NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


3 Comments

What Does the Sahara Desert Have to Do with Hurricanes?

This is a post by Charlie Henry, Director, NOAA’s Gulf of Mexico Disaster Response Center and Jeff Medlin, Meteorologist in Charge, National Weather Service Weather Forecast Office Mobile.

Sahara Desert dunes from space.

Sahara Desert dunes photographed from the International Space Station on July 7, 2007. This large desert has a surprising degree of influence on the frequency of hurricanes we see in the United States. (NASA)

What does the Sahara Desert in Africa have to do with hurricanes in the Atlantic, Gulf of Mexico, and Eastern Pacific Ocean? You might think this sounds a little crazy because hurricanes are very wet and deserts are very dry, but if it weren’t for this huge, hot, dry region in North Africa, we would see far fewer hurricanes in the United States.

The Sahara Desert is massive, covering 10 percent of the continent of Africa. It would be the largest desert on Earth, but based strictly on rainfall amounts, the continent of Antarctica qualifies as a desert and is even larger. Still, rainfall in the Sahara is very infrequent; some areas may not get rain for years and the average total rainfall is less than three inches per year. While not the largest or driest of the deserts, the Sahara has a major influence on weather across the Western Hemisphere.

How a Tropical Storm Starts A-Brewin’

The role the Sahara Desert plays in hurricane development is related to the easterly winds (coming from the east) generated from the differences between the hot, dry desert in north Africa and the cooler, wetter, and forested coastal environment directly south and surrounding the Gulf of Guinea in west Africa. The result is a strong area of high altitude winds commonly called the African Easterly Jet. If these winds were constant, we would also experience fewer hurricanes.

However, the African Easterly Jet is unstable, resulting in undulations in a north-south direction, often forming a corresponding north to south trough, or wave, that moves westward off the West African Coast. When these waves of air have enough moisture, lift, and instability, they readily form clusters of thunderstorms, sometimes becoming correlated with a center of air circulation. When this happens, a tropical cyclone may form as the areas of disturbed weather move westward across the Atlantic.

Throughout most of the year, these waves typically form every two to three days in a region near Cape Verde (due west of Africa), but it is the summer to early fall when conditions can become favorable for tropical cyclone development. Not all hurricanes that form in the Atlantic originate near Cape Verde, but this has been the case for most of the major hurricanes that have impacted the continental United States.

Map of North America with historical tracks of hurricanes in North Atlantic and Northeast Pacific Oceans.

All North Atlantic and Eastern North Pacific hurricanes
(at least Category 1 on the Saffir-Simpson Hurricane Scale). Note how many originate at the edge of Africa’s West Coast, where the desert meets the green forests to the south. (NOAA)

Wave of the Future (Weather)

In fact, just such a tropical wave formed off Cape Verde in mid-August of 1992. Up to that point, there had not been any significant tropical cyclone development in the Atlantic that year. However, the wave did intensify into a hurricane, and on August 24 Andrew came ashore in south Florida as a Category 5 hurricane, becoming one of the most costly and destructive natural disasters in U.S. history … until Sandy. Hurricane Sandy, which eventually struck the U.S. east coast as a post-tropical cyclone, also began as a similar tropical wave that formed off the coast of west Africa in October of 2012.

Some of these “waves” drift all the way to the Pacific Ocean by crossing Mexico and Central America. Many of the Eastern Pacific tropical cyclones originate, at least in part, from tropical waves coming off Cape Verde in Africa. Many of these waves traverse the entire Atlantic Ocean without generating storm development until after crossing Central America and entering the warm Eastern Pacific waters. Then, if the conditions are right, tropical cyclone formation is possible there. Hurricane Iselle, which hit the Big Island of Hawaii on August 8, 2014, was likely part of a wave that formed more than 8,000 miles away off of the West Coast of Africa and an example of the far-reaching influence the Sahara Desert has on our planet’s weather.

