NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

With NOAA as a Model, India Maps Coastal Sensitivity to Oil Spills

This is a post by Vicki Loe and Jill Petersen of NOAA’s Office of Response and Restoration.

Boy running on beach.

Scientists in India have used NOAA’s Environmental Sensitivity Index maps as a model for preparing for oil spills on the west coast of India. (Credit: Samuel Kimlicka/Creative Commons Attribution 2.0 Generic License)

They say that imitation is the sincerest form of flattery, which is why we were thrilled to hear about recent efforts in India to mirror one of NOAA’s key oil spill planning tools, Environmental Sensitivity Index maps. A recent Times of India article alerted us to a pilot study led by scientists at the National Institute of Oceanography in India, which used our Environmental Sensitivity Index (ESI) shoreline classifications to map seven talukas, or coastal administrative divisions in India. Amid the estuaries mapped along India’s west coast, one of the dominant shoreline types is mangroves, which are a preferred habitat for many migratory birds as well as other species sensitive to oil.

Traditional ESI data categorize both the marine and coastal environments as well as their wildlife based on sensitivity to spilled oil. There are three main components: shoreline habitats (as was mapped in the Indian project), sensitive animals and plants, and human-use resources. The shoreline and intertidal zones are ranked based on their vulnerability to oil, which is determined by:

  • Shoreline type (such as fine-grained sandy beach or tidal flats).
  • Exposure to wave and tidal energy (protected vs. exposed to waves).
  • Biological productivity and sensitivity (How many plants and animals live there? Which ones?).
  • Ease of cleanup after a spill (For example, are there roads to access the area?).

The biology data available in ESI maps focus on threatened and endangered species, areas of high concentration, and areas where sensitive life stages (such as when nesting) may occur. Human use resources mapped include managed areas (parks, refuges, critical habitats, etc.) and resources that may be impacted by oiling or clean-up, such as beaches, archaeological sites, or marinas.

Many countries have adapted the ESI data standards developed and published by NOAA. India developed their ESI product independently, based on these standards. In other cases, researchers from around the world have come across ESI products and contacted NOAA for advice in developing their own ESI maps and data. In the recent past, Jill Petersen, the NOAA ESI Program Manager, has worked with scientists who have visited from Spain, Portugal, and Italy.

By publishing our data standards, we share information which enables states and countries to develop ESI maps and data independently while adhering to formats that have evolved and stood the test of time over many years. In addition to mapping the entire U.S. coast and territories, NOAA has conducted some of our own international mapping of ESIs. In the wake of Hurricane Mitch in 1998, we mapped the coastal natural resources in the affected areas of Nicaragua, Honduras, and Ecuador.

Currently, we are developing new ESI products for the north and mid-Atlantic coasts of the United States, many areas of which were altered by Hurricane Sandy in 2012. The new maps will provide a comprehensive and up-to-date picture of vulnerable shorelines, wildlife habitats, and key resources humans use. Having this information readily available will enable responders and planners to quickly make informed decisions in the event of a future oil spill or natural disaster.

For further information on NOAA’s ESI shoreline classification, see our past blog posts: Mapping How Sensitive the Coasts Are to Oil Spills and After Sandy, Adapting NOAA’s Tools for a Changing Shoreline.


Leave a comment

April Showers Bring … Marine Debris to Pacific Northwest Beaches?

This is a post by Amy MacFadyen, oceanographer and modeler in the Office of Response and Restoration’s Emergency Response Division.

Over the last few weeks, emergency managers in coastal Washington and Oregon have noted an increase in the marine debris arriving on our beaches. Of particular note, numerous skiffs potentially originating from the Japan tsunami in March 2011 have washed up. Four of these boats arrived in Washington over the Memorial Day weekend alone.

This seasonal arrival of marine debris—ranging from small boats and fishing floats to household cleaner bottles and sports balls—on West Coast shores seems to be lasting longer into the spring than last year. As a result, coastal managers dealing with the large volume of debris on their beaches are wondering if the end is in sight.

As an oceanographer at NOAA, I have been trying to answer this question by examining how patterns of wind and currents in the North Pacific Ocean change with the seasons and what that means for marine debris showing up on Pacific Northwest beaches.

What Does the Weather Have to Do with It?

Beachcombers know the best time to find treasure on the Pacific Northwest coast is often after winter storms. Winter in this region is characterized by frequent rainfall (hence, Seattle’s rainy reputation) and winds blowing up the coast from the south or southwest. These winds push water onshore and cause what oceanographers call “downwelling”—a time of lower growth and reproduction for marine life because offshore ocean waters with fewer nutrients are brought towards the coast. These conditions are also good for bringing marine debris from out in the ocean onto the beach, as was the case for this giant Japanese dock that came ashore in December 2012.

These winter storms are associated with the weather phenomenon known as the “Aleutian Low,” a low pressure system of air rotating counter-clockwise, which is usually located near Alaska’s Aleutian Islands. In winter, the Aleutian Low intensifies and moves southward from Alaska, bringing wind and rain to the Pacific Northwest. During late spring, the Aleutian Low retreats to the northwest and becomes less intense. Around the same time, a high pressure system located off California known as the “North Pacific High” advances north up the West Coast, generating drier summer weather and winds from the northwest.

Graphic showing the typical summer and winter locations of pressure systems in the North Pacific Ocean.

The typical location of the pressure systems in the North Pacific Ocean in winter and summer. “AL” refers to the low-pressure “Aleutian Low” and “NPH” refers to the high-pressure “North Pacific High” system. Used with permission of Jennifer Galloway, Marine Micropaleontology (2010). *See full credit below.

This summer change to winds coming from the northwest also brings a transition from “downwelling” to “upwelling” conditions in the ocean. Upwelling occurs when surface water near the shore is moved offshore and replaced by nutrient-rich water moving to the surface from the ocean depths, which fuels an increase in growth and reproduction of marine life.

