NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Two Unlikely Neighbors, Orphans and Industry, Share a Past Along the Delaware River

Sign behind a fence reading Metal Bank Super Fund Site.

The Metal Bank site was placed on a National Priorities List for Federal cleanup in 1983. (NOAA)

When NOAA environmental scientist Alyce Fritz talks about her first visit to the Metal Bank Superfund Site back in 1986, she always mentions the orphanage next door. St. Vincent’s Orphans Asylum, as it was named when it was opened by the Catholic Archdiocese of Philadelphia in 1857, is separated from the Metal Bank site by a stormwater outfall that drains into the Delaware River just north of the former orphanage.

The Metal Bank Superfund Site and St. Vincent’s are located several miles north of the center of Philadelphia, Pennsylvania, on the banks of the Delaware River in an industrial district that is part of the historic Tacony neighborhood. Located on 29 acres along the river, St. Vincent’s looks like a beautiful old park. What Fritz remembers clearly on that first visit was the children’s playground equipment placed near the river’s edge.

Large brick building with St. Vincint's over the door.

St. Vincent’s, as it appears today on the Delaware River in the Tacony neighborhood of Philadelphia.

On the adjacent 10 acre Metal Bank site, a company called Metal Bank of America, Inc., owned and operated a salvage facility where scrap metal and electric transformers were recycled for over 60 years. Part of the recycling process used by Metal Bank of America, Inc. involved draining oil—loaded with toxic compounds including PCBs—from the used transformers to reclaim copper parts. PCBs are considered a probable cause of cancer in humans and are harmful to clams and fish found in the mudflats and river next to the site.

In the 1970s the U.S. Coast Guard discovered oil releases in the Delaware River and traced them back to the site. Throughout the 1980s, the Metal Bank site’s owners used an oil recovery system to clear the groundwater of PCB-laced oil. However, oil continued to seep from an underground tank at the site. As a result, PCBs and other hazardous substances were left in the soil, groundwater, and river bed sediments at the Metal Bank site and adjacent to St. Vincent’s.

In 1983 the Metal Bank site was placed on the National Priorities List (the Superfund program) and slated for federal cleanup. During the course of the federal cleanup process, various parties were identified as being liable for the contamination at the site, including a number of utility companies that transported their used electrical transformers to the Metal Bank site for disposal or otherwise arranged to dispose of their used electrical transformers at the Metal Bank site.

Federal and local agencies collaborated on a design for cleanup of multiple contaminants of concern at the Metal Bank site. Found in the soil, sediment, groundwater, and surface water, these contaminants included but were not limited to:

  • PCBs.
  • polynuclear aromatic hydrocarbons (a toxic component of oil).
  • semi-volatile organic compounds.
  • pesticides.
  • metals.

The cleanup, which began in 2008, included excavating soils and river sediments contaminated with PCBs, capping some areas of river sediment, installing a retaining wall near the river, and removing an old transformer oil storage tank. Most of this work was completed in 2010.

Panorama of Metal Bank Superfund Site from the top of steps by the river to the mudflats in 1991. The view is looking south on the Delaware River past St. Vincent’s property. (NOAA) A view of the outflow where water runs into the Delaware River to the south of the Metal Bank site in 2013. (NOAA) A riprap sampling station near an oil slick in 1993 in front of the Metal Bank site. (NOAA) A view of the Delaware River across the mudflats on the Metal Bank Site. (EPA)

Panorama of Metal Bank Superfund Site from the top of steps by the river to the mudflats in 1991. The view is looking south on the Delaware River past St. Vincent’s property. (NOAA) A view of the outflow where water runs into the Delaware River to the south of the Metal Bank site in 2013. (NOAA) A riprap sampling station near an oil slick in 1993 in front of the Metal Bank site. (NOAA) A view of the Delaware River across the mudflats on the Metal Bank Site. (EPA)

As part of the required 5-year review period, monitoring of the Metal Bank site continues. This is to ensure the cleanup is still protecting human health and the environment, including endangered Atlantic Sturgeon and Shortnose Sturgeon. Through successful coordination among the EPA, other federal and state agencies, and some of the potentially responsible parties (PRPs) during the Superfund process, the cleanup has reduced the threat to natural resources in the river and enhanced the recovery of the habitat along the site and St. Vincent’s property.