While these waves with origins in the Sahara Desert might generate numerous thunderstorms and a pattern with the potential for developing into a tropical cyclone, often the conditions are not quite right. Hurricane Cristobal formed from a classic Cape Verde wave last week and currently is churning Atlantic waters, but is not expected to be a threat to the United States. The formation of these disturbances off the West Coast of Africa will remain a potential source of tropical storms through the end of Atlantic hurricane season in late November. Each wave is investigated by the NOAA National Hurricane Center and you can view these active disturbances on their website.

The Sahara Desert and You

When it comes to hurricanes and hurricane preparedness, it’s interesting to know how a desert half a world away can influence the formation of severe weather on our coasts—and even parts of the Pacific Ocean. And no matter where you live, the old rule of planning for the worst and hoping for the best remains the surest way to stay safe.

Learn more about how we at NOAA’s National Ocean Service are staying prepared for hurricanes [PDF], and how you can create your own hurricane plan [PDF].


2 Comments

Our Top 10 New Year’s Resolutions for 2014

In 2013, a NOAA team collected 14 metric tons of fishing gear, plastic, and other debris from the shoreline and waters around Hawaii's Midway Atoll. We're looking forward to keeping our coasts clean in 2014 too! (NOAA)

In 2013, a NOAA team collected 14 metric tons of fishing gear, plastic, and other debris from the shoreline and waters around Hawaii’s Midway Atoll. We’re looking forward to keeping our coasts clean in 2014 too! (NOAA)

With the end of 2013, many are reflecting on how the past year went. For NOAA’s Office of Response and Restoration, we think we handled things pretty well, despite seeing some unusual challenges come our way (e.g., grounded drilling rig, molasses spill, 70 foot stranded dock). After all, being prepared—and preparing others—for the worst is a major focus in our work.

Despite our many accomplishments of the last year, however, we know that we should always be striving to improve how we respond to oil and chemical spills, assess and restore damaged ecosystems, and reduce the threat of marine debris.

So, without further ado, here are our top 10 resolutions for 2014:

  1. Lose “wait.” That is, we’re increasing our capacity to process damage assessment cases and get dollars for restoration out the door more quickly.
  2. Get more mobile. We’re making several of our websites friendlier for mobile devices. In particular, stay tuned to response.restoration.noaa.gov and incidentnews.noaa.gov.
  3. Make more friends. We’re now on Facebook and Twitter, so don’t be shy about following us for the latest news and updates.
  4. Stay trendy. As trends change in what petroleum products America is importing and exporting, we’re working with the University of Washington to explore how this will affect our readiness to respond to the oil spills of tomorrow.
  5. Quit littering. Or rather, get others to quit littering. We’re always dreaming up better ways to change people’s behavior so that everyone’s trash, including plastics, stays out of our oceans.
  6. Get our ducks in a row. When Hurricane Sandy came racing toward the East Coast, it was bringing wind and waves that would literally reshape the shoreline. As a result, we’re updating our northeast Environmental Sensitivity Maps to reflect changes caused by the storm and to add information that would enhance the value of these geographic summaries of vulnerable coastal resources when another disaster strikes.
  7. Help others. We’re partnering with states impacted by Sandy to assess and remove marine debris from the storm, so that means getting funding out fast to those who need it.
  8. Update our look. This spring, we’ll be releasing a major update to our mapping program MARPLOT, which allows emergency responders such as firefighters to create, customize, and download maps for offline use. Users will see very high-quality base (background) maps, including the familiar sight of Google maps.
  9. Listen more. We’ll be looking forward to hearing your thoughts on restoration plans and projects around the country, starting with Deepwater Horizon public meetings across the Gulf of Mexico in January.
  10. Release a new GNOME. In 2014, we’ll be releasing GNOME 2, our next generation oil spill modeling system. GNOME 2 will offer a Web-based system for forecasting the path of spilled oil in pre-designated locations in the U.S., include better 3-D modeling support, and integrate our oil weathering model, ADIOS.

Thanks for helping us make 2013 a great year. We look forward to even more in 2014!


Leave a comment

Let Maps Open up the World Around You on GIS Day

Atlantic ERMA view of a grounded tanker after Post Tropical Cyclone Sandy.

