NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

In a Louisiana Marsh, an Uncommon Opportunity to Learn about Burning Oil

This is a post by LTJG Kyle Jellison, NOAA Scientific Support Coordinator.

“Every day is a new adventure.” I came to believe this phrase while sailing on the high seas, but it proves true as a NOAA Scientific Support Coordinator as well. There have been many adventures in my time working in the Gulf of Mexico doing emergency response for oil spills and hazardous materials releases.

The most recent oil spill—a pipeline leak in a Louisiana marsh—didn’t seem out of the ordinary, that is, until the Unified Command in charge of the response turned to alternative approaches to quicken and improve the effectiveness of the cleanup.

The Spill and Our Options

On May 28, 2014 a plane hired by Texas Petroleum Investment Company was performing a routine aerial survey of their inland oilfield and noticed a slight oil sheen and a dead clump of roseau cane (phragmites). This sparked further investigation and the discovery of 100 barrels (4,200 gallons) of crude oil, which had leaked out of a breach in their pipeline passing through the Delta National Wildlife Refuge, outside of Venice, Louisiana. Pipelines like this one are routinely inspected, but as they age the potential for corrosion and spills increases.

Roseau cane is a tall, woody plant, similar to bamboo, reaching heights of up to 20 feet. The stalks grow very close together and in water depths between two and 30 inches. This creates a complex situation which is very hard to clean oil out from.

The least invasive method for oil cleanup is to flush out the oil with high volumes of water at low pressure, but this is a long process with low amounts of oil recovered each day. Another common practice is to flush with water while cutting lanes into the vegetation, creating pathways for the oil to migrate along for recovery. Though more aggressive and with higher amounts of oil recovered each day, it still would likely take many weeks or months to clean up this particular oil spill using this method.

An Unconventional Solution

What about doing a controlled burn of the oil where it is, a strategy known as in situ burning? It removes a large amount of oil in a matter of days, and when performed properly, in situ burning can help marsh vegetation recover in five years or less for more than 75 percent of cases in one study.

In situ burning, Latin for burning in place, is considered an “alternative” response technology, rather than part of the regular suite of cleanup options, and is only employed under the right set of circumstances. More information about this can be found in the NOAA report “Oil Spills in Marshes,” which details research and guidelines for in situ burning in chapter 3, Response.

To help determine if burning was appropriate in this case, the Unified Command brought in the NOAA Scientific Support Team, U.S. Fish and Wildlife Service Fire Management Team, U.S. Coast Guard Gulf Strike Team, and T&T Marine Firefighting and Salvage. After considering the situation, gaining consensus, developing a burn plan, and earning the support of Regional Response Team 6, it was time to light it up!

Where There’s Smoke …

On June 3, 2014, we burned the oil for two hours, with flames reaching 40 feet. The next day, we burned for another six hours. There was a lot of oil to be burned, with pockets of oil spread throughout three acres of impacted marsh. The fire remained contained to the area where enough oil was present to support the burn, extinguishing once it reached the edge of the oiled marsh.

We have an ongoing study to evaluate the impacts of the burn, and preliminary results indicate that there was minimal collateral damage. More than 70 percent of the oil was burned over the two-day period. We considered this to be a very successful controlled burn. The much less remaining oil will be recovered by mechanical methods within a few weeks, instead of months.

Texas Petroleum Investment Company, as the responsible party in this case, will be responsible for all costs incurred for this incident, including cleanup and monitoring (and restoration, if necessary).

To help ensure we learn something from this incident, an assessment team entered the impacted marsh before the burns to collect oil, water, and sediment samples. The team also collected samples after each day of burning and returned a week after the burn to assess the condition of the vegetation and collect samples. This multi-agency team will return to the site in August for more sampling and monitoring.

The long-term monitoring and sampling project is being managed by NOAA, Louisiana Department of Environmental Quality, Fish and Wildlife Service, and Texas Petroleum Investment Company. We are conducting the study under the umbrella of the Response Science and Technology Subcommittee of the New Orleans Area Committee, a standing body of response scientists. Jeff Dauzat of Louisiana Department of Environmental Quality and I co-chair this subcommittee and are looking forward to the results of this ongoing scientific project.

Was burning the right move? The science will speak for itself in time.

For more information:

Man standing in a marsh with smoke in the background.LT Kyle Jellison is a Scientific Support Coordinator for NOAA’s Office of Response and Restoration. He supports Federal On-Scene Coordinators throughout the Gulf of Mexico by providing mission critical scientific information for response and planning to oil and hazardous material releases.


1 Comment

When Setting Fire to an Oil Spill in a Flooded Louisiana Swamp is a Good Thing

Smoke and fire from a controlled burn in a wooded Lousiania swamp.