Over the years, the role of St. Vincent’s has evolved too, from serving as a long-term home for orphans toward one of providing short-term shelter and care to abused and neglected children. Prior to the early 1990s, children who came to St. Vincent’s spent a significant part of their childhood as residents of the institution. In a 1992 article in the Philadelphia Daily News, Sister Kathleen Reilly explained that the children currently cared for by St. Vincent’s range in age from two to 12 years of age and are placed at the home temporarily through an arrangement between the City of Philadelphia Department of Human Services and Catholic Social Services. Today St. Vincent’s serves young people mostly through day programs. One thing hasn’t changed though—the lush grounds along the river are still beautiful.

Playground swings at St. Vincent's. Statue of St. Vincent with a child in front of large brick building. Elaborate locked iron gate with a cross. Pavilion with trees and river view.

From top left: A recent photo of part of the play area behind St. Vincent’s on the grounds facing the Delaware River. (NOAA) An old photo of a statue in front of St. Vincent’s Orphan Asylum, as it was originally named. (U.S. Library of Congress) The main building of the historic institution in Northeast Philadelphia that first opened its gates in 1857 as St. Vincent’s Orphans Asylum. Photo was taken in 2013. (NOAA) An old photo of a pavilion in the recreational area behind St. Vincent’s main building. The Delaware River and playground equipment is visible in the background. (U.S. Library of Congress)

The federal and state co-trustees for the ongoing Natural Resource Damage Assessment at the Metal Bank site include NOAA’s Damage Assessment, Remediation, and Restoration Program; the U.S. Fish and Wildlife Service; and multiple Pennsylvania state agencies. Collectively, the trustees are working together to further engage with the potentially responsible parties and build upon what has been accomplished at the site by the cleanup.

The trustees have invited the potentially responsible parties to join them in a cooperative effort to improve habitat for the injured natural resources (such as habitat along the river and wetlands) that support the clams, fish, and birds using the Delaware River. In addition, there is the potential for a trail to be routed through the property to a scenic view of St. Vincent’s and the river (an area which is now safe for recreational use). The trustees hope that the natural resources at the Metal Bank site can evolve to become a vibrant part of the historic Tacony neighborhood once again too.


Leave a comment

See Restoration in Action for California’s Kelp Forests

Healthy kelp forest in southern California.

Healthy kelp forest in southern California. (NOAA)

In July of 2013, a large-scale project to restore kelp forests began off the Palos Verdes peninsula of California. The Bay Foundation, with funding and technical assistance from NOAA’s Montrose Settlements Restoration Program, coordinated the effort to remove overpopulated and undernourished sea urchins from urchin barrens. The large numbers of sea urchins in these areas decimate kelp forests by eating every newly settled kelp plant before they have a chance to grow.

The good news is that these restoration efforts are working. Thanks to volunteer divers, commercial urchin divers, researchers, and local nonprofit groups, southern California’s kelp forests are on the road to recovery. Check out the before and after photos to see the radical difference this project is making. In just weeks after divers clear urchins, newly settled kelp and algae can be seen growing.

In the before photo, you can see what the area’s nearly 100 acres of urchin barrens look like—rocky reef covered in dense clusters of spiny purple urchins. In the after photo, taken several months after restoration began, long strands of giant kelp reach from the seafloor up toward the water’s surface. At some of the restoration sites, kelp have already grown more than 25 feet in length, creating better habitat for fish and other marine life.

Left, purple sea urchins on a rocky reef. Right, young kelp growing tall.

On the left is an urchin barren before divers cleared it of excess purple sea urchins and on the right is newly settled kelp already growing tall several months after restoration. (NOAA)

To date, volunteers have cleared roughly eight acres of reef habitat at four restoration sites, which are in various states of recovery, but we still have plenty more work ahead. In the next two to three years, we hope to reestablish between 75 and 80 acres of kelp forest on the Palos Verdes shelf.

For more information, check out:


2 Comments

A River Reborn: Restoring Salmon Habitat along Seattle’s Duwamish River

Industrial river with part of a boat in the view.

Cutting through south Seattle, the Duwamish River is still very much an industrial river. (NOAA)

Just south of Seattle, the airplane manufacturer Boeing Company has created one of the largest habitat restoration projects on the Lower Duwamish River. Boeing worked with NOAA and our partners under a Natural Resource Damage Assessment to restore habitat for fish, shorebirds, and wildlife harmed by historical industrial activities on this heavily used urban river. We documented and celebrated this work in a short video.