In our online GIS tool Atlantic ERMA, you can see NOAA National Geodetic Survey aerial photography showing the derelict tanker John B. Caddell grounded on Staten Island, N.Y., following Post Tropical Cyclone Sandy. Red markers show field photos such as the image seen in the pop-up window in Atlantic ERMA. (NOAA)

Happy GIS Day! Today, GIS events are being hosted around the globe to highlight and celebrate the transformational role of Geographic Information Systems, or GIS.

GIS is mapping software that can display multiple sets of location-based information onto a single map. Viewing information this way can help you visualize lots of data and identify trends and relationships, such as the potential health impacts of living near power plants and major highways, or how many pizza places are within 10 miles of your house.

Like offices and agencies around the world, we in NOAA’s Office of Response and Restoration use GIS in our everyday work. Take a look at a few of the ways we use GIS—and you can too—to reduce environmental threats from coastal pollution.

Mapping Environmental Sensitivity

One of our teams is developing Environmental Sensitivity Index (ESI) maps using GIS technology to integrate and share information about sensitive shoreline resources, such as birds, wildlife, fisheries, and public beaches. Historically used for oil and chemical spill response and planning, these maps have become effective tools in preparing for and responding to storms, hurricanes, and other coastal disasters.

ESI data are published in a variety of GIS formats, including a file geodatabase and map document, that simplify their use within the GIS program ArcMap. Users can query data for their region to see what species are present in January, where threatened and endangered species live, what shoreline types are present, etc. You can download ESI data and ESI tools from our website and use them yourself.

Mapping Resources during a Disaster

MARPLOT is the mapping component in CAMEO, our software suite of tools for chemical spill response, which we develop with the U.S. Environmental Protection Agency (EPA). It’s a free and easy-to-use GIS system that emergency responders and planners use to display information from other programs in the CAMEO suite. This could mean mapping estimates of high-risk areas for toxic chemical clouds (from ALOHA) or the locations of chemical production and storage facilities in relation to schools and hospitals (from CAMEOfm).

MARPLOT can also be used as a general mapping tool, which allows users to add objects, move around the map, and get population estimates. Some users have adapted MARPLOT, which operates without an Internet connection, for use during tornado response, search and rescue operations, and emergency planning. The development team is working on a major revision to MARPLOT, which will include access to global basemaps, enhanced web-based features, and additional data management capabilities.

Mapping Environmental Response

Web mapping for environmental response, such as oil spills, has come a long way in the past decade. NOAA is a leader in this digital mapping revolution with ERMA®, the Environmental Response Management Application, which we designed with the University of New Hampshire’s Coastal Response Research Center and the EPA. It’s an online mapping tool offering comprehensive access to environmental response information and is customized for many coastal areas of the U.S.

ERMA integrates both static and real-time data, such as ESI maps, ship locations, weather, and ocean currents, in a centralized map for use during a disaster such as an oil spill or hurricane. It provides environmental responders and decision-makers with up-to-date information for planning, response, assessment, and restoration activities. The application incorporates data into a convenient, web-based GIS mapping platform that can be accessed simultaneously by a variety of users via the Internet.

ERMA Deepwater Gulf Response is currently assisting with the ongoing response operations for the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Data related to this oil spill is displayed here and updated daily. In the northeast, Atlantic ERMA provided support to the Post Tropical Cyclone Sandy pollution response along the coast of New Jersey, New York, and Connecticut.

To the far north, Arctic ERMA has been used to integrate and display response-related information from oil spill technology demonstrations aboard an icebreaker in the remote Arctic Ocean and to display the data and high resolution imagery of the ShoreZone project, which seeks to map all 46,600 miles of Alaska’s coastal habitat and features. You can view all of the regional ERMA sites on our website.

Discover Your World

GIS DayYou can explore on the GIS Day website some of the amazing stories that GIS can help tell:


Leave a comment

After Sandy, Adapting NOAA’s Tools for a Changing Shoreline

Editor’s Note: September is National Preparedness Month. It is a time to prepare yourself and those in your care for emergencies and disasters of all kinds. NOAA and our partners are making sure that we have the most up-to-date tools and resources for whenever the next disaster strikes. To learn more about how you can be prepared for all types of emergencies, visit www.ready.gov.

