NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Out of Sandy, Lessons in Helping Coastal Marshes Recover from Storms

Cleanup workers scoop oil out of an oiled marsh with containment boom around the edges.

After Sandy’s flooding led to an oil spill at a Motiva refinery, Motiva cleanup workers extract oil from Smith Creek, a waterway connected to the Arthur Kill, in Woodbridge, New Jersey, on November 5, 2012. (NOAA)

Boats capsized in a sea of grass. Tall trees and power lines toppled over. A dark ring of oil rimming marsh grasses. This was the scene greeting NOAA’s Simeon Hahn and Carl Alderson a few days after Sandy’s floodwaters had pulled back from New Jersey in the fall of 2012.

They were surveying the extent of an oil spill in Woodbridge Creek, which is home to a NOAA restoration project and feeds into the Arthur Kill, a waterway separating New Jersey from New York’s Staten Island. When the massive storm known as Sandy passed through the area, its flooding lifted up a large oil storage tank at the Motiva Refinery in Sewaren, New Jersey. After the floodwaters set the tank back down, it caused roughly 336,000 gallons of diesel fuel to leak into the creek and surrounding wetlands.

That day, the NOAA team was there with Motiva and the New Jersey Department of Environmental Protection (DEP) to begin what can be a long and litigious process of determining environmental impacts, damages, and required restoration—the Natural Resource Damage Assessment process.

In this case, however, not only did the group reach a cooperative agreement—in less than six months—on a restoration plan for the oiled wetlands, but at another wetland affected by Sandy, NOAA gained insight into designing restoration projects better able to withstand the next big storm.

Cleaning up the Mess After a Hurricane

Hurricanes and other large storms cause a surprising number of oil and hazardous chemical spills along the coast. After Sandy hit New York and New Jersey, the U.S. Coast Guard began receiving reports of petroleum products, biodiesel, and other chemicals leaking into coastal waters from damaged refineries, breached petroleum storage tanks, and sunken and stranded vessels. The ruptured tank at the Motiva Refinery was just one of several oil spills after the storm, but the approach in the wake of the spill is what set it apart from many other oil spills.

“Early on we decided that we would work together,” reflected Hahn, Regional Resource Coordinator for NOAA’s Office of Response and Restoration. “There was a focus on doing the restoration rather than doing lengthy studies to quantify the injury.”

This approach was possible because Motiva agreed to pursue a cooperative Natural Resource Damage Assessment with New Jersey as the lead and with support from NOAA. This meant, for example, that up front, the company agreed to provide funding for assessing the environmental impacts and implementing the needed restoration, and agreed on and shared the data necessary to determine those impacts. This cooperative process resulted in a timely and cost-effective resolution, which allowed New Jersey and NOAA to transition to the restoration phase.

Reaching Restoration

Because of the early agreement with Motiva, NOAA and New Jersey DEP did not conduct exhaustive new studies detailing specific harm to these particular tidal wetlands. Instead, they turned to the wealth of data from the oil spill response and existing data from the Arthur Kill to make an accurate assessment of the oil’s impacts.

People driving small boats up a marshy river in winter.

A few days after the oil spill, Motiva’s contractors ferried the assessment team up Woodbridge Creek in New Jersey, looking for impacts from the oil. (NOAA)

From their shoreline, aerial, and boat surveys, they knew that the marsh itself had a bathtub ring of oil around the edge, affecting marsh grasses such as Spartina. No oiled wildlife turned up. However, the storm’s immediate impacts made it difficult to take water and sediment samples or directly examine potential effects to fish. Fortunately, the assessment team was able to use a lot of data from a nearby past oil spill and damage assessment in the Arthur Kill. In addition, they could rely on both general scientific research on oil spill toxicology and maps from the response team detailing the areas most heavily oiled.

Together, this created a picture of the environmental injuries the oil spill caused to Woodbridge Creek. Next, NOAA economists used the habitat equivalency analysis approach to calculate the amount of restoration needed to make up for these injuries: 1.23 acres of tidal wetlands. They then extrapolated how much it will cost to do this restoration based on seven restoration projects within a 50 mile radius, coming to $380,000 per acre. As a result, NOAA and New Jersey agreed that Motiva needed to provide $469,000 for saltwater marsh restoration and an additional $100,000 for monitoring, on top of Motiva’s cleanup costs for the spill itself.

To use this relatively small amount of money most efficiently, New Jersey DEP, as the lead agency, is planning to combine it with another, larger restoration project already in the works. While still negotiating which project that will be, the team has been eyeing a high-profile, 80-acre marsh restoration project practically in the shadow of the Statue of Liberty. Meanwhile, the monitoring project will take place upstream from the site of the Motiva oil spill at the 67-acre Woodbridge Creek Marsh, which received light to moderate oiling. NOAA already has data on the state of the animals and plants at this previously established restoration site, which will provide a rare comparison for before and after the oil spill.

Creating More Resilient Coasts

A storm as damaging as Sandy highlights the need for restoring wetlands. These natural buffers offer protection for human infrastructure, absorbing storm surge and shielding shorelines from wind and waves. Yet natural resource managers are still learning how to replicate nature’s designs, especially in urban areas where river channels often have been straightened and adjoining wetlands filled and replaced with shorelines armored by concrete riprap.