The switch from a winter downwelling state to a summer upwelling state is known as the “spring transition” and can occur anytime between March and June. Oceanographers and fisheries managers are often particularly interested in the timing of this spring transition because, in general, the earlier the transition occurs, the greater the ecosystem productivity will be that year—see what this means for Pacific Northwest salmon. As we have seen this spring, the timing may also affect the volume of marine debris reaching Pacific Northwest beaches.

Why Is More Marine Debris Washing up This Year?

NOAA has been involved in modeling the movement of marine debris generated by the March 2011 Japan tsunami for several years. We began this modeling to answer questions about when the tsunami debris would first reach the West Coast of the United States and which regions might be impacted. The various types of debris are modeled as “particles” originating in the coastal waters of Japan, which are moved under the influence of winds and ocean currents. For more details on the modeling, visit the NOAA Marine Debris website.

The estimated arrival of modeled "particles" (representing Japanese tsunami marine debris) on the West Coast of the United States between May 2011 and May 2014.

The estimated arrival of modeled “particles” (representing Japanese tsunami marine debris) on Washington and Oregon shores between May 2011 and May 2014. (NOAA)

The figure here shows the percentage of particles representing Japan tsunami debris reaching the shores of Washington and Oregon over the last two years. The first of the model’s particles reached this region’s shores in late fall and early winter of 2011–2012. This is consistent with the first observations of tsunami debris reaching the coast, which were primarily light, buoyant objects such as large plastic floats, which “feel” the winds more than objects that float lower in the water, and hence move faster. The largest increases in model particles reaching the Pacific Northwest occur in late winter and spring (the big jumps in vertical height on the graph). After the spring transition and the switch to predominantly northwesterly winds and upwelling conditions, very few particles come ashore (where the graph flattens off).

Interestingly, the model shows many fewer particles came ashore in the spring of 2013 than in the other two years. This may be related to the timing of the spring transition. According to researchers at Oregon State University, the transition to summer’s upwelling conditions occurred approximately one month earlier in 2013 (early April). Their timing of the spring transition for the past three years, estimated using a time series of wind measured offshore of Newport, Oregon, is shown by the black vertical lines in the figure.

The good news for coastal managers—and those of us who enjoy clean beaches—is that according to this indicator, we are finally transitioning from one of the soggiest springs on record into the upwelling season. This should soon bring a drop in the volume of marine debris on our beaches, hopefully along with some sunny skies to get out there and enjoy our beautiful Pacific Northwest coast.

*Pressure system graphic originally found in: Favorite, F.A., et al., 1976. Oceanography of the subarctic Pacific region, 1960–1971. International North Pacific Fisheries Commission Bulletin 33, 1–187. Referenced in and with permission of: Galloway, J.M., et al., 2010. A high-resolution marine palynological record from the central mainland coast of British Columbia, Canada: Evidence for a mid-late Holocene dry climate interval. Marine Micropaleontology 75, 62–78.

Amy MacFadyenAmy MacFadyen is a physical oceanographer at the Emergency Response Division of the Office of Response and Restoration (NOAA). The Emergency Response Division provides scientific support for oil and chemical spill response — a key part of which is trajectory forecasting to predict the movement of spills. During the Deepwater Horizon/BP oil spill in the Gulf of Mexico, Amy helped provide daily trajectories to the incident command. Before moving to NOAA, Amy was at the University of Washington, first as a graduate student then as a postdoctoral researcher. Her research examined transport of harmful algal blooms from offshore initiation sites to the Washington coast.


Leave a comment

National Research Council Releases NOAA-Sponsored Report on Arctic Oil Spills

Healy escorts the tanker Renda through the icy Bering Sea.

The Coast Guard Cutter Healy broke ice for the Russian-flagged tanker Renda on their way to Nome, Alaska, in January of 2012 to deliver more than 1.3 million gallons of petroleum products to the city of Nome. (U.S. Coast Guard)

Responding to a potential oil spill in the U.S. Arctic presents unique logistical, environmental, and cultural challenges unparalleled in any other U.S. water body. In our effort to seek solutions to these challenges and enhance our Arctic preparedness and response capabilities, NOAA co-sponsored a report, Responding to Oil Spills in the U.S. Arctic Marine Environment, directed and released by the National Research Council today.

Several recommendations in the report are of interest to NOAA’s Office of Response and Restoration (OR&R), including the need for:

  • Up-to-date high-resolution nautical charts and shoreline maps.
  • A real-time Arctic ocean-ice meteorological forecasting system.
  • A comprehensive, collaborative, long-term Arctic oil spill research program.
  • Regularly scheduled oil spill exercises to test and evaluate the flexible and scalable organizational structures needed for a highly reliable Arctic oil spill response.
  • A decision process such as the Net Environmental Benefit Analysis for selecting appropriate response options.

In addition, the report mentions NOAA’s ongoing Arctic efforts including our Arctic Environmental Response Mapping Application (ERMA), our oil spill trajectory modeling, and our innovative data sharing efforts. Find out more about OR&R’s efforts related to the Arctic region at response.restoration.noaa.gov/arctic.

Download the full National Research Council report.

This report dovetails with NOAA’s 2014 Arctic Action Plan, released on April 21, which provides an integrated overview of NOAA’s diverse Arctic programs and how these missions, products, and services support the goals set forth in the President’s National Strategy for the Arctic Region [PDF].

In addition, the Government Accountability Office (GAO) released a report [PDF] in March of 2014, which examined U.S. actions related to developing and investing in Arctic maritime infrastructure. The report outlines key issues related to commercial activity in the U.S. Arctic over the next decade.

Get a snapshot of the National Research Council report in this four minute video, featuring some of our office’s scientific models and mapping tools:


Leave a comment

How Do You Solve a Problem Like Abandoned Ships?