This is a post by the Office of Response and Restoration’s Vicki Loe and Jill Petersen.

While the beach season has come to an end for the East Coast, communities of the northeast continue to repair remaining damage from last fall’s Post Tropical Cyclone Sandy and prepare for future storms. As beachgoers arrived at the shore this past summer, they found a lot of repaired structures and beautiful beaches. But this was side-by-side with reconstruction projects, damaged buildings, and altered shorelines.

In addition to damaging manmade structures, Sandy’s strong winds and waves caused considerable change to shorelines, particularly in the metropolitan New York area, northern Long Island, Connecticut, and New Jersey.

Tools for Coastal Disasters

In the wake of Sandy, under the Disaster Relief Appropriations Act of 2013, funds were allocated to update the Office of Response and Restoration’s existing northeast Environmental Sensitivity Index (ESI) maps to reflect changes caused by the storm and to add information that would enhance the maps’ value when another disaster strikes. Historically used mostly for oil and chemical spills, these maps have also proved to be effective tools in preparing for and responding to storms and hurricanes.

ESI maps provide a concise summary of coastal resources that could be at risk in a disaster. Examples include biological resources (such as birds and shellfish beds), sensitive shorelines (such as marshes and tidal flats), and human-use resources (such as public beaches and parks). They are used by both disaster responders during a disaster and planners before a disaster.

Segment of an existing Environmental Sensitivity Index map of the New Jersey coast.

Segment of an existing Environmental Sensitivity Index map of the New Jersey coast. Used in conjunction with a key, this map provides valuable information to planners and responders on the wildlife, habitats, and geographical features of the area.

In the region affected by Sandy, maps will be updated from Maine to South Carolina. The ESI maps are produced on a state or regional basis. They typically extend offshore to include all state waters, and go inland far enough to include coastal biology and human use resources. In addition to the outer coastal regions, navigable rivers, bays, and estuaries are included. In the northeast, these include the Hudson River and Chesapeake Bay, which are among those maps being updated with the Sandy funding, as well as Delaware Bay, which was already in progress before the storm hit.

The first region to be updated will be Long Island Sound. NOAA’s Office of Response and Restoration is partnering with the Center for Coastal Monitoring and Assessment (CCMA) in NOAA’s National Centers for Coastal Ocean Science to develop the biological and human use information for this region. This partnership will take advantage of studies CCMA currently has underway, as well as contacts they have made with the biological experts in the area.

Keeping up with a Changing Shoreline

A large wildlife conservation area that is managed by Bass River State Forest at the north end of Brigantine Island, a popular beach destination located on the New Jersey coast. (NOAA)

You can see representative coastal habitat in a large wildlife conservation area managed by Bass River State Forest at the north end of Brigantine Island, a popular beach destination located on the New Jersey coast. (NOAA)

The coastal environment is constantly changing and ESI maps need to be updated periodically to reflect not just storm damage, but changes to resources caused by human use, erosion, and climate change. The new maps will be created with a broad range of potential disasters in mind. To support this goal, some additional data elements and layers are being considered for the ESI maps developed as part of our post-Sandy effort. These may include such things as flood inundation and storm surge areas, environmental monitoring stations, tide stations, and offshore renewable energy sites.

The end products will provide emergency planners and responders with a better tool for protecting the northeast and mid-Atlantic shoreline when the next coastal disaster occurs.

You can learn more about our Environmental Sensitivity Index maps in our blog post “Mapping How Sensitive the Coasts Are to Oil Spills,” and find more technical insights into our work with ESI maps and data on the NOAA ESI blog at noaaesi.wordpress.com.

Jill PetersenJill Petersen began working with the NOAA spill response group in 1988. Originally a programmer and on-scene responder, in 1991 her focus switched to mapping support, a major component of which is the ESI program. Throughout the years, Jill has worked to broaden the ESI audience by providing ESIs in a variety of formats and developing appropriate mapping tools. Jill has been the ESI program manager since 2001.


Leave a comment

Why Are Tropical Storms and Hurricanes Named?

This is a post by NOAA Office of Response and Restoration’s Katie Krushinski.

