of acres of wetlands, shorelines, creeks, and forested areas; and the revitalization of numerous acres of land contributing to benefits such as natural defenses for coastal communities. Stay tuned!


Leave a comment

Buoys Serve as Latest Gardening Tool for Restoring Eelgrass in San Francisco Bay

Bright red buoys floating on a bay.

“Seed buoys” are dotting the waters of San Francisco Bay. Below the water, they are attached to mesh bags filled with shoots of eelgrass, which spread seeds that will eventually sprout and restore habitat on the bay’s bottom. (NOAA)

Many of us likely have spent some time planting seeds in our yards to grow vegetables or flowers. But how do scientists plant seeds to help restore plants in our bays and coastal waters? If you look out on the waters of San Francisco Bay right now, you can see the answer.

Floating on the surface of the bay is a series of “seed buoys.” Each buoy is connected to a mesh bag containing shoots of the underwater plant eelgrass (Zostera marina). These shoots, which are flowering, were harvested by biologists and will soon be releasing ripening seeds. These buoys will move with the tides, distributing seeds that, by next spring, will develop into new eelgrass seedlings on the bay bottom. The seed buoy is a relatively easy, low-tech way of growing this underwater grass. The traditional method of planting eelgrass—by hand in the bay’s floor using scuba divers—can be dangerous, expensive, and labor intensive.

Mesh bags holding flowering eelgrass plants.

Anchored to various locations on the sea floor, seed buoys perform like flowering eelgrass plants, dispersing seeds as the water current moves these mesh bags. Buoys are placed where underwater soil conditions are optimal for the seeds to germinate into young plants. (NOAA)

By seeding and transplanting eelgrass in this area where none currently exists, we hope to create vibrant eelgrass beds that provide cover and food for fish, juvenile Dungeness crabs, and birds. Eelgrass beds provide important habitat in California’s San Francisco Bay, serving as nurseries for young fish and foraging areas for many species of fish, invertebrates, and birds. They also improve water quality by reducing turbidity, or cloudiness, of the water.

This work is part of a restoration project which has the ultimate goal of compensating for past oil spill impacts in San Francisco Bay as a result of the 2007 M/V Cosco Busan oil spill. It aims to create 70 new acres of eelgrass habitat at several sites throughout San Francisco Bay over nine years. This project is funded by the legal settlement resulting from the cargo ship Cosco Busan striking one of the towers of the San Francisco-Oakland Bay Bridge and releasing 53,000 gallons of heavy oil into the surrounding waters.

A result of the work of the Cosco Busan Oil Spill Trustee Council, the eelgrass restoration project also is carried out in cooperation with San Francisco State University and Merkel and Associates, Inc.

For more information, you can read about:


Leave a comment

With NOAA as a Model, India Maps Coastal Sensitivity to Oil Spills

This is a post by Vicki Loe and Jill Petersen of NOAA’s Office of Response and Restoration.

Boy running on beach.

Scientists in India have used NOAA’s Environmental Sensitivity Index maps as a model for preparing for oil spills on the west coast of India. (Credit: Samuel Kimlicka/Creative Commons Attribution 2.0 Generic License)

They say that imitation is the sincerest form of flattery, which is why we were thrilled to hear about recent efforts in India to mirror one of NOAA’s key oil spill planning tools, Environmental Sensitivity Index maps. A recent Times of India article alerted us to a pilot study led by scientists at the National Institute of Oceanography in India, which used our Environmental Sensitivity Index (ESI) shoreline classifications to map seven talukas, or coastal administrative divisions in India. Amid the estuaries mapped along India’s west coast, one of the dominant shoreline types is mangroves, which are a preferred habitat for many migratory birds as well as other species sensitive to oil.

Traditional ESI data categorize both the marine and coastal environments as well as their wildlife based on sensitivity to spilled oil. There are three main components: shoreline habitats (as was mapped in the Indian project), sensitive animals and plants, and human-use resources. The shoreline and intertidal zones are ranked based on their vulnerability to oil, which is determined by:

  • Shoreline type (such as fine-grained sandy beach or tidal flats).
  • Exposure to wave and tidal energy (protected vs. exposed to waves).
  • Biological productivity and sensitivity (How many plants and animals live there? Which ones?).
  • Ease of cleanup after a spill (For example, are there roads to access the area?).