To the south in Philadelphia, Sandy contributed to significant erosion at a restored tidal marsh and shoreline at Lardner’s Point Park, located on the Delaware River. This storm revealed that shoreline restoration techniques which dampen wave energy before it hits the shore would help protect restored habitat and reduce erosion and scouring.

Out of this destructive storm, NOAA and our partners are trying to learn as much as possible—both about how to reach the restoration phase even more efficiently and how to make those restoration projects even more resilient. The wide range of coastal threats is not going away, but we at NOAA can help our communities and environment bounce back when they do show up on our shores.

Learn more about coastal resilience and how NOAA’s Ocean Service is helping our coasts and communities bounce back after storms, floods, and other disasters and follow #NOAAResilience on social media.


Leave a comment

In a Louisiana Marsh, an Uncommon Opportunity to Learn about Burning Oil

This is a post by LTJG Kyle Jellison, NOAA Scientific Support Coordinator.

“Every day is a new adventure.” I came to believe this phrase while sailing on the high seas, but it proves true as a NOAA Scientific Support Coordinator as well. There have been many adventures in my time working in the Gulf of Mexico doing emergency response for oil spills and hazardous materials releases.

The most recent oil spill—a pipeline leak in a Louisiana marsh—didn’t seem out of the ordinary, that is, until the Unified Command in charge of the response turned to alternative approaches to quicken and improve the effectiveness of the cleanup.

The Spill and Our Options

On May 28, 2014 a plane hired by Texas Petroleum Investment Company was performing a routine aerial survey of their inland oilfield and noticed a slight oil sheen and a dead clump of roseau cane (phragmites). This sparked further investigation and the discovery of 100 barrels (4,200 gallons) of crude oil, which had leaked out of a breach in their pipeline passing through the Delta National Wildlife Refuge, outside of Venice, Louisiana. Pipelines like this one are routinely inspected, but as they age the potential for corrosion and spills increases.

Roseau cane is a tall, woody plant, similar to bamboo, reaching heights of up to 20 feet. The stalks grow very close together and in water depths between two and 30 inches. This creates a complex situation which is very hard to clean oil out from.

The least invasive method for oil cleanup is to flush out the oil with high volumes of water at low pressure, but this is a long process with low amounts of oil recovered each day. Another common practice is to flush with water while cutting lanes into the vegetation, creating pathways for the oil to migrate along for recovery. Though more aggressive and with higher amounts of oil recovered each day, it still would likely take many weeks or months to clean up this particular oil spill using this method.

An Unconventional Solution

What about doing a controlled burn of the oil where it is, a strategy known as in situ burning? It removes a large amount of oil in a matter of days, and when performed properly, in situ burning can help marsh vegetation recover in five years or less for more than 75 percent of cases in one study.

In situ burning, Latin for burning in place, is considered an “alternative” response technology, rather than part of the regular suite of cleanup options, and is only employed under the right set of circumstances. More information about this can be found in the NOAA report “Oil Spills in Marshes,” which details research and guidelines for in situ burning in chapter 3, Response.

To help determine if burning was appropriate in this case, the Unified Command brought in the NOAA Scientific Support Team, U.S. Fish and Wildlife Service Fire Management Team, U.S. Coast Guard Gulf Strike Team, and T&T Marine Firefighting and Salvage. After considering the situation, gaining consensus, developing a burn plan, and earning the support of Regional Response Team 6, it was time to light it up!

Where There’s Smoke …

On June 3, 2014, we burned the oil for two hours, with flames reaching 40 feet. The next day, we burned for another six hours. There was a lot of oil to be burned, with pockets of oil spread throughout three acres of impacted marsh. The fire remained contained to the area where enough oil was present to support the burn, extinguishing once it reached the edge of the oiled marsh.

We have an ongoing study to evaluate the impacts of the burn, and preliminary results indicate that there was minimal collateral damage. More than 70 percent of the oil was burned over the two-day period. We considered this to be a very successful controlled burn. The much less remaining oil will be recovered by mechanical methods within a few weeks, instead of months.

Texas Petroleum Investment Company, as the responsible party in this case, will be responsible for all costs incurred for this incident, including cleanup and monitoring (and restoration, if necessary).

To help ensure we learn something from this incident, an assessment team entered the impacted marsh before the burns to collect oil, water, and sediment samples. The team also collected samples after each day of burning and returned a week after the burn to assess the condition of the vegetation and collect samples. This multi-agency team will return to the site in August for more sampling and monitoring.

The long-term monitoring and sampling project is being managed by NOAA, Louisiana Department of Environmental Quality, Fish and Wildlife Service, and Texas Petroleum Investment Company. We are conducting the study under the umbrella of the Response Science and Technology Subcommittee of the New Orleans Area Committee, a standing body of response scientists. Jeff Dauzat of Louisiana Department of Environmental Quality and I co-chair this subcommittee and are looking forward to the results of this ongoing scientific project.

Was burning the right move? The science will speak for itself in time.

For more information:

Man standing in a marsh with smoke in the background.LT Kyle Jellison is a Scientific Support Coordinator for NOAA’s Office of Response and Restoration. He supports Federal On-Scene Coordinators throughout the Gulf of Mexico by providing mission critical scientific information for response and planning to oil and hazardous material releases.