The 2013 Atlantic hurricane season's first named storm was Tropical Storm Andrea, pictured here on June 8 crossing over Florida and up the East Coast. (NASA)

The 2013 Atlantic hurricane season’s first named storm was Tropical Storm Andrea, pictured here on June 8 crossing over Florida and heading up the East Coast. (NASA)

Have you ever wondered why storms are named? Up until the early 1950s, tropical storms and hurricanes were tracked by year and the order in which each one occurred during that year.

In time, it was recognized that people remembered shorter names more easily. In 1953, a new approach was taken and storms were named in alphabetical order by female name. The process of naming storms helps differentiate between multiple storms that may be active at the same time.

By 1978, both male and female names were being used to identify Northern Pacific storms. This was adopted in 1979 for the Atlantic storms and is what we use today.

The World Meteorological Organization came up with the lists of names, male and female, which are used on a six-year rotation. In the event a hurricane causes a large amount of damage or numerous deaths, that name will be retired. Since the 1950s, when it became normal to name storms, there have been 77 names retired, including Fran (1996), Katrina (2005), Rita (2005), and Sandy (2012).

To find out this year’s storm names and for a complete list of retired names, visit the National Weather Service’s website. And if you haven’t started your own severe-weather preparations, don’t delay; the 2013 Atlantic hurricane season (predicted to be more active than usual) has already begun.

The Gulf of Mexico region, in particular, experiences frequent natural and human-caused disasters such as hurricanes, tornadoes, and oil spills.

NOAA’s Gulf of Mexico Disaster Response Center aims to reduce the resulting impacts by helping to prepare federal, state, and local decision makers for a variety of threats, creating more adaptive and resilient coastal communities. Learn more about this valuable resource and center of NOAA expertise on the Gulf Coast.

Katie Krushinski

Katie Krushinski

Katie Krushinski works at NOAA’s Gulf of Mexico Disaster Response Center in Mobile, Ala., where she is responsible for coordinating training events, producing external communications, and writing and editing. Katie has a background in emergency response and management. NOAA’s Disaster Response Center serves as a one-stop shop, streamlining the delivery of NOAA services that help the Gulf region prepare for and deal with disasters.


2 Comments

Why You Should Thank a Hydrographer

NOAA's Office of Coast Survey created this digital terrain model of the wreck of the freighter Fernstream, a 416-foot motor cargo vessel that sank near San Francisco, Calif., in 1952. The different colors indicate water depth and helps inform us on the structural integrity of the wreck, which may still have stores of oil aboard. (NOAA)

NOAA’s Office of Coast Survey created this digital terrain model of the wreck of the freighter Fernstream, a 416-foot motor cargo vessel that sank near San Francisco, Calif., in 1952. The different colors indicate water depth and helps inform us on the structural integrity of the wreck, which may still have stores of oil aboard. (NOAA)

World Hydrography Day is celebrated each year on June 21. But before we start thanking hydrographers, we first should explain: What is a hydrographer?

Basically, a hydrographer measures and documents the shape and features of the ocean floor and coasts. These scientists then create charts showing the ocean’s varying depths and the location of underwater obstructions, such as rocky outcroppings or shipwrecks. As our fellow NOAA colleagues at the Office of Coast Survey (an office full of hydrographers) further elaborate, “hydrographic surveying ‘looks’ into the ocean to see what the sea floor looks like,” with most of the work “primarily concerned with water depth.”

Mariners, unlike drivers on a dangerous road, can’t see the whole picture of the path their ships are taking. Is this harbor deep enough for a large ship to enter safely? Where should they avoid sensitive coral reefs? They rely on NOAA’s nautical charts to show them what is on the sea floor and where there are objects or areas to avoid.

Sometimes, however, ships do run afoul with underwater features—which, for example, could be coral reefs, pipelines, or damaged oil service platforms—leading to oil spills or crushed coral reef habitats. That brings our office into the picture to help minimize the environmental damage and then work to restore it.

This is why we at the Office of Response and Restoration are grateful for the hydrographers who are diligently creating and updating the charts that keep our ocean and its travelers safe. Beyond that, here are a few more reasons why we (and hopefully you) would want to thank a hydrographer.