The biology data available in ESI maps focus on threatened and endangered species, areas of high concentration, and areas where sensitive life stages (such as when nesting) may occur. Human use resources mapped include managed areas (parks, refuges, critical habitats, etc.) and resources that may be impacted by oiling or clean-up, such as beaches, archaeological sites, or marinas.

Many countries have adapted the ESI data standards developed and published by NOAA. India developed their ESI product independently, based on these standards. In other cases, researchers from around the world have come across ESI products and contacted NOAA for advice in developing their own ESI maps and data. In the recent past, Jill Petersen, the NOAA ESI Program Manager, has worked with scientists who have visited from Spain, Portugal, and Italy.

By publishing our data standards, we share information which enables states and countries to develop ESI maps and data independently while adhering to formats that have evolved and stood the test of time over many years. In addition to mapping the entire U.S. coast and territories, NOAA has conducted some of our own international mapping of ESIs. In the wake of Hurricane Mitch in 1998, we mapped the coastal natural resources in the affected areas of Nicaragua, Honduras, and Ecuador.

Currently, we are developing new ESI products for the north and mid-Atlantic coasts of the United States, many areas of which were altered by Hurricane Sandy in 2012. The new maps will provide a comprehensive and up-to-date picture of vulnerable shorelines, wildlife habitats, and key resources humans use. Having this information readily available will enable responders and planners to quickly make informed decisions in the event of a future oil spill or natural disaster.

For further information on NOAA’s ESI shoreline classification, see our past blog posts: Mapping How Sensitive the Coasts Are to Oil Spills and After Sandy, Adapting NOAA’s Tools for a Changing Shoreline.


2 Comments

As Oil Sands Production Rises, What Should We Expect at Diluted Bitumen (Dilbit) Spills?

Pipeline dug up for an oil spill cleanup next to a creek.

This area is where the Enbridge pipeline leaked nearly a million gallons of diluted bitumen (dilbit), a tar sands oil product, into wetlands, Talmadge Creek, and roughly 40 miles of Michigan’s Kalamazoo River in 2010. (U.S. Environmental Protection Agency)

I’ve seen a lot of firsts in the past four years.

During that time, I have been investigating the environmental impacts, through the Natural Resource Damage Assessment process, of the Enbridge pipeline spill in Michigan. In late summer of 2010, a break in an underground pipeline spilled approximately 1 million gallons of diluted bitumen into a wetland, a creek, and the Kalamazoo River. Diluted bitumen (“dilbit”) is thick, heavy crude oil from the Alberta tar sands (also known as oil sands), which is mixed with a thinner type of oil (the diluent) to allow it to flow through a pipeline.

A Whole New Experience

This was my first and NOAA’s first major experience with damage assessment for a dilbit spill, and was also a first for nearly everyone working on the cleanup and damage assessment. Dilbit production and shipping is increasing. As a result, NOAA and our colleagues in the field of spill response and damage assessment are interested in learning more about dilbit:

  • How does it behave when spilled into rivers or the ocean?
  • What kinds of effects does it have on animals, plants, and habitats?
  • Is it similar to other types of oil we’re more familiar with, or does it have unique properties?

While it’s just one case study, the Enbridge oil spill can help us answer some of those questions. My NOAA colleague Robert Haddad and I recently presented a scientific paper on this case study at Environment Canada’s Arctic and Marine Oil Spill Program conference.

In addition, the Canadian government and oil pipeline industry researchers Witt O’Brien’s, Polaris, and Western Canada Marine Response Corporation [PDF] and SL Ross [PDF] have been studying dilbit behavior as background research related to several proposed dilbit pipeline projects in the United States and Canada. Those experiments, along with the Enbridge spill case study, currently make up the state of the science on dilbit behavior and ecological impacts.

How Is Diluted Bitumen Different from Other Heavy Oils?