What Kind of Restoration?

In this video, you can learn about the restoration techniques used in the project and how they will benefit the communities of people, fish, and wildlife of the Duwamish River. The restoration project included activities such as:

  • Reshaping the shoreline and adding 170,000 native plants and large woody debris, which provide areas where young salmon can seek refuge from predators in the river.
  • Creating 2 acres of wetlands to create a resting area for migrating salmon.
  • Transforming more than a half mile of former industrial waterfront back into natural shoreline.

Watch the video:

Why Does this River Need Restoring?

In 1913, the U.S. Army Corps of Engineers excavated and straightened the Duwamish River to expand Seattle’s commercial navigation, removing more than 20 million cubic yards of mud and sand and opening the area to heavy industry. But development on this waterway stretches back to the 1870s.

Ninety-seven percent of the original habitat for salmon—including marsh, mudflats, and toppled trees along multiple meandering channels— was lost when they transformed a 9-mile estuary into a 5-mile industrial channel.

As damaged and polluted as the Lower Duwamish Waterway is today, the habitat here is crucial to ensuring the survival and recovery of threatened fish species, including the Puget Sound Chinook and Puget Sound Steelhead. These young fish have to spend time in this part of the Duwamish River, which is a Superfund Site, as they transition from the river’s freshwater to the saltwater of the Puget Sound and Pacific Ocean. Creating more welcoming habitat for these fish gives them places to find food and escape from predators.

Fortunately, this restored waterfront outside of a former Boeing plant will be maintained for all time, and further cleanup and restoration of the river is in various stages as well.

UPDATE 6/17/2014: On June 17, 2014, Boeing hosted a celebration on the newly restored banks of the Lower Duwamish River to recognize the partners who helped make the restoration a reality. Speakers at the event included NOAA, Boeing, the Muckleshoot Tribe, and a local community group. This also gave us the opportunity to share the video “A River Reborn,” which was well received.


2 Comments

What Have We Done for Endangered Species Lately?

Floating brown pelican.

The brown pelican, a successfully recovered species, was removed from the Endangered Species List in 2009. (U.S. Fish and Wildlife Service)

Endangered species have a tough time of it. These plants and animals have been trampled, hunted, contaminated, and pushed out of their homes by humans to the point that their very existence on this planet becomes dangerously uncertain. In the United States, this is when the federal government steps in to list a species as threatened or endangered under the 1973 Endangered Species Act.

Over 40 years later, this critical piece of legislation has had many successes in protecting native animals and plants and the natural areas where they live—perhaps most notably bringing back the national symbol, the bald eagle, from the brink of extinction. Yet with more than 1,500 types of animals and plants remaining threatened or endangered in the United States, we still have more work to do.

On May 16, 2014, we’re going to take the time to recognize this very important national conservation effort by celebrating Endangered Species Day and the many ways, big and small, each of us can help save our nation’s incredible array of plants and animals from extinction—like the now-recovered brown pelican!

Tools for Protecting Species During Oil Spills

So, what has NOAA been doing for endangered species? One example is the Office of Response and Restoration’s special data mapping tools that come into play during oil spills.

When an oil spill occurs along the coast, one priority for our office is identifying whether any threatened or endangered species live in the area near the spill. The responders dealing with the spill have to take into account factors such as what time of year these protected species are breeding or how they might come into contact with spilled oil or the response. This means knowing whether young Chinook salmon may be migrating out to sea through an estuary where a ship may have accidentally discharged fuel. Or knowing if the beaches where spill responders need to clean up oil are also important nesting grounds for a shorebird such as the piping plover.

Our biologists and ecologists help provide this kind of information during an oil spill response, but our office also produces tools to organize and display all of this information for both NOAA and oil spill planners and responders outside our agency. One of these tools is NOAA’s Environmental Sensitivity Index (ESI) maps. These maps characterize coastal environments and wildlife based on their sensitivity to spilled oil. The main components of these maps are sensitive wildlife, shoreline habitats, and the resources people use there, such as a fishery or recreational beach.

A related Geographic Information Systems (GIS) tool, the Threatened and Endangered Species Geodatabases, make up a subset of the original ESI data from our maps. These data focus on the coastal species and habitats that are federally and/or state listed as endangered, threatened, protected, or as a species of concern. These databases offer a more user-friendly option to access some of the most critical biological information for a region.