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division.

Two rusted ships partially sunk in water and surrounded by containment boom.

The old fishing vessel Helena Star has been allowed to become derelict, leaking oil and pulling down its neighboring vessel, the Golden West. (NOAA)

A rusted green hull, punched full of holes and tilted on its side, sits forlornly in the Hylebos Waterway of Tacoma, Washington. The dilapidated boat’s name, Helena Star, is partially obscured because the vessel is half sunk. The boat it is chained to, the equally rusted ship Golden West, is being drawn down into the waters with it. Bright yellow boom and a light sheen of oil surround the vessels. Meanwhile, the owners are nowhere in sight.

This is just one example of the nationwide problem of derelict vessels. These neglected ships often pose significant threats to fish, wildlife, and nearby habitat, in addition to becoming eyesores and hazards to navigation. Derelict vessels are a challenge to deal with properly because of ownership accountability issues, potential chemical and oil contamination, and the high cost of salvage and disposal. Only limited funds are available to deal with these types of vessels before they start sinking. In Washington’s Puget Sound alone, the NOAA Office of Response and Restoration’s Emergency Response Division has had several recent responses to derelict vessels that either sank or broke free of their moorings.

Many of these recent responses have come with colorful backstories, including a pair of retired Royal Canadian Navy vessels, a fishing boat that at one time housed the largest marijuana seizure by the U.S. Coast Guard (F/V Helena Star), the first American-designed and –built diesel tugboat (Tug Chickamauga), and the boat that carried author John Steinbeck and biologist Ed Ricketts on their famous trip through the Sea of Cortez (Western Flyer).

Unfortunately, all these vessels have met the end of their floating lives either through the deliberate action or negligence of their owners. Had the owners taken responsibility for maintaining them, the environmental impacts from leaked fuel, hazardous waste, and crushing impacts to the seabed could have been avoided, as well as the costly multi-agency response and removal operations that resulted.

heavy machinery is brought in to raise a sunken vessel from the sea floor.

In May 2012, the derelict fishing boat Deep Sea caught fire and sank near Washington’s Whidbey Island. The boat ended up leaking diesel fuel into waters near a Penn Cove Shellfish Company mussel farm, and the company took the precautionary measure of stopping the harvest. NOAA worked with them to sample mussels in the area for diesel contamination. Here, heavy machinery is brought in to raise the sunken vessel from the sea floor. (NOAA)

Yet there is hope that we can prevent these problems before they start. In Washington state there is momentum to combat the derelict vessel issue through measures to prevent boats from becoming derelict or environmental hazards, and by holding vessel owners accountable for what they own.

Washington State House bill 2457 is currently in the Washington State Legislature. Among other measures, the proposed bill:

  • “Establishes a fee on commercial moorage to fund the state’s derelict and abandoned vessel program.”
  • “Creates new penalties for failure to register a vessel.”

Additionally, Washington’s San Juan County is developing a new Derelict Vessel Prevention program, using a grant from the Puget Sound Partnership. San Juan County, a county composed of small rural Pacific Northwest islands, has a high number of derelict vessels [PDF]. This program is going to be used not only in San Juan County but throughout counties bordering Puget Sound.

On January 15, 2014, Washington’s Attorney General Bob Ferguson and Commissioner of Public Lands Peter Goldmark (who leads the Department of Natural Resources) announced the state was pursuing criminal charges against the owners of the Helena Star, which sank in Tacoma’s Hylebos Waterway, and the Tugboat Chickamauga, which sank in Eagle Harbor. Both vessels released oil and other pollutants when they sank.

It is an ongoing battle to hold accountable the owners of derelict and abandoned vessels and prevent them from causing problems in our nation’s waterways. Yet with cooperation, prevention, and increased accountability we can help manage the problem, and in the end reduce impacts to Washington’s cherished Puget Sound.

Editor’s note: Stay tuned for more information about how LTJG Drury is working with Washington’s Derelict Vessel Task Force to tackle this growing problem in Puget Sound. Update: Mapping the Problem After Owners Abandon Ship.

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


Leave a comment

45 Years after the Santa Barbara Oil Spill, Looking at a Historic Disaster Through Technology

Forty-five years ago, on January 28, 1969, bubbles of black oil and gas began rising up out of the blue waters near Santa Barbara, Calif. On that morning, Union Oil’s new drilling rig Platform “A” had experienced a well blowout, and while spill responders were rushing to the scene of what would become a monumental oil spill and catalyzing moment in the environmental movement, the tools and technology available for dealing with this spill were quite different than today.

The groundwork was still being laid for the digital, scientific mapping and data management tools we now employ without second thought. In 1969, many of the advances in this developing field were coming out of U.S. intelligence and military efforts during the Cold War, including a top-secret satellite reconnaissance project known as CORONA. A decade later NOAA’s first oil spill modeling software, the On-Scene Spill Model (OSSM) [PDF], was being written on the fly during the IXTOC I well blowout in the Gulf of Mexico in 1979. Geographic Information Systems (GIS) software didn’t begin to take root in university settings until the mid-1980s.

To show just how far this technology has come in the past 45 years, we’ve mapped the Santa Barbara oil spill in Southwest ERMA, NOAA’s online environmental response mapping tool for coastal California. In this GIS tool, you can see:

  • The very approximate extent of the oiling.
  • The location and photos of the drilling platform and affected resources (e.g., Santa Barbara Harbor).
  • The areas where seabirds historically congregate. Seabirds, particularly gulls and grebes, were especially hard hit by this oil spill, with nearly 3,700 birds confirmed dead and many more likely unaccounted for.