Leave a comment

A Delaware Salt Marsh Finds its way to Restoration by Channeling Success

This is a post by Simeon Hahn, Regional Resource Coordinator for the Office of Response and Restoration’s Assessment and Restoration Division.

You can find the Indian River Power Plant situated along the shores of Indian River Bay in southern Delaware. This shallow body of water is protected from the Atlantic Ocean by a narrow spit of land to the east and is downriver of the town of Millsboro to the west.

In December 1999, the power plant’s owner at the time, Delmarva Power and Light, discovered a leak in an underground fuel line that over a decade had released approximately 500,000 gallons of oil.  The fuel oil had leaked into the soil and groundwater beneath the plant. When the edge of the underground oil plume reached Indian River Bay, oil seeping from the shoreline impacted the fringe of salt marsh growing along the beach, as well as the shallow-water area a short distance offshore.

In the cleanup that followed, about 1,000 tons of oily sediment were excavated from these marshes and replaced with a similar sand quarried from nearby. As part of the restoration, Delmarva replanted the area with hundreds of seedlings of smooth cordgrass (Spartina alterniflora) and other native plants common to the shores of Delaware’s inland bays. But further restoration was needed to compensate for the environmental services lost during the period when the marshes were oiled.

When I took on this case in 2007 as a NOAA coordinator  for the subsequent Natural Resource Damage Assessment, Slough’s Gut Marsh had already been selected as the site of an additional restoration project on Indian River Bay. Slough’s Gut Marsh, east of the James Farm Ecological Preserve near Ocean View, Del., is located on land owned by Sussex County and managed by the Delaware Center for the Inland Bays. The area was described to me as 24 acres of eroded and degraded salt marsh. After a lot of hard work, some innovative thinking, and five years of monitoring the results, I’m pleased to report that Slough’s Gut Marsh has been successfully restored.

What Does it Take to Fix a Marsh?

Previously, however, Slough’s Gut was on the decline, with many of the plants growing in its salty waters either stunted or dying off. The overriding goal, as with many marsh restoration projects, was to reverse this trend and increase the vegetative cover. But does just revegetating a marsh really restore it? On the other hand, some folks, including a few at NOAA, asked whether Slough’s Gut should even be considered for “restoration” since it was already functionally a marsh and … wasn’t the ecosystem working OK? The answer on both accounts was: We were about to find out.

Although the cause of the marsh plant die-offs was not entirely clear, we suspected it had to do with changes to the natural water drainage systems associated with:

  1. Historical mosquito ditching.
  2. Sea level rise.
  3. The gradual sinking of the land.
  4. All of the above.

These suspicions were based on monitoring conducted before Slough’s Gut was ever slated for restoration. It appeared that water would not drain sufficiently off the marsh during the tidal cycle and this was suppressing the vegetation, in a phenomenon known as “waterlogging.”

I became involved as we began scoping the restoration project design. At this point, I suggested that although revegetating the marsh was a reasonable goal, the primary emphasis should be on restoring a more natural network of tidal channels, replacing the old mosquito ditches. Around the 1940s, this salt marsh had been dug up and filled in, creating a series of parallel ditches connecting at a straightened main river channel (a now-questionable practice known as “mosquito ditching” because it aimed to reduce mosquito populations). The current configuration of channels that was leading to the loss of vegetation in Slough’s Gut was likely also impacting the fish, crabs, and other aquatic life that would normally use the marsh.

Looking to a similar project on Washington, DC’s Anacostia River, the design team decided on a technique for restoring tidal channels that uses observations from relatively unimpacted marshes. This example helped us answer questions such as:

  • How big should the channels be?
  • What would a natural channel network look like? (e.g., how often would the channels split, how much would they wind)?

Next, Delmarva Power and Light hired the contractor Cardno ENTRIX to develop a restoration design that used the existing channels as much as possible but restored the channel network by creating new channels while plugging and filling others. The Delaware Department of Natural Resources and Environmental Control (DNREC), which has extensive experience working in wetlands, executed the design. Then, we watched and waited.

The End Game

The number of birds observed at Slough's Gut Marsh has doubled since 2008. Here, a heron perches at the site.

The number of birds observed at Slough’s Gut Marsh has doubled since 2008. Here, a heron perches at the site. (Cardno ENTRIX)

Cardno ENTRIX monitored the renovated marsh for five years and collected data on its recovery. This past summer, the natural resource agencies involved (NOAA, the Delaware DNREC, and the U.S. Fish and Wildlife Service) together with Delmarva Power and Light, Cardno ENTRIX, and the Center for Inland Bays (the project hosts) visited Slough’s Gut Marsh to view and discuss its progress.

Based on the past five years of data, the marsh is on a path toward successful restoration. There has been a 50 percent increase in the density of fish, shrimp, and crabs living in Slough’s Gut, compared with levels before we restored the natural tidal channels. With this extra food, the number of birds observed there has doubled since 2008.

Additional environmental sampling showed localized drainage improvements, indicating that the new channel network is stable yet adaptable, as it should be in natural marshes. This feature is particularly beneficial when confronted with issues like sea level rise and hurricanes. Protecting and restoring tidal wetlands is an important effort in adapting to climate change in coastal areas.