In the example below, you see a map of Great South Bay from the Long Island ESI atlas. The colored shapes (red, blue, green, and maroon) indicate where the piping plover, shortnose sturgeon, eastern mud turtle, and seabeach amaranth occur in June.

Screen capture of Environmental Sensitivity Map showing habitat of some threatened and endangered species, indicated by the blue, red, maroon, and green coloration, found in the Great South Bay of Long Island Sound, New York.

Habitat of some threatened and endangered species, indicated by the blue, red, maroon, and green coloration, found in the Great South Bay of Long Island Sound, New York. (NOAA)

Using the Threatened and Endangered Species Geodatabases allows oil spill planners and responders to easily gather complex information for a region, such as groupings of species with similar habitat preferences and feeding styles, threatened and endangered status, concentration, and life history summaries. This tool also features the ability to search for presence of a species in a particular month or season. You can take a look at these data, pulled from our many state and federal partners, for anywhere in the United States using this online map application.

What You Can Do

If you’re not an oil spill planner or responder, how can you help protect endangered species? Learn what you can do, such as protecting habitat by planting native rather than invasive plants in your yard, in this podcast from the U.S. Fish and Wildlife Service. Or find an Endangered Species Day event this weekend near you.


Leave a comment

Watch Art Explain What Kind of Habitat Young Salmon Need to Thrive

Illustration from video of two salmon swimming by tree roots.What do young salmon need to grow into the kind of big, healthy adult salmon enjoyed by people as well as bears, seals, and other wildlife? A recent collaboration between NOAA Fisheries and the Pacific Northwest College of Arts makes the answer come to life in a beautiful animation by artists Beryl Allee and John Summerson.

Watch the intersection of art and science as we follow young salmon happily swimming through the cool, shallow waters along a shore. We see the bits of wood, tangled tree roots, and scattered rocks that provide these fish with both insects to eat and protection from predators.

But what happens when a home or business shows up along the water’s edge? How do people remake the shoreline? What kind of environment does this create for those same little salmon?

NOAA partnered with the Pacific Northwest College of Arts to create this moving and educational tool to raise awareness among waterfront landowners and the general public about how the decisions we make affect endangered salmon. In particular, NOAA wanted to address the practice of “armoring,” or using physical structures such as rocks and concrete to protect shorelines from coastal erosion. As we can see in the animation, armored shorelines do not make for happy, healthy young salmon.

Illustration from animation of a sad fish and an armored shoreline.

However, alternatives to armoring shorelines with hard materials are emerging. They include using plants and organic materials to stabilize the shores while also preserving or creating the kind of habitat young salmon need.

Creating better habitat for fish is often the goal of NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP). When we determine that fish were harmed after an oil spill or hazardous chemical release, we, with the help of a range of partners and the public, identify and implement restoration projects to make up for this harm.

Take a look at a few examples in which we built better habitat for salmon:

Beaver Creek, Oregon

A tanker truck carrying gasoline overturned on scenic Highway 26 through central Oregon in 1999, spilling 5,000 gallons of gasoline into Beaver Butte Creek and impacting steelhead trout and Chinook salmon. Working with the Confederated Tribes of the Warm Springs Reservation of Oregon and other partners, we have helped implement five restoration projects. They range from adding large wood to stream banks to provide fish habitat to installing two beaver dam–mimicking structures to improve water quality.

White River, Washington

In 2006 a system failure sent 18,000 gallons of diesel into creeks and wetlands important to endangered Chinook salmon around Washington’s White River. To improve and expand habitat for these salmon, NOAA and our partners removed roadfill and added large pieces of wood (“logjams”) along the edges of the nearby Greenwater River. This restoration project will help slow and redirect the river’s straight, fast-moving currents, creating deep pools for salmon to feed and hide from predators and allowing some of the river water to overflow into slower, shallower tributaries perfect for spawning salmon.

Adak, Alaska

On the remote island of Adak in Alaska’s Aleutian Islands, a tanker overfilled an underground storage tank in 2010. This resulted in up to 142,800 gallons of diesel eventually flowing into the nearby salmon stream, Helmet Creek. Pink salmon and Dolly Varden trout were particularly affected. In 2013 NOAA and our partners restored fish passage to the creek, improved habitat and water quality, made stream flow and channel improvements, and removed at least a dozen 55-gallon drums from the creek bed and banks.