Even though the well would be capped after 11 days, a series of undersea faults opened up as a result of the blowout, continuing to release oil and gas until December 1969. As much as 4.2 million gallons of crude oil eventually gushed from both the well and the resulting faults. Oil from Platform “A” was found as far north as Pismo Beach and as far south as Mexico.

Nowadays, we can map the precise location of a wide variety of data using a tool like ERMA, including photos from aerial surveys of oil slicks along the flight path in which they were collected. The closest responders could come to this in 1969 was this list of aerial photos of oil and a printed chart with handwritten notes on the location of drilling platforms in Santa Barbara Channel.

A list of historical overflight photos of the California coast and accompanying map of the oil platforms in the area of the Platform "A" well blowout in early 1969.

A list of historical overflight photos of the California coast and accompanying map of the oil platforms in the area of the Platform “A” well blowout in early 1969. (Courtesy of the University of California Santa Barbara Map and Image Library) Click to view larger.

Yet, this oil spill was notable for its technology use in one surprising way. It was the first time a CIA spy plane had ever been used for non-defense related aerial photography. While classified information at the time, the CIA and the U.S. Geological Survey were actually partnering to use a Cold War spy plane to take aerial photos of the Santa Barbara spill (they used a U-2 plane because they could get the images more quickly than from the passing CORONA spy satellite). But that information wasn’t declassified until the 1990s.

While one of the largest environmental disasters in U.S. waters, the legacy of the Santa Barbara oil spill is lasting and impressive and includes the creation of the National Environmental Policy Act, U.S. Environmental Protection Agency, and National Marine Sanctuaries system (which soon encompassed California’s nearby Channel Islands, which were affected by the Santa Barbara spill).

Another legacy is the pioneering work begun by long-time spill responder, Alan A. Allen, who started his career at the 1969 Santa Barbara oil spill. He became known as the scientist who disputed Union Oil’s initial spill volume estimates by employing methods still used today by NOAA. Author Robert Easton documents Allen’s efforts in the book, Black tide: the Santa Barbara oil spill and its consequences:

Others…were questioning Union’s estimates. At General Research Corporation, a Santa Barbara firm, a young scientist who flew over the slick daily, Alan A. Allen, had become convinced that Union’s estimates of the escaping oil were about ten times too low. Allen’s estimates of oil-film thickness were based largely on the appearance of the slick from the air. Oil that had the characteristic dark color of crude oil was, he felt confident from studying records of other slicks, on the order of one thousandth of an inch or greater in thickness. Thinner oil would take on a dull gray or brown appearance, becoming iridescent around one hundred thousandth of an inch.  Allen analyzed the slick in terms of thickness, area, and rate of growth. By comparing his data with previous slicks of known spillage, and considering the many factors that control the ultimate fate of oil on seawater, he estimated that leakage during the first days of the Santa Barbara spill could be conservatively estimated to be at least 5,000 barrels (210,000 gallons) per day.

And in a lesson that history repeats itself: Platform “A” leaked 1,130 gallons of crude oil into Santa Barbara Channel in 2008. Our office modeled the path of the oil slicks that resulted. Learn more about how NOAA responds to oil spills today.


Leave a comment

Let Maps Open up the World Around You on GIS Day

Atlantic ERMA view of a grounded tanker after Post Tropical Cyclone Sandy.

In our online GIS tool Atlantic ERMA, you can see NOAA National Geodetic Survey aerial photography showing the derelict tanker John B. Caddell grounded on Staten Island, N.Y., following Post Tropical Cyclone Sandy. Red markers show field photos such as the image seen in the pop-up window in Atlantic ERMA. (NOAA)

Happy GIS Day! Today, GIS events are being hosted around the globe to highlight and celebrate the transformational role of Geographic Information Systems, or GIS.

GIS is mapping software that can display multiple sets of location-based information onto a single map. Viewing information this way can help you visualize lots of data and identify trends and relationships, such as the potential health impacts of living near power plants and major highways, or how many pizza places are within 10 miles of your house.

Like offices and agencies around the world, we in NOAA’s Office of Response and Restoration use GIS in our everyday work. Take a look at a few of the ways we use GIS—and you can too—to reduce environmental threats from coastal pollution.

Mapping Environmental Sensitivity

One of our teams is developing Environmental Sensitivity Index (ESI) maps using GIS technology to integrate and share information about sensitive shoreline resources, such as birds, wildlife, fisheries, and public beaches. Historically used for oil and chemical spill response and planning, these maps have become effective tools in preparing for and responding to storms, hurricanes, and other coastal disasters.

ESI data are published in a variety of GIS formats, including a file geodatabase and map document, that simplify their use within the GIS program ArcMap. Users can query data for their region to see what species are present in January, where threatened and endangered species live, what shoreline types are present, etc. You can download ESI data and ESI tools from our website and use them yourself.

Mapping Resources during a Disaster

MARPLOT is the mapping component in CAMEO, our software suite of tools for chemical spill response, which we develop with the U.S. Environmental Protection Agency (EPA). It’s a free and easy-to-use GIS system that emergency responders and planners use to display information from other programs in the CAMEO suite. This could mean mapping estimates of high-risk areas for toxic chemical clouds (from ALOHA) or the locations of chemical production and storage facilities in relation to schools and hospitals (from CAMEOfm).

MARPLOT can also be used as a general mapping tool, which allows users to add objects, move around the map, and get population estimates. Some users have adapted MARPLOT, which operates without an Internet connection, for use during tornado response, search and rescue operations, and emergency planning. The development team is working on a major revision to MARPLOT, which will include access to global basemaps, enhanced web-based features, and additional data management capabilities.

Mapping Environmental Response

Web mapping for environmental response, such as oil spills, has come a long way in the past decade. NOAA is a leader in this digital mapping revolution with ERMA®, the Environmental Response Management Application, which we designed with the University of New Hampshire’s Coastal Response Research Center and the EPA. It’s an online mapping tool offering comprehensive access to environmental response information and is customized for many coastal areas of the U.S.