Dilbit is in the range of other dense, heavy oils, with a density of 920 to 940 kg/m3, which is close to the density of freshwater (1,000 kg/m3). (In general when something is denser than water, it will sink. If it is less dense, it will float.) Many experts have analyzed the behavior of heavy oils in the environment and observed that if oil sinks below the surface of the water, it becomes much harder to detect and recover. One example of how difficult this can be comes from a barge spill in the Gulf of Mexico, which left thick oil coating the bottom of the ocean.

What makes dilbit different from many other heavy oils, though, is that it includes diluent. Dilbit is composed of about 70 percent bitumen, consisting of very large, heavy molecules, and 30 percent diluent, consisting of very small, light molecules, which can evaporate much more easily than heavy ones. Other heavy oils typically have almost no light components at all. Therefore, we would expect evaporation to occur differently for dilbit compared to other heavy oils.

Environment Canada confirmed this to be the case. About four to five times as much of the dilbits evaporated compared to intermediate fuel oil (a heavy oil with no diluent), and the evaporation occurred much faster for dilbit than for intermediate fuel oil in their study. Evaporation transports toxic components of the dilbit into the air, creating a short-term exposure hazard for spill responders and assessment scientists at the site of the spill, which was the case at the 2010 Enbridge spill.

Graph of evaporation rates over time of two diluted bitumen oils and another heavy oil.

An Environment Canada study found that two types of diluted bitumen (dilbits), Access Western Blend (AWB) and Cold Lake Blend (CLB), evaporated more quickly and to a greater extent than intermediate fuel oil (IFO). The two dilbits are shown on the left and the conventional heavy oil, IFO, on the right. (Environment Canada)

Since the light molecules evaporate after dilbit spills, the leftover residue is even denser than what was spilled initially. Environment Canada, Witt O’Brien’s/Polaris/WCMRC, and SL Ross measured the increase in dilbit density over time as it weathered, finding dilbit density increased over time and eventually reached approximately the same density as freshwater.

These studies also found most of the increase in density takes place in the first day or two. What this tells us is that the early hours and days of a dilbit spill are extremely important, and there is only a short window of time before the oil becomes heavier and may become harder to clean up as it sinks below the water surface.

Unfortunately, there can be substantial confusion in the early hours and days of a spill. Was the spilled material dilbit or conventional heavy crude oil? Universal definitions do not exist for these oil product categories. Different entities sometimes categorize the same products differently. Because of these discrepancies, spill responders and scientists evaluating environmental impacts may get conflicting or hard-to-interpret information in the first few days following a spill.

Lessons from the Enbridge Oil Spill

Initially at the Enbridge oil spill, responders used traditional methods to clean up oil floating on the river’s surface, such as booms, skimmers, and vacuum equipment (see statistics on recovered oil in EPA’s Situation Reports [PDF]).

After responders discovered the dilbit had sunk to the sediment at the river’s bottom, they developed a variety of tactics to collect the oil: spraying the sediments with water, dragging chains through the sediments, agitating sediments by hand with a rake, and driving back and forth with a tracked vehicle to stir up the sediments and release oil trapped in the mud.

These tactics resulted in submerged oil working its way back up to the water surface, where it could then be collected using sorbent materials to mop up the oily sheen.

While these tactics removed some oil from the environment, they might also cause collateral damage, so the Natural Resource Damage Assessment trustees assessed impacts from the cleanup tactics as well as from the oil itself. This case is still ongoing, and trustees’ assessment of those impacts will be described in a Damage Assessment and Restoration Plan after the assessment is complete.

A hand holds a crushed mussel.

A freshwater mussel found crushed in an area of the Kalamazoo River with heavy cleanup traffic following the 2010 Enbridge oil spill. (Enbridge Natural Resource Damage Assessment Trustee Council)

For now, we can learn from the Enbridge spill and help predict some potential environmental impacts of future dilbit spills. We can predict that dilbit will weather (undergo physical and chemical changes) rapidly, becoming very dense and possibly sinking in a matter of days. If the dilbit reaches the sediment bed, it can be very difficult to get it out, and bringing in responders and heavy equipment to recover the oil from the sediments can injure the plants and animals living there.