You can also watch a video to learn how NOAA is restoring recreationally and commercially important fish through a variety of projects in the northeast United States.


Leave a comment

NOAA and Partners Invest in an Innovative New Stewardship Program for Washington’s Commencement Bay

A group of people holding a giant check for $4.9 million.

NOAA hands off a $4.9 million check to the nonprofit EarthCorps, which will use the funding for planning, restoration, monitoring, and maintenance at 17 restoration sites across Washington’s Commencement Bay. U.S. Representatives Dennis Heck (WA), Derek Kilmer (WA), and Peter DeFazio (OR) were also in attendance. (NOAA)

Last week, NOAA and partners awarded $4.9 million to EarthCorps for long-term stewardship of restoration sites in Commencement Bay near Tacoma, Washington. The Commencement Bay Stewardship Collaborative is part of a larger investment that will conserve habitat for fish and wildlife and give local urban communities access to the shoreline.

EarthCorps, which was competitively selected for this funding, is a non-profit organization that trains environmental leaders through local service projects.

Volunteers plant ferns at a restoration site in Commencement Bay.

Volunteers restore a site in Commencement Bay. (NOAA)

The funding will support planning, restoration, monitoring, and maintenance at 17 sites across the Bay. These sites were restored over the past 20 years as part of the ongoing Commencement Bay natural resource damage assessment (NRDA) case. This is the first time that a third party has received funding to launch a comprehensive stewardship program as part of a NRDA case. We hope it will become a model of stewardship for future cases.

Commencement Bay is the harbor for Tacoma, Washington, at the southern end of Puget Sound. Many of the waterways leading into the Bay—which provide habitat for salmon, steelhead, and other fish—have been polluted by industrial and commercial activities. NOAA and other federal, state, and tribal partners have been working for decades to address the contamination and restore damaged habitat.

One of the sites that EarthCorps will maintain is the Sha Dadx project on the bank of the Puyallup River. The lower Puyallup River was straightened in the early 20th century, leaving little off-channel habitat—which juvenile salmon use for rearing and foraging. The project reconnected the river to a curve that had been cut off by levees. This restored 20 acres of off-channel habitat, and fish and wildlife are using the site.

Most of the parties responsible for the contamination have settled and begun implementing restoration. NOAA and its partners are evaluating options for pursuing parties that haven’t settled yet. As new sites are added, stewardship funds will be secured at settlement and likely added to the overall long-term effort.

This story was originally posted on NOAA’s National Marine Fisheries Service Habitat Conservation website.


2 Comments

Little “Bugs” Can Spread Big Pollution Through Contaminated Rivers

This is a post by the NOAA Restoration Center’s Lauren Senkyr.

When we think of natural resources harmed by pesticides, toxic chemicals, and oil spills, most of us probably envision soaring birds or adorable river otters.  Some of us may consider creatures below the water’s surface, like the salmon and other fish that the more charismatic animals eat, and that we like to eat ourselves. But it’s rare that we spend much time imagining what contamination means for the smaller organisms that we don’t see, or can’t see without a microscope.

Mayfly aquatic insect on river bottom.

A mayfly, pictured above, is an important component in the diet of salmon and other fish. (NOAA)

The tiny creatures that live in the “benthos”—the mud, sand, and stones at the bottoms of rivers—are called benthic macroinvertebrates. Sometimes mistakenly called “bugs,” the benthic macroinvertebrate community actually includes a variety of animals like snails, clams, and worms, in addition to insects like mayflies, caddisflies, and midges. They play several important roles in an ecosystem. They help cycle and filter nutrients and they are a major food source for fish and other animals.

Though we don’t see them often, benthic macroinvertebrates play an extremely important role in river ecosystems. In polluted rivers, such as the lower 10 miles of the Willamette River in Portland, Oregon, these creatures serve as food web pathways for legacy contaminants like PCBs and DDT. Because benthic macroinvertebrates live and feed in close contact with contaminated muck, they are prone to accumulation of contaminants in their bodies.  They are, in turn, eaten by predators and it is in this way that contaminants move “up” through the food web to larger, more easily recognizable animals such as sturgeon, mink, and bald eagles.

Some of the ways contaminants can move through the food chain in the Willamette River.