ERMA integrates both static and real-time data, such as ESI maps, ship locations, weather, and ocean currents, in a centralized map for use during a disaster such as an oil spill or hurricane. It provides environmental responders and decision-makers with up-to-date information for planning, response, assessment, and restoration activities. The application incorporates data into a convenient, web-based GIS mapping platform that can be accessed simultaneously by a variety of users via the Internet.

ERMA Deepwater Gulf Response is currently assisting with the ongoing response operations for the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Data related to this oil spill is displayed here and updated daily. In the northeast, Atlantic ERMA provided support to the Post Tropical Cyclone Sandy pollution response along the coast of New Jersey, New York, and Connecticut.

To the far north, Arctic ERMA has been used to integrate and display response-related information from oil spill technology demonstrations aboard an icebreaker in the remote Arctic Ocean and to display the data and high resolution imagery of the ShoreZone project, which seeks to map all 46,600 miles of Alaska’s coastal habitat and features. You can view all of the regional ERMA sites on our website.

Discover Your World

GIS DayYou can explore on the GIS Day website some of the amazing stories that GIS can help tell:


Leave a comment

Alaska ShoreZone: Mapping over 46,000 Miles of Coastal Habitat

This is a post by the Office of Response and Restoration’s Zach Winters-Staszak.

A survey of St. Lawrence Island, Alaska, from July 2013 reveals the island's dramatic coastal cliffs.

A survey of St. Lawrence Island, Alaska, from July 2013 reveals the island’s dramatic coastal cliffs. (ShoreZone.org)

I learned a few things while I was at a meeting in Anchorage, Alaska, last month. Most importantly (and perhaps a surprise to those from Texas), I learned everything is bigger in Alaska, namely its shoreline. Alaska’s shoreline measures over 46,600 miles (75,000 km), longer than the shorelines of all the lower 48 states combined.

Now imagine for a minute the work involved in flying helicopters low along that entire shoreline, collecting high-resolution imagery and detailed classifications of the coast’s geologic features and intertidal biological communities. No small endeavor, but that’s exactly what the Alaska ShoreZone Coastal Inventory and Mapping Project, a unique partnership between government agencies, NGOs, and private industry, has been doing each summer since 2001.

Since then, ShoreZone has surveyed Alaskan coasts at extreme low tide, collecting aerial imagery and environmental data for roughly 80% of Alaska’s coastal habitats and continues to move towards full coverage each year. Collecting the vast amounts of imagery and data is a great accomplishment in and of itself, but ShoreZone, with help from NOAA’s National Marine Fisheries Service, has done an equally incredible job at making their entire inventory accessible to the public.

Just think how this valuable and descriptive information could be used. Planning for an Alaskan kayak trip next summer? ShoreZone can help you prioritize which beaches will save your hull from unwanted scratches. Trying to identify areas of critical habitat for endangered fishes? ShoreZone can help you in your research. Indeed, ShoreZone has many applications. For the Office of Response and Restoration, ShoreZone is an invaluable tool that serves alongside NOAA’s Environmental Sensitivity Index (ESI) maps and data as a baseline for the coastal habitats of Alaska and is currently being used for environmental planning, preparedness, and Natural Resource Damage Assessment planning in Alaska.

One of the many ways to access ShoreZone imagery and data is through Arctic ERMA, NOAA’s online mapping tool for environmental response. There are several advantages to this. For example, the National Marine Fisheries Service used ShoreZone imagery and data to designate critical habitat areas for endangered rockfish in Washington’s Puget Sound, a process that could also be applied to Alaska if necessary. That information could quickly be integrated into ERMA and displayed on a map allowing you to view the data used to determine those locations as well.

Screenshot of Alaska through Arctic ERMA and showing ShoreZone data layers.

To find ShoreZone photos in ERMA, type “Alaska ShoreZone” in the find bar at the top, then click on the result to turn on the layer in the map. Next, to view ShoreZone photos in ERMA, first click on the Identify tool icon (i) and then click on a desired point in the map. A table will appear in a pop-up with the hyperlink to the desired photo. Or, click on this image to view ShoreZone data in Arctic ERMA. (NOAA)

As updates and additions to the imagery database become available they will also be available in Arctic ERMA. The Bureau of Safety and Environmental Enforcement (BSEE) has provided funding to complete the imagery processing and habitat mapping for the North Slope of Alaska. BSEE also provided funding to finish Arctic ERMA and to develop the internet-independent Stand-alone ERMA. The efforts are complementary and strategic given the increased activity in the Arctic.

To prepare for this increase in activity, the ShoreZone and ERMA teams are working to incorporate ShoreZone data into Stand-alone ERMA for use when Internet connectivity is unreliable. The beauty of the photos included here is deceptive. A majority of Alaska’s shoreline is rugged, unforgiving, and remote. Having access to high-resolution imagery along with environmental and response-focused data in the kind of Internet-independent package that ShoreZone and ERMA provide would be an indispensable tool during a hazardous incident like a ship collision, oil spill, or search and rescue mission. This is just one way NOAA and ShoreZone are working together to strengthen our commitment to the coastal environments and communities of Alaska.

Zach Winters-StaszakZach Winters-Staszak is a GIS Specialist with OR&R’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


Leave a comment

Sandy, One Year Later: Where Are We Now?

Boats and other debris were out of place in Brigantine, N.J., Oct. 30, 2012, after Sandy made landfall on the southern New Jersey coastline Oct. 29, 2012.

Boats and other debris were out of place in Brigantine, N.J., Oct. 30, 2012, after Sandy made landfall on the southern New Jersey coastline Oct. 29, 2012. (U.S. Coast Guard)

At the end of October 2012, Hurricane Sandy raced toward the East Coast. Although the hurricane became a post-tropical cyclone before making landfall, it still caused extensive damage. Its forceful winds and flooding swept waves of oil, hazardous chemicals, and debris into the waters along New Jersey, New York, and Connecticut.