This project demonstrates that ecological impacts in tidal marshes from historical ditching and diking can be restored by reconstructing a more natural tidal channel network. But don’t take my word for it. Next time you’re in the area, go see the success at Slough’s Gut yourself and leave time to visit the Center for the Inland Bays to learn more about other great environmental efforts going on in Delaware’s inland bays. The center is easily accessible and the view is tremendous.

The natural resource trustees celebrate the restoration of Slough's Gut Marsh in August 2013. Simeon Hahn is at the far right.

The natural resource trustees celebrate the restoration of Slough’s Gut Marsh in August 2013. Simeon Hahn is at the far right. (Cardno ENTRIX)

Simeon Hahn is an Office of Response and Restoration Regional Resource Coordinator in the Mid-Atlantic Region for the NOAA Damage Assessment, Remediation, and Restoration Program. He is located in EPA Region 3 in Philadelphia, Pa., and works on Superfund and state remedial projects and Natural Resource Damage Assessment cases. He has been an environmental scientist with expertise in ecological risk assessment, site remediation, and habitat restoration at NOAA for 15 years and 10 years before that with the Department of Defense.


5 Comments

In New Jersey, Celebrating a Revived Marsh and the Man who Made it Possible

This is a post by the NOAA Restoration Center’s Carl Alderson.

Ernie Oros speaking next to Woodbridge marsh.

Former State Assemblyman and champion of open space, Ernie Oros at the Woodbridge marsh dedication ceremony on Oct 16, 2007. (New York New Jersey Baykeeper/Greg Remaud)

Ernie Oros, former New Jersey State Assemblyman and octogenarian, stood next to me on the bank of a newly created tributary to the Woodbridge River and looked out across an expanse of restored tidal marsh. It was May 2008 and the marsh that he had long championed was now lush and green and teeming with fish. This inspiring sight before us was the result of a marsh restoration project undertaken by NOAA, the Army Corps of Engineers, New Jersey Department of Environmental Protection, and the Port Authority of New York and New Jersey.

Years ago a tall berm was raised between the Woodbridge River and this marshland, effectively walling it off from the reach of the tides that replenished it. Reeds that grow in damaged marshes choked off the tides even further.

He gave a pause, drew a breath and was on to the next subject before I had finished marveling at the sea of grass standing before us. “When can you get the observation walkway back up?” Ernie asked me. “Soon,” I replied, “we have a plan.” “Good,” he said, “I’m not getting any younger.”

That’s how the conversation went until August 2012 when Ernie passed away at the age of 88. The construction of the tidal marsh itself—with all the complexities of hydrology, chemistry, biology, logistical twists and turns, negotiations, permits, and contract discussions—seemed to go up in a snap. In two years it went from design contract to dedication ceremony. Yet, the observation boardwalks—there were now two—seemed to lag behind in a mire of contract disputes, tight budgets, two hurricanes, and extension after extension of funding agreements.

A Vision to Restore

I never wondered why Ernie was so anxious to move forward; he was after all in his 80s and by his own account in failing health. In his knock-around clothes, he looked like an old clam digger, but in his best suit, like the one he wore the day of the marsh dedication ceremony, he still cut the figure of the State Assemblyman he once was. Ernie had a vision for this place, and he was now on a roll. He had long ago established Woodbridge River Watch, a community organization to advocate for open space in Woodbridge, N.J.; he had guided the town through major acquisition and conservation efforts; he gathered momentum for his butterfly garden; planned to landscape the perimeter with local historic artifacts; and now he could add the marsh restoration to his list of achievements.

Among all of his accomplishments, nothing could be more dramatic than having blown life into this dying marshland. It linked the past and the future to a community that blossomed at the cross roads of the American colonial experience in the 17th century, soared to the peak of industrialization beginning in the 18th and 19th centuries, then boomed and at last came to rest upon the suburbanization movement of the 20th century. For myself, I could live with the simple sweet note of this being an urban habitat: a rebirth for colonial wading birds, ribbed mussels, fiddler crabs, and young juvenile bluefish called “snappers.” But for Ernie, the marsh was the opening hymn to a chorus of American history.

It took me a long time to realize what Ernie was up to. The marsh wasn’t just a host for the history garden; it itself was an artifact. The marsh represented every century that came before the first European settlers arrived. Better than any artifact, the marsh was living history as far as Ernie was concerned.

An interpretative sign displaying the flora and fauna found in Woodbridge Marsh.

An interpretative sign displaying the flora and fauna found in Woodbridge Marsh. (Illustrations: Jorge Cotto. Design: Ann Folli)

The observation boardwalks were the last piece of the plan. Both Ernie and I viewed the future boardwalks and their brightly designed story panels as a means of drawing in the citizens of Woodbridge. Boardwalks send a signal of welcome where a marsh alone often does not. The signs would interpret for them the plants, the animals, the natural processes unfolding in the marsh around them.

That is why Ernie was so anxious to see this vision through to completion. Despite the town’s position on the waterfront of three major bodies of water—the Raritan River, Raritan Bay, and Arthur Kill (a tidal straight separating the township from New York City)—very little of it was accessible to the public. Ernie hoped to change that by inviting people into a renewed Woodbridge Marsh.