Some of the ways contaminants can move through the food chain in the Willamette River. (Portland Harbor Trustee Council)

The image above depicts some of the pathways that contaminants follow as they move up through the food web in Oregon’s Portland Harbor. Benthic macroinvertebrates are at the bottom of the food web. They are eaten by larger animals, like salmon, sturgeon, and bass. Those fish are then eaten by birds (like osprey and eagle), mammals (like mink), and people.

An illustration showing how concentrations of the pesticide DDT biomagnify 10 million times as they move up the food chain from macroinvertebrates to fish to birds of prey.

An illustration showing how concentrations of the pesticide DDT biomagnify 10 million times as they move up the food chain from macroinvertebrates to fish to birds of prey. (U.S. Fish and Wildlife Service)

As PCB and DDT contamination makes its way up the food chain through these organisms, it is stored in their fat and biomagnified, meaning that the level of contamination you find in a large organism like an osprey is many times more than what you would find in a single water-dwelling insect. This is because an osprey eats many fish in its lifetime, and each of those fish eats many benthic macroinvertebrates.

Therefore, a relatively small amount of contamination in a single insect accumulates to a large amount of contamination in a bird or mammal that may have never eaten an insect directly.  The graphic to the right was developed by the U.S. Fish and Wildlife Service to illustrate how DDT concentrations biomagnify 10 million times as they move up the food chain.

Benthic macroinvertebrates can be used by people to assess water quality. Certain types of benthic macroinvertebrates cannot tolerate pollution, whereas others are extremely tolerant of it.  For example, if you were to turn over a few stones in a Northwest streambed and find caddisfly nymphs (pictured below encased in tiny pebbles), you would have an indication of good water quality. Caddisflies are very sensitive to poor water quality conditions.

Caddisfly nymphs encased in tiny pebbles on a river bottom.

Caddisfly nymphs encased in tiny pebbles on a river bottom are indicators of high water quality. (NOAA)

Surveys in Portland Harbor have shown that we have a pretty simple and uniform benthic macroinvertebrate population in the area. As you might expect, it is mostly made up of pollution-tolerant species. NOAA Restoration Center staff are leading restoration planning efforts at Portland Harbor and it is our hope that once cleanup and restoration projects are completed, we will see a more diverse assemblage of benthic macroinvertebrates in the Lower Willamette River.

Lauren SenkyrLauren Senkyr is a Habitat Restoration Specialist with NOAA’s Restoration Center.  Based out of Portland, Ore., she works on restoration planning and community outreach for the Portland Harbor Superfund site as well as other habitat restoration efforts throughout the state of Oregon.


Leave a comment

Latest Research Finds Serious Heart Troubles When Oil and Young Tuna Mix

Atlantic bluefin tuna prepares to eat a smaller fish.

Atlantic bluefin tuna are a very ecologically and economically valuable species. However, populations in the Gulf of Mexico are at historically low levels. (Copyright: Gilbert Van Ryckevorsel/TAG A Giant)

In May of 2010, when the Deepwater Horizon rig was drilling for oil in the open waters of the Gulf of Mexico, schools of tuna and other large fish would have been moving into the northern Gulf. This is where, each spring and summer, they lay delicate, transparent eggs that float and hatch near the ocean surface. After the oil well suffered a catastrophic blowout and released 4.9 million barrels of oil, these fish eggs may have been exposed to the huge slicks of oil floating up through the same warm waters.

An international team of researchers from NOAA, Stanford University, the University of Miami, and Australia recently published a study in the journal Proceedings of the National Academy of Sciences exploring what happens when tuna mix with oil early in life.

“What we’re interested in is how the Deepwater Horizon accident in the Gulf of Mexico would have impacted open-ocean fishes that spawn in this region, such as tunas, marlins, and swordfishes,” said Stanford University scientist Barbara Block.

This study is part of ongoing research to determine how the waters, lands, and life of the Gulf of Mexico were harmed by the Deepwater Horizon oil spill and response. It also builds on decades of research examining the impacts of crude oil on fish, first pioneered after the 1989 Exxon Valdez oil spill in Alaska. Based on those studies, NOAA and the rest of the research team knew that crude oil was toxic to young fish and taught them to look carefully at their developing hearts.

“One of the most important findings was the discovery that the developing fish heart is very sensitive to certain chemicals derived from crude oil,” said Nat Scholz of NOAA’s Northwest Fisheries Science Center.

