NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

In Oregon, an Innovative Approach to Building Riverfront Property for Fish and Wildlife

This is a post by Robert Neely of NOAA’s Office of Response Restoration.

Something interesting is happening on the southern tip of Sauvie Island, located on Oregon’s Willamette River, a few miles downstream from the heart of Portland. Construction is once again underway along the river’s edge in an urban area where riverfront property typically is prized as a location for luxury housing, industrial activities, and maritime commerce. But this time, something is different.

This project will not produce a waterfront condominium complex, industrial facility, or marina. And as much as it may look like a typical construction project today, the results of all this activity will look quite different from much of what currently exists along the shores of the lower Willamette River from Portland to the Columbia River.

Indeed, when the dust settles, the site will be transformed into a home and resting place for non-human residents and visitors. Of course, I’m not referring to alien life forms, but rather to the fish, birds, mammals, and other organisms that have existed in and around the Willamette River since long before humans set up home and shop here. Yet in the last century, humans have substantially altered the river and surrounding lands, and high-quality habitat is now a scarce commodity for many stressed critters that require it for their survival.

On the site of a former lumber mill, the Alder Creek Restoration Project is the first habitat restoration project [PDF] that will be implemented specifically to benefit fish and wildlife affected by contamination in the Portland Harbor Superfund Site. The project, managed by a habitat development company called Wildlands, will provide habitat for salmon, lamprey, mink, bald eagle, osprey, and other native fish and wildlife living in Portland Harbor.

Mink at a river's edge.

The Alder Creek Restoration Project will benefit Chinook salmon, mink, and other fish and wildlife living in Portland Harbor. (Roy W. Lowe)

Habitat will be restored by removing buildings and fill from the floodplain, reshaping the riverbanks, and planting native trees and shrubs. The project will create shallow water habitat to provide resting and feeding areas for young salmon and lamprey and foraging for birds. In addition, the construction at Alder Creek will restore beaches and wetlands to provide access to water and food for mink and forests to provide shelter and nesting opportunities for native birds.

Driving this project is a Natural Resource Damage Assessment conducted by the Portland Harbor Natural Resource Trustee Council to quantify natural resource losses resulting from industrial contamination of the river with the toxic compounds PCBs, the pesticide DDT, oil compounds known as PAHs, and other hazardous substances. The services, or benefits from nature, provided by the Alder Creek Restoration Project—such as healthy habitat, clean water, and cultural value—will help make up for the natural resources that were lost over time because of contamination.

Young Chinook salmon on river bottom.

Fish and wildlife species targeted for restoration include salmon (such as the juvenile Chinook salmon pictured here), lamprey, sturgeon, bald eagle, osprey, spotted sandpiper, and mink. (U.S. Fish and Wildlife Service)

Wildlands purchased the land in order to create and implement an early restoration project. This “up-front” approach to restoration allows for earlier implementation of projects that provide restored habitat to injured species sooner, placing those species on a trajectory toward recovery. The service credits—ecological and otherwise—that will be generated by this new habitat will be available for purchase by parties that have liability for the environmental and cultural losses calculated in the damage assessment.

Thus when a party reaches an agreement with the Trustee Council regarding the amount of their liability, they can resolve it by purchasing restoration credits from Wildlands. And Wildlands, as the seller of restoration credits, recoups the financial investment it made to build the project. Finally, and most importantly, a substantial piece of land with tremendous potential value for the fish, birds, and other wildlife of the lower Willamette River has been locked in as high-quality habitat and thus protected from future development for other, less ecologically friendly purposes.

Robert NeelyRobert Neely is an environmental scientist with the National Oceanic and Atmospheric Administration’s Office of Response and Restoration. He has experience in ocean and coastal management, brownfields revitalization, Ecological Risk Assessment, and Natural Resource Damage Assessment. He started with NOAA in 1998 and has worked for the agency in Charleston, South Carolina; Washington, DC; New Bedford, Massachusetts; and Seattle, Washington, where he lives with his wife and daughter. He’s been working with his co-trustees at Portland Harbor since 2005.


Leave a comment

Two Unlikely Neighbors, Orphans and Industry, Share a Past Along the Delaware River

Sign in a grassy field, in front of an old brick building.