Modeling Leaking Shipwrecks

Remote sensing data from hydrographic surveys are, in many instances, the first picture we have of a shipwreck and give us some sense of what state the ship is in before NOAA sends down divers or remotely operated vehicles (ROV). We know that even ships broken into two or three sections can still hold a significant amount of oil (from fuel or cargo). Recently, we worked with NOAA’s Office of National Marine Sanctuaries to evaluate the thousands of shipwrecks in U.S. waters for those with the potential to leak oil still onboard. In a report to the U.S. Coast Guard, we highlighted 17 wrecks, in particular, that should be assessed further and possibly have any remaining oil removed.

Coast Survey recently finished surveying one of these wrecks, the freighter Fernstream [PDF], which sank after colliding with another ship near San Francisco Bay in 1952. One of their physical science technicians then created a vibrant three-dimensional model of the wreck, with the colors representing different water depths detected by multibeam sonar. From this kind of information, maritime archaeologists can interpret how the wrecked ship might be oriented on the sea floor and estimate where oil tanks could be located.

Mapping Environmental Responses

Bathymetry, or water depth measurement, data is one of the primary data sets we use as a base layer in ERMA®, our online mapping tool for environmental planning and response. We often display high resolution bathymetry data in ERMA to better understand areas of interest, such as the site of a ship spilling oil. ERMA can readily pull in bathymetry data feeds from NOAA and university partners to help our scientist refine models of the water column and classify aquatic habitat. High resolution bathymetry data was particularly useful for visualizing the area surrounding the damaged wellhead for the Deepwater Horizon wreckage and has aided in assessing risk to nearshore habitats on the Gulf Coast.

In this view of the online mapping tool, ERMA Deepwater Gulf Response, the multi-colored bathymetry, or water depth measurement, data are shown for estuaries off the coast of Louisiana and Alabama. This information aided in assessing risk to nearshore habitats on the Gulf Coast after the 2010 Deepwater Horizon/BP oil spill. (NOAA)

In this view of the online mapping tool, ERMA Deepwater Gulf Response, the multi-colored bathymetry, or water depth measurement, data are shown for estuaries off the coast of Louisiana and Alabama. This information aided in assessing risk to nearshore habitats on the Gulf Coast after the 2010 Deepwater Horizon/BP oil spill. (NOAA)

During the response to an oil spill or ship grounding, we sometimes work with hydrographers who may be able to do new underwater surveys of the affected area. In addition, with access to huge databases of bathymetry data, they can offer much more detailed information than what is on the average nautical chart, helping us guide response decisions, such as where response vessels can be anchored safely. For example, when Shell’s Arctic drilling rig Kulluk ran aground off Kodiak Island, Alaska, on Dec. 31, 2012, a Coast Survey specialist, using detailed nautical charts and data, helped us identify nearby Kiliuda Bay as a suitable safe harbor to relocate the rig.

Detecting Submerged Hurricane Debris

After a hurricane, lots of debris from on land, including oil drums, shipping containers, and chemical tanks, can get swept into the ocean. This has been a notable issue following Hurricane Sandy in the fall of 2012. Currently, Coast Survey is collecting hydrographic data to update their charts from North Carolina to Connecticut, the states affected by Hurricane Sandy. We will be focusing in particular on the data they gather for New Jersey, New York, and Connecticut and whether they find items on the sea floor larger than one cubic meter in size (about 35 cubic feet). That survey data then will be processed by the University of New Hampshire’s Joint Hydrographic Center. Their analyses will inform our Marine Debris Program’s future efforts to prioritize and remove the submerged debris items detected in these surveys.

Thanks also go to the Office of Response and Restoration’s Doug Helton, Michele Jacobi, and Jason Rolfe and the Office of Marine Sanctuaries’ Lisa Symons for contributing to this post.


Leave a comment

Behind the Budget: A Look Ahead for NOAA’s Office of Response and Restoration

Here, we take a peek into the world of science policy (and the budgets that make it possible) as we hear from Dave Westerholm, director of NOAA’s Office of Response and Restoration, about what we can expect as a starting point for this office in the next fiscal year.