A view of one of the controlled burns to remove oil spilled in a wooded swamp outside of Baton Rouge, Louisiana, on January 19, 2013. (U.S. Coast Guard)

This is a post by Kyle Jellison, NOAA Scientific Support Coordinator.

The longer I work in the Gulf of Mexico, the more I come to understand why oil spill responders claim that “every spill is a unique situation.” Really? Yes, really.

Currently, I am providing scientific support for a pollution response in the remote, wooded swamp tucked inside Bayou Sorrel, about an hour outside of Baton Rouge, La. In early January, a pipeline running underground ruptured, and responders believed it was leaking just a few barrels of crude oil onto land. Then the rains came … and the flooding … and then even more flooding. Right now, up to 4 feet of water is covering the entire affected area (about 1 acre), and cleanup crews are wading through the oil slick in hip waders. This has been quite the challenge.

Part of my job is to help figure out how we could expedite this cleanup while minimizing damage to the environment. For this case, we agreed that it’s time to get out your matches because we’re having a fire! It is not for every spill that in situ burning, or the controlled burning of spilled oil “in place,” comes up. This is the first incident that I have been involved with where burning has been seriously discussed as a spill response option and one of only a few burns conducted in an environment other than a marsh, where the practice is more common for removing oil. (You may remember similar burns on the open ocean during the 2010 Deepwater Horizon/BP oil spill.)

In preparation for the burn, we needed to consider many factors: public safety and health, worker safety and health, effects to vegetation and animal species, proper conditions to sustain combustion, controls for limiting collateral damage, potential quantity of oil removed, and more. The response team determined that rising flood waters would complicate the cleanup operation and increase the probability of the oil escaping containment and spreading throughout the swamp. Controlled burning, on the other hand, could rapidly remove a high percentage of oil while causing minimal local damage to area plant species. (With their roots protected underwater, the plants would be able to grow back after the oiled upper portions were burned off.) As these plans took shape, burn team safety was paramount, and cleanup crews corralled the oil to create thick pools of oil for combustion.

After the in situ burn incinerated oil from a wooded swamp at Bayou Sorrel.

Taken January 19, 2013, after the in situ burn incinerated oil from a wooded swamp at Bayou Sorrel. The landscape may look stark, but the controlled burn removes the oil and allows the vegetation to regenerate in a cleaner environment. (U.S. Coast Guard)

Considering the circumstances, the in situ burns seemed like a great success. The fire team was able to ignite three patches of pooled oil with a handheld propane brush torch; one burn lasted 5 minutes and the other two burns lasted 15 minutes. The fires did not spread outside the oiled area, and we’ve heard no reports of injury or ill health. With 35 minutes of total combustion, the burns were able to remove an estimated 20 to 30 barrels of oil from the affected swamp, leaving 30 to 40 barrels behind for further clean up.

Cleanup crew in boats and hip waders work to sop up the leftover oil using sorbent pads and boom in a wooded swamp.

Oil still remains in part of the flooded Louisiana swamp, where a cleanup crew in boats and hip waders worked to sop up the leftover oil using sorbent pads and boom on February 4, 2013. (NOAA/LTJG Kyle Jellison)

Wait a minute, how did we end up with so many barrels of oil if initial reports were that only a few barrels leaked? The rain and the flooding have been drawing oil up from the soils surrounding the ruptured pipeline, and the oil has been rising to the water’s surface. If the pipeline buried about 6 feet underground can generate a pool of oil at the surface under dry conditions, how much oil has really been released? Could more oil show up later?

Efforts are underway to better understand this tricky situation by placing a closed loop of containment boom over the source point for several days. If more oil appears inside the boom, then the soil is continuing to release oil. If that is the case, this oily situation might persist for months to come, but only time will tell. Stay tuned at IncidentNews.gov.

LTJG Kyle Jellison and his family.

LTJG Kyle Jellison and his family.

LTJG Kyle Jellison is a Scientific Support Coordinator for NOAA’s Office of Response and Restoration. He is assigned to New Orleans, La., to provide Federal On-Scene Coordinators with mission critical scientific information for response and planning to oil and hazardous material releases. Jellison and his family currently reside on the north shore of Lake Pontchartrain and are enjoying the Louisiana lifestyle of crabbing, shooting, and “bon temps.” Prior to this, Jellison served aboard NOAA Ship HENRY B BIGELOW and was Acting Operations Officer during the vessel’s oceanographic mission to support the Deepwater Horizon/BP oil spill response.


5 Comments

How Would Chemical Dispersants Work on an Arctic Oil Spill?

This is a post by John Whitney, OR&R’s Scientific Support Coordinator for Alaska.

An Arctic Cod rests in an ice-covered space.