A Day to Remember

Greg Remaud is the Deputy Director for the New York/New Jersey Baykeeper. The Baykeeper, a long-time partner of NOAA and advocate for open space in New York Harbor, is a non-profit organization committed to the conservation and restoration of the Hudson-Raritan Estuary. For Remaud, it had become increasingly apparent that the post-industrial age presented opportunities to create New Jersey’s waterfront in a new image.

Greg had met up with Ernie Oros years before. With the help of many others, this pair championed a new way forward for the Woodbridge River. Eventually, they were able to draw the attention of key agencies and help these dreams take the shape of Spartina grasses, High Tide bush, and killifish.

Then, earlier this year, I learned of the Baykeeper’s plan to honor Ernie’s memory with a day-long celebration.

One of the sons and great-grandsons of Ernie Oros canoeing on the banks of the Woodbridge River on Ernie Oros Celebration Day, September 28, 2013.

Ernie’s son Richard Oros and Michael Kohler, Ernie’s great-grandson, canoeing on the banks of the Woodbridge River on Ernie Oros Celebration Day, September 28, 2013. (Carl Alderson/all rights reserved)

On the astonishingly beautiful Saturday morning of September 28, 2013, the NOAA Restoration Center was on hand to be part of a very special event to honor Ernie’s life. To honor his legacy, the New York/New Jersey Baykeeper held a family-friendly event right next to what I consider Ernie’s greatest environmental achievement: the 67-acre Woodbridge River Wetland Restoration Project.

In a day that featured music, games, picnics, and face painting, the most popular event was the free kayak tours with the very capable staff of the Baykeeper, who led citizens through a seeming maze of restored marshes and tidal creeks. Several of Ernie’s family members were present. His sons, granddaughters, and great-grandkids jumped into canoes and kayaks to venture a ride through Ernie’s great achievement.

A Role for NOAA

NOAA’s involvement with the Woodbridge River Wetland Restoration Project began to take shape sometime in the late 1990s. We provided funds from natural resource damage settlements for two local oil spills to conduct feasibility studies, design, and permitting in 2000. Under a partnership of federal and state agencies, the project was designed and constructed between 2006 and 2007. NOAA and New Jersey Department of Environmental Protection provided $2.3 million, combining it with funds from the Army Corps of Engineers Harbor Deepening Program to make the full project come together for the Woodbridge River.

The project removed berms and obstructions that had sealed the former wetland from the Woodbridge River for decades and reunited two large tracts of land with the tides via created tidal creeks and planted marsh grasses. Today, the site is once again the home of wading birds, waterfowl, fiddler crabs, ribbed mussels, and seemingly hundreds of thousands of killifish. Ernie had tirelessly dedicated much of his adult life to campaign for the acquisition, protection, and restoration of his beloved Woodbridge River wetlands and his achievements will live on in their vibrant waters.

Carl Alderson.

Carl Alderson (left, NOAA) and Greg Remaud (right, NY/NJ Baykeeper) on the banks of the Woodbridge River on Ernie Oros Celebration Day, Sept. 28, 2013. Credit: Susan Alderson.

Carl Alderson is a Marine Resource Specialist with the NOAA Restoration Center, located at the JJ Howard Marine Science Lab in Highlands, N.J. Carl provides oversight of coastal habitat restoration projects and marine debris programs through NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) and Community-based Restoration Grants Program (CRP) in the mid-Atlantic region. He is a graduate of Rutgers University and is a Licensed Landscape Architect. Before joining NOAA, Carl worked for the City of New York and led a decade long effort to restore tidal wetlands, marine bird, and fish habitat as compensation for natural resources damages resulting from oil spills in New York Harbor. Carl is recognized as a national leader in restoration of coastal wetlands and bay habitats.


2 Comments

Celebrate Where Rivers Meet the Sea during National Estuaries Week

This is a post by Lou Cafiero of NOAA’s Office of Ocean and Coastal Resource Management.

A resting kayak at the Narragansett Bay National Estuarine Research Reserve in Rhode Island.

A resting kayak at the Narragansett Bay National Estuarine Research Reserve in Rhode Island. Kayaking is just one of the many recreation opportunities available at our 28 National Estuarine Research Reserves. (Narragansett Bay National Estuarine Research Reserve)

National Estuaries Day rolls in like the tide on the last Saturday of September each year. Established in 1988, this annual event inspires people to learn about and protect the unique environments formed where rivers and other freshwater flow into the ocean, creating bays, lagoons, sounds, or sloughs.

This year, the 25th anniversary of National Estuaries Day will be celebrated around the country on September 28, 2013, but for the first time we are taking an entire week to celebrate, from September 23-29. Outdoor lovers can learn and have fun at each of the 28 National Estuarine Research Reserves throughout the country. Managed by the National Oceanic and Atmospheric Administration (NOAA) in partnership with coastal states and territories, these special reserves were set aside for long-term research and education activities in estuaries.

However, they also offer abundant recreational opportunities, such as swimming, boating, fishing, wildlife viewing, and bird watching. In some reserves you can spot sea otters or manatees swimming with their young, or great blue herons and ospreys soaring in the skies above.