Both before and after Sandy hit, NOAA’s Office of Response and Restoration (OR&R) was bracing for the repercussions of this massive storm. In the year since, we have been working with federal, state, and local agencies to reduce the environmental impacts, restore coastal habitats, and improve the tools needed to prepare for the next disaster.

Restoring Tidal Wetlands in New Jersey

Oil mixed with vegetation and organic debris in the tidal marshes affected by the Motiva refinery's diesel spill as a result of the storm.

Oil mixed with vegetation and organic debris in the tidal marshes affected by the Motiva refinery’s diesel spill as a result of the storm. (NOAA)

As water levels receded, the U.S. Coast Guard began receiving reports of pollution in the areas of coastal New Jersey and New York. Petroleum products, biodiesel, and other chemicals were leaking into the waters from pollution sources such as damaged coastal industries, ruptured petroleum storage tanks, and sunken and stranded vessels. The area of Arthur Kill, a waterway that borders New York and New Jersey, was hit particularly hard. One such spill occurred when a tank holding diesel broke open at the Motiva refinery in Sewaren, N.J., releasing an estimated 336,000 gallons of diesel into several creeks.

The week following Sandy, our Damage Assessment, Remediation, and Restoration Program (DARRP) staff ventured into storm-ravaged areas to gather data on impacts to coastal habitats and other natural resources, including those potentially affected by the Motiva oil spill. NOAA, along with representatives from the New Jersey Department of Environmental Protection and Motiva, surveyed affected sites both by land and by boat and coordinated with these groups to determine whether to pursue a natural resource damage assessment and implement environmental restoration.

Early in this process, the trustees, NOAA and New Jersey, and Motiva agreed to focus on restoration, rather than conducting new studies and debating legal issues. This meant using observations from the surveys, past damage assessments in the area, and previous scientific studies to determine the amount of restoration required to offset the resulting injuries to natural resources.  As a result, NOAA and New Jersey reached consensus on a cooperative settlement in less than 6 months with the Motiva refinery in Sewaren for the release of oil during the storm. This successful agreement will provide funds to restore and monitor recovery of tidal wetlands in the Arthur Kill watershed, which will begin before the end of 2013.

Identifying Remaining Debris Along the Coasts

Drums and other debris were washed away into the ocean and surrounding waters following Sandy and in some cases continue to be a threat to safety and the environment.

Drums and other debris were washed away into the ocean and surrounding waters following Sandy and in some cases continue to be a threat to safety and the environment. (U.S. Environmental Protection Agency)

Even when drums, tanks, and other debris swept into the waters after a storm are free of oil and chemicals, they can still pose a threat to navigation, commercial and recreational fishing grounds, and sensitive habitats. This was a considerable problem after Hurricane Katrina in 2005, and Sandy was no exception in 2012.

In the months following this storm, the NOAA Marine Debris Program coordinated debris response activities and initial assessments with agencies in impacted states. Using aerial, underwater, and shoreline surveys, today we continue working with federal and state agencies to identify the amount and location of remaining debris that Sandy littered up and down Mid-Atlantic coastal waters.

In addition, we are using a computer model we developed with NOAA’s Office of Coast Survey after Hurricane Katrina to predict probabilities of finding debris generated by Sandy in the nearshore waters of New Jersey, New York, and Connecticut. These and other analyses, along with support from the rest of the Marine Debris Program and OR&R’s Atlantic ERMA mapping tool, will inform how states prioritize cleanup efforts.

Due to the Disaster Relief Appropriations Act of 2013, the Marine Debris Program received $4.75 million for activities related to finding and clearing debris from Sandy.  Through the end of 2013 and into 2014, we will continue our work identifying priority items for removal and supporting limited removal efforts. The program is also using what we learned from Sandy to establish long-term debris recovery plans for future storms.

Adapting to a Changing Shoreline

In addition to damaging buildings, roller coasters, and vessels, Sandy’s strong winds and waves caused considerable change to shorelines on the East Coast. The areas most affected were metropolitan New York, northern Long Island, Connecticut, and New Jersey.

As a result, OR&R’s Emergency Response Division received funding through the Disaster Relief Appropriations Act of 2013 to update our Environmental Sensitivity Index (ESI) maps for northeast states. These updated maps will reflect the shoreline changes caused by the storm but will be developed with a broad range of potential disasters in mind.

Additionally, they will expand the coastal information offered to better inform planning and response efforts for the next disaster. Such information may include flood inundation and storm surge areas, environmental monitoring stations, tide stations, and offshore renewable energy sites. Long Island Sound is first on our list for updates, but the Hudson River, Chesapeake Bay, and affected shorelines from South Carolina north to Maine eventually will follow suit.

While it has already been a year since Sandy left its mark on the U.S., the work of recovery and rebuilding is not yet complete. You can read more about these efforts in support of healing our coasts and communities on NOAA’s Ocean Service website.


Leave a comment

Above, Under, and Through the Ice: Demonstrating Technologies for Oil Spill Response in the Arctic

This is the third in a series of posts about Arctic Shield 2013 by the Office of Response and Restoration’s Zach Winters-Staszak. Read his first post, “Arctic-bound” and his second post, “Breaking Ice.”

76° N, 158° W marks the spot. The wind chill has dropped the mercury below zero as the U.S. Coast Guard Cutter Healy, an icebreaker, sits idly, anchored by the sea ice that dominates the landscape. All eyes are fixed on the brilliant orange of the Coast Guard zodiac, the small boat’s color contrasted against the cobalt blue water off the icebreaker’s port side. A faint hum of a motor gets louder and louder overhead as the “Puma” comes into view. Then, just as the miniature, remote-controlled aircraft is positioned exactly over a nearby patch of open water, the operator kills the motor and the Puma splashes down safely.