To plan the cleanup and response and predict the impacts of future dilbit spills, we need more information on dilbit toxicity and on how quickly plants and animals can recover from disturbance. Knowing this information will help us balance the potential impacts of cleanup with the short- and long-term effects of leaving the sunken dilbit in place.


Leave a comment

Follow Along with the State Department’s Our Ocean 2014 Conference

Jellyfish swiming near a harbor bottom.

A brown sea nettle (Chrysaora fuscescens) drifting through Monterey Harbor in California. (NOAA)

You already know how much the ocean does for you and how important it is to both celebrate and protect it. The U.S. Department of State also realizes this importance and, as a result, is hosting the Our Ocean Conference in Washington, DC from June 16–17, 2014. According to ourocean2014.state.gov:

We will bring together individuals, experts, practitioners, advocates, lawmakers, and the international ocean and foreign policy communities to gather lessons learned, share the best science, offer unique perspectives, and demonstrate effective actions. We aim to chart a way forward, working individually and together, to protect “Our Ocean.”

Watch a message about the conference and find out how you can help from Secretary of State John Kerry:

Marine pollution, a topic NOAA’s Office of Response and Restoration is very concerned about, is one of three core areas the conference aims to address, along with ocean acidification and sustainable fisheries. When a plastic bag or cigarette butt blows into a river, it can end up flowing to the ocean, where it endangers marine life. The problem is global, but mitigation is local. It’s in our hands to reduce marine debris—our trash in our ocean—at its source. Learn more about the debris filling our seas by reading about the challenges and solutions in this Our Ocean conference document [PDF], by visiting marinedebris.noaa.gov, and by watching the video below:

On the Our Ocean 2014 website, you also can submit your own pledge to protect the ocean, whether that means volunteering to clean up a beach or tracing the sustainability of the seafood you eat. Plus, you can show your support for the ocean by sharing a photo that inspires your dedication to our ocean. (If you’re looking for inspiration, try the images in our Flickr stream.) The State Department says all you have to do to participate is:

Post your photo to your favorite social media platform using the hashtag #OurOcean2014 or add it to the OurOcean2014 group on Flickr.  We will be keeping an eye out for photos using the hashtag and will choose some of the photos to be featured at the Our Ocean conference in Washington on June 16-17.

Check out the program schedule and watch the conference streaming live starting at 9:30 a.m. Eastern on Monday and Tuesday at state.gov/ourocean.


Leave a comment

See Restoration in Action for California’s Kelp Forests

Healthy kelp forest in southern California.

Healthy kelp forest in southern California. (NOAA)

In July of 2013, a large-scale project to restore kelp forests began off the Palos Verdes peninsula of California. The Bay Foundation, with funding and technical assistance from NOAA’s Montrose Settlements Restoration Program, coordinated the effort to remove overpopulated and undernourished sea urchins from urchin barrens. The large numbers of sea urchins in these areas decimate kelp forests by eating every newly settled kelp plant before they have a chance to grow.

The good news is that these restoration efforts are working. Thanks to volunteer divers, commercial urchin divers, researchers, and local nonprofit groups, southern California’s kelp forests are on the road to recovery. Check out the before and after photos to see the radical difference this project is making. In just weeks after divers clear urchins, newly settled kelp and algae can be seen growing.

In the before photo, you can see what the area’s nearly 100 acres of urchin barrens look like—rocky reef covered in dense clusters of spiny purple urchins. In the after photo, taken several months after restoration began, long strands of giant kelp reach from the seafloor up toward the water’s surface. At some of the restoration sites, kelp have already grown more than 25 feet in length, creating better habitat for fish and other marine life.

Left, purple sea urchins on a rocky reef. Right, young kelp growing tall.

On the left is an urchin barren before divers cleared it of excess purple sea urchins and on the right is newly settled kelp already growing tall several months after restoration. (NOAA)

To date, volunteers have cleared roughly eight acres of reef habitat at four restoration sites, which are in various states of recovery, but we still have plenty more work ahead. In the next two to three years, we hope to reestablish between 75 and 80 acres of kelp forest on the Palos Verdes shelf.

For more information, check out:

Follow

Get every new post delivered to your Inbox.

Join 409 other followers