Celebrate at a National Estuarine Research Reserve

First, locate the estuarine research reserve nearest you. You’ll find contact information and directions to all 28 reserves. There are numerous nation-wide activities in honor of National Estuaries Day and Week, such as:

  • Photography contests in Florida.
  • Canoe trips in Washington.
  • Estuary cleanups in North Carolina.
  • Exhibits at state capitals.
  • Guided estuary tours in Texas.
  • Festivals in California.

Find even more events, including one near you, on this National Estuaries Week map of events.

How Estuaries Affect You

Aerial view of estuary.

A total of 1.3 million acres of coastal wetland areas are managed and conserved through NOAA’s National Estuarine Research Reserves. (NOAA)

Estuaries are incredibly diverse and productive ecosystems. Learn more and then help spread the word about why estuaries matter. For example, estuaries:

  • Are vital temporary homes for migratory species, such as mallards and striped bass.
  • Provide critical nesting and feeding habitat for a variety of aquatic plants and animals, including shrimp, oysters, and other commercial seafood.
  • Help prevent coastal erosion.
  • Filter harmful pollutants washing off the land.
  • Reduce flooding during storms.
  • Are important recreational and tourist destinations.
  • Are crucial to our future and the health of the ocean.

How We Affect Estuaries

Estuaries need everyone’s help and hard work to keep them clean and safe. There are many things you can do to help protect and conserve estuaries. Check out these 10 ways to protect estuaries and then explore even more ways to protect estuaries, from taking easy steps around your house to outings at the beach and onto your boat. An example of one important way to keep estuaries clean is to report oil spills or fuel leaks by calling the U.S. Coast Guard National Response Center at 1-800-424-8802.

But sometimes oil spills can be much bigger than one person and have serious impacts for estuaries, commerce, and people. For example, in June of 1989, the Greek tanker World Prodigy hit ground in Rhode Island’s Narragansett Bay, releasing approximately 290,000 gallons of home heating oil into New England’s largest estuary. Not only did the oil affect vast numbers of lobsters, crabs, fish, and shellfish at various stages of life, but the spill also closed beaches and the bay to commercial and recreational clammers.

Through a legal settlement for the World Prodigy grounding’s environmental damages, NOAA secured $567,299 to restore these natural resources. NOAA’s Office of Response and Restoration, through the Damage Assessment, Remediation, and Restoration Program, partnered with the Narragansett Bay National Estuarine Research Reserve on one of the resulting restoration projects. In 1996 and 1997, the NOAA team and its partners transplanted eelgrass beds in Narragansett Bay to restore habitat for the species affected by the spill. More than 7,000 eelgrass plants were transplanted in 10 locations within Narragansett Bay. Dubbed “meadows of the sea,” eelgrass beds provide shelter, spawning grounds, and food for fish, clams, crabs, and other animals while helping keep coastal waters clean and clear.

Don’t Forget to Get Involved

Help celebrate National Estuaries Week this September! Get involved with estuaries by visiting the reserve nearest you. Check out the events scheduled at the reserves or at other estuary locations around the country. Volunteer or become a friend of the National Estuarine Research Reserves and participate in the many educational programs offered.

Louis Cafiero is the communications lead for NOAA’s Office of Ocean and Coastal Resource Management and works closely with the National Estuarine Research Reserves and other federal and nonprofit partners to coordinate outreach efforts to promote National Estuaries Day.


Leave a comment

Historic New England Town, Once Plagued by Tack Factory’s Toxic Pollution, Enjoys Revitalized Coastal Marshes

In spring of 2013, the transformation of the polluted Atlas Tack Superfund site into vibrant coastal habitat is hard to miss. Here, you can see the new freshwater marsh with the town of Fairhaven, Mass., in the background. (NOAA)

In spring of 2013, the transformation of the polluted Atlas Tack Superfund site into vibrant coastal habitat is hard to miss. Here, you can see the new freshwater marsh with the town of Fairhaven, Mass., in the background. (NOAA)

For much of the 20th century, the Atlas Tack Corporation was the main employer in the historic coastal town of Fairhaven, Mass., a place settled in the 1650s by Plymouth colonists. But the presence of this tack factory, shuttered in 1985, left more than a history of paychecks for the area’s residents. It also left saltwater marshes so stocked with cyanide and heavy metals that the U.S. Environmental Protection Agency (EPA) listed the location of the factory as a Superfund site in 1990 and slated it for three intensive rounds of cleanup.

A Brief History of Atlas Tack

Atlas Tack Corporation became one of the nation’s largest manufacturers of wire tacks, bolts, shoe eyelets, bottle caps, and other small hardware. January 17, 1955. (Spinner Publications/All rights reserved)

Atlas Tack Corporation became one of the nation’s largest manufacturers of wire tacks, bolts, shoe eyelets, bottle caps, and other small hardware. Unfortunately, these decades of production left a toxic legacy for Fairhaven’s coastal marshes. January 17, 1955. (Spinner Publications/All rights reserved)

Henry H. Rogers, Standard Oil multimillionaire and friend of famed American author Mark Twain, formed the Atlas Tack Corporation after consolidating several tack manufacturing companies in 1895. The Fairhaven company became one of the nation’s largest manufacturers of wire tacks, bolts, shoe eyelets, bottle caps, and other small hardware.