The Puma operator  aboard the Coast Guard zodiak recovers the small unmanned aircraft after demonstrating its capabilities for detecting oil from the air. (NOAA)

The Puma operator aboard the U.S. Coast Guard zodiak recovers the small unmanned aircraft after demonstrating its capabilities for detecting oil from the air during Arctic Shield 2013. (NOAA)

During the exercise Arctic Shield 2013, the U.S. Coast Guard Research and Development Center (RDC) brought a group of scientists and specialists together to demonstrate technologies that potentially could be used for oil spill response in the Arctic Ocean’s severe conditions. This is my third and final post detailing my experiences and involvement in the mission aboard the Healy; you can read the previous posts, “Arctic-bound” and “Breaking Ice.”

Existing Technology, New Applications

The Arctic Ocean remains a difficult to access and often dangerous environment.

The Arctic Ocean remains a difficult to access and often dangerous environment. (NOAA)

Increased marine transportation and oil exploration in the Arctic increases the likelihood of, along with the responsibility to be prepared for, potential oil spills. Operating in an area as remote and ice-filled as the Arctic poses new logistical and tactical challenges for safe ship transit, search and rescue efforts, resource extraction, and oil spill response. For those of us working in oil spill response, this means developing new methods and technologies for surveying, assessing, and responding in these settings.

The RDC, coordinating efforts by the Unmanned Aircraft Systems (UAS) programs at the National Oceanic and Atmospheric Administration (NOAA) and the University of Alaska Fairbanks, demonstrated the Puma as one method to survey, identify, and monitor oil on and around the ice floes from above. The Puma is a battery-powered, aerial survey technology with military roots that is now being used for a variety of environmental applications.

The Puma’s advantages for oil spill response in the Arctic are many. With its capacity for high resolution and infrared imagery, the Puma could help identify and monitor oiled environments and wildlife during response efforts, while simultaneously creating a visual record of environmental injury that could be used during a Natural Resource Damage Assessment.

The NOAA Office of Response and Restoration’s Emergency Response Division has a long history of recording aerial imagery of oil spills by using trained observers aboard helicopters or airplanes to find and photograph oil on the water’s surface. Using a UAS like the Puma removes the risk to human safety, requires batteries and not fuel, and has been shown to have little-to-no influence on the behavior of wildlife. In fact, NOAA has already used Pumas to great effect during marine mammal and sea bird surveys.

This last point is especially important when you consider an animal like the Pacific walrus. With recent, dramatic summer losses in sea ice, Pacific walruses have been seen congregating en masse on the shoreline of Alaska, a behavior happening earlier and earlier in the year. Disturbance of these large groups of walruses, which could be caused by noisy surveying techniques, creates panic in the animals, causing a stampede that could end up trampling and killing young walruses.

Pumas Fly but Jaguars Swim

While the Pumas were busy scanning the ice and sea from the sky, scientists from Woods Hole Oceanographic Institute were fast at work deploying their “Jaguar” beneath the water. The Jaguar is an Autonomous Underwater Vehicle (AUV) designed to map the Arctic sea floor, but during Arctic Shield 2013, the science team instead used it to map the curves and channels on the underside of the sea ice.

For example, if an oil spill occurred near an ice floe, responders would need to know where oil could pool up or be funneled in the curves or channels beneath the sea ice. The Jaguar uses acoustic technology to map the differences in sea ice thickness or “draft” as it travels along its programmed path under the ice. A suite of oceanographic sensors are also installed that measure water temperature, conductivity, pressure, and salinity along the way. In addition, scientists can install an optical back-scatter sensor that can detect oil in the water column.

To top things off, the Jaguar’s footprint is relatively low. The entire system is easily shipped, only requires a three-person team to operate, and doesn’t need a large vessel like the Healy to be deployed. Having a highly functional, low-impact tool is a major advantage out on the Arctic Ocean.

A Mapping Tool Made for the Arctic

It was with remote environments like the Arctic in mind that the Office of Response and Restoration developed Stand-alone ERMA, an internet-independent version of our Arctic ERMA online mapping tool used in response efforts for oil spills, hazardous waste spills, and ship groundings. My role in Arctic Shield was to integrate and display the data collected by the technologies I just described into Stand-alone ERMA. ERMA integrates multiple data sources and displays them in a single interactive map. With the resulting data-rich map, I could demonstrate the advantage of establishing a common operational picture during an oil spill response scenario—all without an internet connection.

A view from Arctic ERMA, NOAA's online mapping tool for environmental disasters. You can see the path of the icebreaker Healy, the Puma's flight, and the photos and their location taken by the Puma.

A view from Arctic ERMA, NOAA’s online mapping tool for environmental disasters. You can see the path of the icebreaker Healy, the Puma’s flight, and the photos and their location taken by the Puma. (NOAA)

During Arctic Shield 2013, Stand-alone ERMA was integrated into the ship’s local network, and as new data were recorded and displayed, everyone on the ship, from the bridge to the science decks, could view the same results on their computer screens.

In a typical oil spill response, you can have decision makers from federal, state, and local governments; private industry; and a multitude of scientists and technicians all working together. Everyone needs access to the same information, especially when it is constantly changing, in order to make the most informed decisions. But if internet availability is sporadic or nonexistent (not unusual in the Alaskan Arctic), most common operational pictures are rendered inoperable. Stand-alone ERMA bridges that gap, while providing the same experience and tools found with the online version. Demonstrating the utility of Stand-alone ERMA aboard the Healy made the advantages of a flexible common operational picture very clear.