This is why in this latest study they examined oil’s impacts on young bluefin tuna, yellowfin tuna, and amberjack, all large fish that hunt at the top of the food chain and reproduce in the warm waters of the open ocean. The researchers exposed fertilized fish eggs to small droplets of crude oil collected from the surface and the wellhead from the Deepwater Horizon spill, using concentrations comparable to those during the spill. Next, they put the transparent eggs and young fish under the microscope to observe the oil’s impacts at different stages of development. Using a technology similar to doing ultrasounds on humans, the researchers were able create a digital record of the fishes’ beating hearts.

All three species of fish showed dramatic effects from the oil, regardless of how weathered (broken down) it was. Severely malformed and malfunctioning hearts was the most severe impact. Depending on the oil concentration, the developing fish had slow and irregular heartbeats and excess fluid around the heart. Other serious effects, including spine, eye, and jaw deformities, were a result of this heart failure.

Top: A normal young yellowfin tuna. Bottom: A deformed yellowfin tuna exposed to oil during development.

A normal yellowfin tuna larva not long after hatching (top), and a larva exposed to Deepwater Horizon crude oil as it developed in the egg (bottom). The oil-exposed larva shows a suite of abnormalities including excess fluid building up around the heart due to heart failure and poor growth of fins and eyes. (NOAA)

“Crude oil shuts down key cellular processes in fish heart cells that regulate beat-to-beat function,” noted Block, referencing another study by this team.

As the oil concentration, particularly the levels of polycyclic aromatic hydrocarbons (PAHs), went up, so did the severity of the effects on the fish. Severely affected fish with heart defects are unlikely to survive. Others looked normal on the outside but had underlying issues like irregular heartbeats. This could mean that while some fish survived directly swimming through oil, heart conditions could follow them through life, impairing their (very important) swimming ability and perhaps leading to an earlier-than-natural death.

“The heart is one of the first organs to appear, and it starts beating before it’s completely built,” said NOAA Fisheries biologist John Incardona. “Anything that alters heart rhythm during embryonic development will likely impact the final shape of the heart and the ability of the adult fish to survive in the wild.”

Even at low levels, oil can have severe effects on young fish, not only in the short-term but throughout the course of their lives. These subtle but serious impacts are a lesson still obvious in the recovery of marine animals and habitats still happening 25 years after the Exxon Valdez oil spill.


Leave a comment

Remembering the Exxon Valdez: Collecting 25 Years of Memories and Memorabilia

On May 24, 1989, NOAA marine biologist Gary Shigenaka was on board the NOAA ship Fairweather in Prince William Sound, Alaska. It had been two months since the tanker Exxon Valdez, now tied up for repairs nearby, had run aground and spilled nearly 11 million gallons of crude oil into the waters the Fairweather was now sailing through.

A man in a tyvek suit stands on a ship next to a life preserver with mountains and water in the background.

NOAA marine biologist Gary Shigenaka in 1989 aboard the tanker Exxon Valdez itself. In retrospect, Shigenaka joked that he should have made off with the ship’s life preserver for his eventual collection of artifacts related to the ship and spill. (NOAA)

That day Shigenaka and the other NOAA scientists aboard the Fairweather were collecting data about the status of fish after the oil spill.

Little did he know he would be collecting something else too: a little piece of history that would inspire his 25-year-long collection of curiosities related to the Exxon Valdez. Shigenaka’s collection of items would eventually grow to include everything from tourist trinkets poking fun at the spill to safety award memorabilia given to the tanker’s crew years before it grounded.

This unusual collection’s first item came to Shigenaka back on that May day in 1989, when the NOAA scientists on their ship were flagged down by the crippled tanker’s salvage crew. Come here, they said. We think you’re going to want to see this.

Apparently, while the salvage crew was busy making repairs to the damaged Exxon Valdez, they had noticed big schools of fish swimming in and out of the holes in the ship.

So Shigenaka and a few others went aboard the Exxon Valdez, putting a small boat inside the flooded cargo holds and throwing their nets into the waters. They were unsuccessful at catching the fish moving in and out of the ship, but Shigenaka and the other NOAA scientists didn’t leave the infamous tanker empty-handed.

They noticed that the salvage workers who had initially invited them on board were cutting away steel frames hanging off of the ship. Naturally, they asked if they could have one of the steel frames, which they had cut into pieces a few inches long so that each of these fish-counting scientists could take home a piece of the Exxon Valdez.