However, decades of acids, metals, and other chemical wastes oozing through the factory floor boards and being dumped in building drains, the nearby Boys Creek marsh, and an unlined lagoon left the property contaminated with hazardous substances. Found in the soils, waters, and surrounding marsh were volatile organic compounds, cyanide, heavy metals such as arsenic, pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (a toxic oil compound).

EPA led the Superfund cleanup (referred to as a “remedy”) of this hazardous waste site, and the Office of Response and Restoration, through NOAA’s Damage Assessment, Remediation, and Restoration Program, contributed scientific and technical guidance to the EPA during the cleanup and restoration of the site’s coastal marshes.

Determining the Remedy: Scalpel vs. Cleaver

Before restoration: A June 2007 view of the area north of the hurricane dike, following the removal of contaminated sediments. (NOAA)

Before restoration: A June 2007 view of the area north of the hurricane dike, following the removal of contaminated sediments. (NOAA)

The original cleanup goals would have required excavating the entire marsh—ripping out the whole thing, despite some areas still functioning as habitat for the area’s plants and animals. As a result, NOAA, EPA, and U.S. Army Corps of Engineers were reluctant to excavate the entire wetland. Instead, the agencies took a more targeted approach, beginning in 2001 and 2002.

First, they completed a bioavailability study to determine where natural resources were adversely exposed to contaminants from the old tack factory. This study determined which areas of the existing marsh could be preserved while removing the toxic sediment that posed a risk to human health and the environment.

The next part of the remedy was undertaken in three phases from 2006 to 2008. Phase one included demolishing several buildings, sheds, and the power plant and excavating 775 cubic yards of contaminated soil and sludge from 10 acres of the designated commercial area of the manufacturing site. Phase two excavated and disposed off-site 38,000 cubic yards of contaminated soil and debris.  With NOAA’s scientific and technical assistance—and later with help from the Army Corps—EPA, as part of phase three, excavated and later restored 5.4 acres of saltwater and freshwater marsh.

More Than a Remedy: Working Toward Revitalization

After restoration: A newly created northern salt marsh, shown in June 2013, at the site of the former Atlas Tack factory. Bare spots are filling in but a fully covered wetland landscape is likely still a few years away. (NOAA)

After restoration: A newly created northern salt marsh, shown in June 2013, at the site of the former Atlas Tack factory. Bare spots are filling in but a fully covered wetland landscape is likely still a few years away. (NOAA)

While planning to remove the contaminated wetland sediments, we recognized that the culvert running under the hurricane dike prevented the nearby Atlantic Ocean’s tide from replenishing the upstream native saltwater marsh. As a result, invasive reeds were taking over the marsh above the dike.

Reconstructing the culvert would have cost millions of dollars, so the agencies got creative. They designed a new strip of land that would divide the existing, poorly functioning saltwater marsh into a smaller, productive saltwater marsh that could be supported with the existing saltwater supply and a new freshwater wetland supported by rainfall and groundwater. The agencies also removed contaminated sediment from and then replanted a salt marsh south of the dike. Across all three marshes, more than 14,000 native marsh plants were planted, providing valuable habitat for birds and other animals.

By working together, NOAA, EPA, and Army Corps created an effective cleanup solution for the polluted factory site while enhancing the environment by returning this contaminated marsh to a functioning and sustainable habitat, a process known as ecological revitalization. Today, NOAA, along with the EPA, Army Corps, and Massachusetts Department of Environmental Protection, is helping observe and monitor the success of the restoration projects. A recent visit revealed that two of the marshes already are brimming with healthy plants and wildlife, while the salt marsh which had contaminants removed is showing considerable improvement.


Leave a comment

Over a Century after Texas Strikes Oil, Marsh Restoration Completed for an Old Refinery’s Pollution

This is a post by the Office of Response and Restoration’s Jessica White.

On January 10, 1910, the famous Lucas gusher, named after the persistent oil explorer who drilled the well, struck oil at Spindletop Hill in a geyser that launched more than 100 feet in the air for nine days. This kicked off the Texas oil boom and was the impetus for opening the nearby Gulf Oil Company refinery. (John Trost)

On January 10, 1910, the famous Lucas gusher, named after the persistent oil explorer who drilled the well, struck oil at Spindletop Hill in a geyser that launched more than 100 feet in the air for nine days. This kicked off the Texas oil boom and was the impetus for opening the nearby Gulf Oil Company refinery. (John Trost)

About five miles from the Texas-Louisiana border sits what was once the Gulf Oil Company’s refinery. It’s now owned by Valero, by way of Chevron. But this century-old refinery in Port Arthur, Texas, has been operating since a year after the famous discovery of oil at Spindletop in 1901, which came in the form of a more than 100-foot-high, nine-day-long oil gusher.

Spindletop is the salt dome oil field that sparked the oil boom in Texas, ushering in the exploration of oil in the region that has persisted to this day. It also paved the way for oil to become a significant energy source.

Oil Boom not Necessarily a Boon

With the oil boom came a number of hazardous substances to the former Gulf Oil refinery site and its surrounding areas. Historically, the refinery produced jet fuel, gasoline, petrochemicals, and a variety of other oil and chemical products. But this took a toll on the site’s soil, water, and aquatic habitats. Ecological risk assessment studies led by the state of Texas have revealed the presence of polycyclic aromatic hydrocarbons (PAHs, a toxic component of oil), lead, zinc, nickel, cadmium, copper, and more in the water and sediment on the site.