An arctic cod, a key part of the Arctic food web, rests in an ice-covered space in Alaska’s Beaufort Sea, North of Point Barrow. This species was one of the subjects of the research program on dispersant effects in the Arctic. (Shawn Harper/Hidden Ocean 2005 Expedition: NOAA Office of Ocean Exploration)

If there were a huge oil spill in the Arctic, would chemical dispersants work under the frigid conditions there?

And once dispersants break down oil into smaller droplets, how toxic are the oil and chemicals to key species in the short Arctic food web?

Would the dispersed oil and dispersant actually biodegrade in cold Arctic waters?

With Shell currently on track to drill several exploratory wells in the Chukchi and Beaufort Sea this summer, these are very timely questions—and finally, we are beginning to find some answers.

For the last three years, a special oil industry research group (called a “joint industry program”) has been trying to resolve these questions before any major oil exploration, development, and production happens off the northern Alaskan Arctic coastline. Lead scientists Dr. Jack Word of Newfields Environmental (Port Gamble, Wash.) and Dr. Robert Perkins of University of Alaska, Fairbanks, coordinated this research program to determine the viability of using dispersants on Arctic Ocean oil spills.

Oil impacts on Arctic food webs

The illustration, not associated with this study, shows potential oil spill impacts to wildlife and habitats in the Arctic Ocean. Click for larger view. Credit: NOAA/Kate Sweeney, Illustration.

Aiming for as realistic Arctic conditions as possible, they captured arctic zooplankton (krill and Calanus copepods, which are tiny marine crustaceans) as well as larval and juvenile fish (arctic cod and sculpin) from the coastal waters of the Beaufort Sea.

These organisms are key players in the Arctic food web and culturing them in order to conduct toxicity tests hopefully would reveal how negative impacts from oil and dispersants could cascade through the ecosystem. The researchers also conducted toxicity and biodegradation tests in actual waters collected from the Beaufort Sea.

Five oil companies were pooling their talents and financial resources to conduct these tests and gather information: Shell, ConocoPhillips, Statoil, ExxonMobil, and BP. As NOAA’s Scientific Support Coordinator for Alaska, I was fortunate enough to serve on a unique, yet very important, part of the group: the Technical Advisory Committee, which is composed of non-industry technical and non-technical stakeholders. We met once a month to discuss the results and advise them on ongoing scientific tests.

Drs. Word and Perkins and their colleagues recently presented the results of this research at a workshop in Anchorage, Alaska. The workshop began with Tim Nedwed of ExxonMobil making a strong case for immediate and robust access to all the major oil spill response options—mechanical methods, in situ burning, and dispersants—in order to deal with a large oil release in the Arctic or any other location.

Mechanical methods (e.g., skimmers) and in situ burning typically encounter spilled oil at low rates, historically removing only 5% to 15% of the oil on the water’s surface. This makes chemical dispersants a very attractive option when approaching a big spill using a large aircraft (such as a C-130) to deliver dispersants. After all, Dr. Nedwed pointed out, the ultimate goal of dispersants is to deliver a significant boost to the rate of oil biodegradation that happens naturally after most oil spills.

Here are some of the major findings from their research:

  1. Arctic marine species show equal or less sensitivity to petroleum after exposure than temperate (warmer water) species.
  2. The Arctic test organisms did not show significant signs of toxicity when exposed to recommended application rates of the dispersant Corexit 9500 by itself, which also tends to biodegrade on the order of several weeks to a few months.
  3. Petroleum does biodegrade with the help of indigenous microbes in the Arctic’s open waters under both summer and winter conditions.
  4. Chemical dispersants more fully degraded certain components of oil than petroleum that was physically dispersed (for example, from wind or waves breaking up an oil slick).
  5. Under various scenarios for large and small oil spills treated with Corexit 9500, the effects on populations of arctic cod, a keystone species in the Arctic, appeared to be minor to insignificant.

This workshop garnered attention from the oil industry, government regulatory and natural resource agencies, academia, Alaska North Slope residents, private consultants, and non-governmental organizations. It concluded with a brief discussion of Net Environmental Benefit Analysis, a scientific process of weighing the costs against the benefits to the environment, with emphasis on the importance of making this process both science-based and, at the same time, compatible with listening to the subsistence Alaska Native population, a significant and valuable voice in the Arctic.

John WhitneyJohn Whitney has served as the Alaskan Scientific Support Coordinator for NOAA’s Office of Response and Restoration for over 25 years. His responsibilities include primary scientific support to the U. S. Coast Guard, as well as to industry, government agencies, and stakeholders for oil spills and other hazardous materials response in Alaska’s offshore waters. John’s background is in physics and geophysics, earning a PhD in geophysics from the University of Washington in Seattle. Currently, John participates in deliberations with the Arctic Council Emergency Preparedness, Prevention, and Response working group and also chairs the dispersant working group of the Alaska Regional Response Team.

Follow

Get every new post delivered to your Inbox.

Join 409 other followers