After Shigenaka took this nondescript chunk of steel back home to Seattle, Wash., he heard rumors about the existence of another item that piqued his interest. The Exxon Shipping Company had allegedly produced safety calendars which featured the previously exemplary tanker Exxon Valdez during the very month that it would cause the largest oil spill in U.S. waters at the time—March 1989. Feeling a bit like Moby Dick’s Captain Ahab chasing down a mythical white whale, Shigenaka’s efforts were finally rewarded when he saw one of these calendars pop up on eBay. He bought it. And that was just the beginning.

This young biologist who began his career in oil spill response with the fateful Exxon Valdez spill would find both his professional and personal life shaped by this monumental spill. Today, Shigenaka has an alert set up so that he is notified when anything related to the Exxon Valdez shows up on eBay. He will occasionally bid when something catches his eye, mostly rarer items from the days before the oil spill.

To commemorate the 25 years since the Exxon Valdez oil spill, take a peek at what is in Gary Shigenaka’s personal collection of Exxon Valdez artifacts.

Read a report by Gary Shigenaka summarizing information about the Exxon Valdez oil spill and response along with NOAA’s role and research over the past 25 years.


1 Comment

After an Oil Spill, Why Does NOAA Count Recreational Fishing Trips People Never Take?

Families fish off the edge of a seawall.

A perhaps less obvious impact of an oil spill is that people become unable to enjoy the benefits of the affected natural areas. For example, this could be recreational fishing, boating, swimming, or hiking. (NOAA)

From oil-coated birds to oil-covered marshes, the impacts of oil spills can be extremely visual. Our job here at NOAA is to document not only these easy-to-see damages to natural areas and the birds, fish, and wildlife that live there. We also do this for the many impacts of oil spills which may not be as obvious.

For example, after spilled oil washes on shore, people often can no longer swim, picnic, or play at that beach. Or you may see fewer or no recreational fishers on a nearby pier.

Restoring Nature’s Benefits to People

After a spill, these public lands, waters, and wildlife become cut off from people. At NOAA, we have the responsibility to make sure those lost trips to the beach for fishing or swimming are documented—and made up for—along with the oil spill’s direct harm to nature.

Why do we collect the number of fishing trips or days of swimming that don’t occur during a spill? It’s simple. Our job is to work with the organization or person responsible for the oil spill to make sure projects are completed that compensate the public for the time during the spill they could not enjoy nature’s benefits. If people did not fish recreationally in the wake of a spill because a fishery was closed or inaccessible, opportunities for them to fish—and the quality of their fishing experience—after the spill need to be increased. These opportunities may come in the form of building more boat ramps or new public access points to the water or creating healthier waters for fish.

Working with our partners, NOAA develops restoration plans that recommend possible projects that increase opportunities for and public access to activities such as fishing, swimming, or hiking. We then seek public input to make sure these projects are supported by the affected community. The funding for these finalized restoration projects comes from those responsible for the spill.

What Does This Look Like in Practice?

On April 7, 2000, a leak was detected in a 12-inch underground pipeline that supplies oil to the Potomac Electric Power Company’s (PEPCO) Chalk Point generating station in Aquasco, Md. Approximately 140,000 gallons of fuel oil leaked into Swanson Creek, a small tributary of the Patuxent River. About 40 miles of vulnerable downstream creeks and shorelines were coated in oil as a result.

We and our partners assessed the impacts to recreational fishing, boating, and shoreline use (such as swimming, picnicking, and wildlife viewing). We found that 10 acres of beaches were lightly, moderately, or heavily oiled and 125,000 trips on the river were affected. In order to compensate the public for these lost days of enjoying the river, we worked with our partners to implement the following projects:

  • Two new canoe and kayak paddle-in campsites on the Patuxent River.
  • Boat ramp and fishing pier improvements at Forest Landing.
  • Boat launch improvements to an existing fishing pier at Nan’s Cove.
  • Recreational improvements at Maxwell Hall Natural Resource Management Area.
  • An Americans with Disabilities Act (ADA)-accessible kayak and canoe launch at Greenwell State Park.

For more detail, you can learn how NOAA economists count and calculate the amount of restoration needed after pollution is released and also watch a short video lesson in economics and value from NOAA’s National Ocean Service.

Follow

Get every new post delivered to your Inbox.

Join 370 other followers