Wetland grasses replanted in Texas after a successful damage assessment and restoration process. (NOAA/National Marine Fisheries Service/Jamie Schubert)

Wetland grasses replanted in Texas after a successful damage assessment and restoration process. (NOAA/National Marine Fisheries Service/Jamie Schubert)

The White House recently released the President’s Budget for Fiscal Year 2014. This budget offers several exciting opportunities for research, development, and growth in response and restoration activities at NOAA. The budget contains close to $4 million in increases for the Office of Response and Restoration (OR&R).

I am very proud of the work we do every day at OR&R and am very grateful for all the support that enables this work. In the last year we responded to 139 environmental incidents, including Hurricane Sandy, generated over $800,000 for restoration through the natural resource damage assessment process, opened NOAA’s new Gulf of Mexico Disaster Response Center, and saw passage of the Marine Debris Act Amendments of 2012 (which expanded the scope of our office to deal specifically with large amounts of natural disaster debris).

While meeting the needs of those critical issues, we have continued to support the ongoing response and damage assessment for the Deepwater Horizon/BP oil spill, looked forward to address emerging challenges in the U.S. Arctic by launching an Environmental Response Management Application (ERMA) online mapping tool for the Arctic region and contributed our expertise to interagency planning and preparedness in support of ongoing energy exploration in the Arctic.

I am eager to show you what OR&R can do with the latest budget from the President that will build upon our recent achievements:

The fiscal year 2014 budget proposes a $2 million increase for Natural Resource Damage Assessment to increase technical, strategic, and legal support so we can more quickly move more oil spill and hazardous waste site cases toward settlement and support the restoration process. We anticipate that this increase will more than pay for itself in settlement funds recovered from responsible parties and deliver significant return on investment for the American public.

There is an increase of $1 million for the NOAA Marine Debris Program to fund a variety of programs and efforts to reduce and prevent the impacts of marine debris. This includes funding for:

  • research programs and academic institutions with demonstrated expertise in the economic impacts of marine debris.
  • alternatives to fishing gear that pose potential marine threats.
  • enhanced tracking, recovery, and identification of lost and discarded fishing gear.
  • efforts to reduce the amount of baseline debris from ocean and non-ocean based sources.

Additionally, the Marine Debris Program’s regional marine debris coordination program will receive a funding increase to enhance regional efforts and develop response plans for states in the Northeast, Southeast, and Gulf of Mexico as described under the Marine Debris Act. These plans will help federal, state, and local authorities plan and prepare for the next major marine debris cleanup event, for example, a hurricane.

This budget also proposes funding increases for emergency response preparedness in the Arctic and Gulf of Mexico and for our innovative ERMA tool to transition to a cloud computing platform.  These funds will allow OR&R to improve our services through participation in more regional response exercises with governmental and private partners and enhance scientific support for the Arctic through increased direct engagement with Arctic communities.

I invite you to review the NOAA Fiscal Year 2014 Budget Summary [PDF] for more detailed information on all of NOAA’s proposed activities in the President’s budget.

Each budgetary increase provides a significant opportunity to build NOAA’s capacity to assess future oil and chemical spill impacts, plan for increased maritime activity in the Arctic, and expand our scientific and tactical capabilities using state-of-the-art information management. The budget also will help NOAA to develop capabilities that will lead to more effective strategies to prevent and mitigate the effects of marine debris. I hope to work with our office’s many partners and supporters in the coming months to ensure OR&R’s capacity will continue to meet the rising tide of ocean and coastal challenges to protect lives, property, and the environment and to keep commerce moving.

Dave Westerholm

Dave Westerholm

Dave Westerholm currently serves as the Director of NOAA’s Office of Response and Restoration. Prior to NOAA, he had several years of corporate experience as both Senior Operations Director and Vice President for Maritime Security, Policy and Communications for Anteon Corporation and then General Dynamics. He is a retired Coast Guard Captain with over 27 years of experience in a variety of fields including maritime safety, port security, and environmental protection.

Follow

Get every new post delivered to your Inbox.

Join 406 other followers