In 2004, NOAA, U.S. Fish and Wildlife Service, and the Texas natural resource trustees, working cooperatively with Chevron, determined that the public was owed ecological restoration for the contaminated surface water, soil, and sediments at the former Gulf Oil refinery [PDF]. Our assessment showed that we could accomplish this by constructing 83 acres of tidal wetland and 30 acres of coastal wet prairie and improving 1,332 acres of coastal wetlands via new water control structures in the Sabine Lake/Neches River basin.

A black-necked Stilt and Snowy Egrets in the restored wetland habitat. (Photo provided courtesy of Chevron.)

A black-necked Stilt and Snowy Egrets in the restored wetland habitat.
(Photo provided courtesy of Chevron.)

Based on this information, the natural resource trustees negotiated with Chevron (which assumed the legal responsibility of the former Gulf Oil site) a $4.4 million settlement of state and federal natural resource damage claims related to the site. This money would go toward implementing the environmental restoration.

The settlement included three projects meant to restore coastal habitat to compensate the public for natural resources lost or injured by historical contamination from the refinery. Two of the projects involved restoring a natural hydrology to coastal wetlands by installing water flow enhancement structures and berms. The third project aimed to create intertidal estuarine marsh and coastal wet prairie by using nearby dredge material.

These projects were a significant undertaking for Chevron and their contractors. They involved several different restoration techniques, some of which had to be modified in the middle of construction to adapt to changes in the field.

Clumps of planted marsh grass in restored estuarine marsh, looking towards Bridge City. February 1, 2013 (NOAA/ National Marine Fisheries Service/Jamie Schubert)

Clumps of planted marsh grass in restored estuarine marsh, looking towards Bridge City. February 1, 2013 (NOAA/National Marine Fisheries Service/Jamie Schubert)

Building Marsh out of Mud Pancakes

In 2002, Chevron set up a pilot project to determine the feasibility of constructing marsh habitat by placing local dredge material into open-water habitat. The resulting constructed marsh terrace was able to maintain the necessary elevation for native marsh vegetation to take root.

Based on the successful pilot, the full-scale project for building marsh planned to mix dredge material with water, forming slurry that could then be pumped into open water to form mounds and terraces. Once they reached the suitable elevation, the mounds and terraces would later be planted with native marsh grasses. On the other hand, the coastal wet prairie would be constructed by removing dredged sediment to lower the elevation and make it suitable for supporting vegetation found in that habitat type.

Established estuarine marsh in the Old River South marsh complex. Note the elevated mounds of mud beneath the marsh grass. (NOAA/ National Marine Fisheries Service/Jamie Schubert)

Established estuarine marsh in the Old River South marsh complex. Note the elevated mounds of mud beneath the marsh grass. (NOAA/National Marine Fisheries Service/Jamie Schubert)

Full-scale construction for the projects kicked off in 2007. This timeline was pushed back a few years from the pilot project because in 2005 Hurricanes Katrina and Rita increased demand for the heavy equipment used in the marsh environment and also damaged habitat and vegetation at the project site.

Another challenge came after Chevron pumped the dredged sediments into the open water to create marsh mounds. Unlike during the pilot project, when the pumped-in sediment stacked well, the sediment used in the marsh construction spread out and formed pancakes instead of the desired mounds. To prevent the sediment from spreading, the restoration team tried changing the pump’s spout, but spraying the dredge slurry into mounds was still a challenge. The mounds became mudflats.

Changing the construction technique again, they next pumped in dredged sediments and then excavated mounds and terraces. This technique had greater success, but in the end, it was still necessary to pump in additional sediment to some areas to achieve the necessary elevations. Because the team was using so much more dredge material than originally planned, they had to find an alternative sediment source from a nearby canal. If they continued taking sediment from the original source, they would have risked lowering the elevation of the area, which was adjacent to the coastal wet prairie and could affect its hydrology.

View of Rainbow Bridge from restored estuarine marsh. (NOAA/National Marine Fisheries Service/Jamie Schubert)

View of Rainbow Bridge from restored estuarine marsh. (NOAA/National Marine Fisheries Service/Jamie Schubert)

Despite a number of setbacks, the restoration projects were finished in 2009 and after a monitoring period, the trustees certified them as successfully completed in February of 2013. These projects will improve the fish and shellfish abundance in this part of southeast Texas, provide habitat for wildlife and fish, increase recreational opportunities for bird watching and fishing, and improve the habitat for waterfowl (a benefit for hunters).

The area is also highly visible for anyone driving south through the Beaumont-Port Arthur area. Just look out your window as you cross the Neches River and you’ll see the marsh mounds, coastal wet prairie, and maybe even a few Snowy Egrets on display.

Jessica White.

Jessica White.

Jessica White is a Regional Resource Coordinator with the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. She has been working with NOAA in the Gulf since 2003 and recently relocated to the Gulf of Mexico Disaster Response Center. Jessica has assessed and restored Superfund sites in Texas and Louisiana and has supported oil spill and marine debris cleanup. She has a B.S. in Biology from Texas Tech University and a M.S. in Environmental Science from the University of North Texas.

Follow

Get every new post delivered to your Inbox.

Join 433 other followers