Mind the Gaps (and Bridge Them)

The purpose of these demonstrations during Arctic Shield 2013 was to identify technologies that could improve oil spill response capabilities in the Arctic environment. Not all of the technologies being demonstrated were recently developed or even developed specifically for oil spill response. The Coast Guard Research and Development Center, which organized the demonstration, has taken a critical look at the difficulties and challenges associated with operating in an icy ocean environment. As a result they have identified a wide variety of technologies—some of which we demonstrated on this trip—that could potentially improve response during an actual oil spill. Still, a great deal of work remains as we work to better understand Arctic ecosystems and overcome the challenges of stewardship in a new and uncertain period in our history.

The only trace of a polar bear were these tracks in the snow and ice as the Healy plowed past.

The only trace of a polar bear were these tracks in the snow and ice as the Healy plowed past. (NOAA)

Looking over the bow of the Healy as the ship fractured the ice beneath, I caught a brief glimpse of polar bear tracks in the snow. The animal itself was nowhere to be seen, but as I watched the tracks fade into the distance, I was reminded of why I was there. When you’re out on the ice, breathing in the frigid air, knowing that polar bears are out there hunting and raising cubs, you realize what is right in front of you is the only place like it in the world. Being a part of Arctic Shield 2013 was an incredibly rewarding and humbling experience, one that is helping me figure out what data we still need and develop the tools to strengthen our ability to respond to an oil spill.

Zach Winters-StaszakZach Winters-Staszak is a GIS Specialist with OR&R’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


Leave a comment

After Sandy, Adapting NOAA’s Tools for a Changing Shoreline

Editor’s Note: September is National Preparedness Month. It is a time to prepare yourself and those in your care for emergencies and disasters of all kinds. NOAA and our partners are making sure that we have the most up-to-date tools and resources for whenever the next disaster strikes. To learn more about how you can be prepared for all types of emergencies, visit www.ready.gov.

This is a post by the Office of Response and Restoration’s Vicki Loe and Jill Petersen.

While the beach season has come to an end for the East Coast, communities of the northeast continue to repair remaining damage from last fall’s Post Tropical Cyclone Sandy and prepare for future storms. As beachgoers arrived at the shore this past summer, they found a lot of repaired structures and beautiful beaches. But this was side-by-side with reconstruction projects, damaged buildings, and altered shorelines.

In addition to damaging manmade structures, Sandy’s strong winds and waves caused considerable change to shorelines, particularly in the metropolitan New York area, northern Long Island, Connecticut, and New Jersey.

Tools for Coastal Disasters

In the wake of Sandy, under the Disaster Relief Appropriations Act of 2013, funds were allocated to update the Office of Response and Restoration’s existing northeast Environmental Sensitivity Index (ESI) maps to reflect changes caused by the storm and to add information that would enhance the maps’ value when another disaster strikes. Historically used mostly for oil and chemical spills, these maps have also proved to be effective tools in preparing for and responding to storms and hurricanes.

ESI maps provide a concise summary of coastal resources that could be at risk in a disaster. Examples include biological resources (such as birds and shellfish beds), sensitive shorelines (such as marshes and tidal flats), and human-use resources (such as public beaches and parks). They are used by both disaster responders during a disaster and planners before a disaster.

Segment of an existing Environmental Sensitivity Index map of the New Jersey coast.

Segment of an existing Environmental Sensitivity Index map of the New Jersey coast. Used in conjunction with a key, this map provides valuable information to planners and responders on the wildlife, habitats, and geographical features of the area.

In the region affected by Sandy, maps will be updated from Maine to South Carolina. The ESI maps are produced on a state or regional basis. They typically extend offshore to include all state waters, and go inland far enough to include coastal biology and human use resources. In addition to the outer coastal regions, navigable rivers, bays, and estuaries are included. In the northeast, these include the Hudson River and Chesapeake Bay, which are among those maps being updated with the Sandy funding, as well as Delaware Bay, which was already in progress before the storm hit.

The first region to be updated will be Long Island Sound. NOAA’s Office of Response and Restoration is partnering with the Center for Coastal Monitoring and Assessment (CCMA) in NOAA’s National Centers for Coastal Ocean Science to develop the biological and human use information for this region. This partnership will take advantage of studies CCMA currently has underway, as well as contacts they have made with the biological experts in the area.

Keeping up with a Changing Shoreline

A large wildlife conservation area that is managed by Bass River State Forest at the north end of Brigantine Island, a popular beach destination located on the New Jersey coast. (NOAA)

You can see representative coastal habitat in a large wildlife conservation area managed by Bass River State Forest at the north end of Brigantine Island, a popular beach destination located on the New Jersey coast. (NOAA)

The coastal environment is constantly changing and ESI maps need to be updated periodically to reflect not just storm damage, but changes to resources caused by human use, erosion, and climate change. The new maps will be created with a broad range of potential disasters in mind. To support this goal, some additional data elements and layers are being considered for the ESI maps developed as part of our post-Sandy effort. These may include such things as flood inundation and storm surge areas, environmental monitoring stations, tide stations, and offshore renewable energy sites.

The end products will provide emergency planners and responders with a better tool for protecting the northeast and mid-Atlantic shoreline when the next coastal disaster occurs.

You can learn more about our Environmental Sensitivity Index maps in our blog post “Mapping How Sensitive the Coasts Are to Oil Spills,” and find more technical insights into our work with ESI maps and data on the NOAA ESI blog at noaaesi.wordpress.com.

Jill PetersenJill Petersen began working with the NOAA spill response group in 1988. Originally a programmer and on-scene responder, in 1991 her focus switched to mapping support, a major component of which is the ESI program. Throughout the years, Jill has worked to broaden the ESI audience by providing ESIs in a variety of formats and developing appropriate mapping tools. Jill has been the ESI program manager since 2001.

Follow

Get every new post delivered to your Inbox.

Join 370 other followers