An EPA sign marking the Metal Bank Superfund Site stands near the old St. Vincent’s Orphanage building. (EPA)

When NOAA environmental scientist Alyce Fritz talks about her first visit to the Metal Bank Superfund Site back in 1986, she always mentions the orphanage next door. St. Vincent’s Orphans Asylum, as it was named when it was opened by the Catholic Archdiocese of Philadelphia in 1857, is separated from the Metal Bank site by a stormwater outfall that drains into the Delaware River just north of the former orphanage.

The Metal Bank Superfund Site and St. Vincent’s are located several miles north of the center of Philadelphia, Pennsylvania, on the banks of the Delaware River in an industrial district that is part of the historic Tacony neighborhood. Located on 29 acres along the river, St. Vincent’s looks like a beautiful old park. What Fritz remembers clearly on that first visit was the children’s playground equipment placed near the river’s edge.

Large brick building with St. Vincint's over the door.

St. Vincent’s, as it appears today on the Delaware River in the Tacony neighborhood of Philadelphia.

On the adjacent 10 acre Metal Bank site, a company called Metal Bank of America, Inc., owned and operated a salvage facility where scrap metal and electric transformers were recycled for over 60 years. Part of the recycling process used by Metal Bank of America, Inc. involved draining oil—loaded with toxic compounds including PCBs—from the used transformers to reclaim copper parts. PCBs are considered a probable cause of cancer in humans and are harmful to clams and fish found in the mudflats and river next to the site.

In the 1970s the U.S. Coast Guard discovered oil releases in the Delaware River and traced them back to the site. Throughout the 1980s, the Metal Bank site’s owners used an oil recovery system to clear the groundwater of PCB-laced oil. However, oil continued to seep from an underground tank at the site. As a result, PCBs and other hazardous substances were left in the soil, groundwater, and river bed sediments at the Metal Bank site and adjacent to St. Vincent’s.

In 1983 the Metal Bank site was placed on the National Priorities List (the Superfund program) and slated for federal cleanup. During the course of the federal cleanup process, various parties were identified as being liable for the contamination at the site, including a number of utility companies that transported their used electrical transformers to the Metal Bank site for disposal or otherwise arranged to dispose of their used electrical transformers at the Metal Bank site.

Federal and local agencies collaborated on a design for cleanup of multiple contaminants of concern at the Metal Bank site. Found in the soil, sediment, groundwater, and surface water, these contaminants included but were not limited to:

  • PCBs.
  • polynuclear aromatic hydrocarbons (a toxic component of oil).
  • semi-volatile organic compounds.
  • pesticides.
  • metals.

The cleanup, which began in 2008, included excavating soils and river sediments contaminated with PCBs, capping some areas of river sediment, installing a retaining wall near the river, and removing an old transformer oil storage tank. Most of this work was completed in 2010.

Panorama of Metal Bank Superfund Site from the top of steps by the river to the mudflats in 1991. The view is looking south on the Delaware River past St. Vincent’s property. (NOAA) A view of the outflow where water runs into the Delaware River to the south of the Metal Bank site in 2013. (NOAA) A riprap sampling station near an oil slick in 1993 in front of the Metal Bank site. (NOAA) A view of the Delaware River across the mudflats on the Metal Bank Site. (EPA)

Panorama of Metal Bank Superfund Site from the top of steps by the river to the mudflats in 1991. The view is looking south on the Delaware River past St. Vincent’s property. (NOAA) A view of the outflow where water runs into the Delaware River to the south of the Metal Bank site in 2013. (NOAA) A riprap sampling station near an oil slick in 1993 in front of the Metal Bank site. (NOAA) A view of the Delaware River across the mudflats on the Metal Bank Site. (EPA)

As part of the required 5-year review period, monitoring of the Metal Bank site continues. This is to ensure the cleanup is still protecting human health and the environment, including endangered Atlantic Sturgeon and Shortnose Sturgeon. Through successful coordination among the EPA, other federal and state agencies, and some of the potentially responsible parties (PRPs) during the Superfund process, the cleanup has reduced the threat to natural resources in the river and enhanced the recovery of the habitat along the site and St. Vincent’s property.

Over the years, the role of St. Vincent’s has evolved too, from serving as a long-term home for orphans toward one of providing short-term shelter and care to abused and neglected children. Prior to the early 1990s, children who came to St. Vincent’s spent a significant part of their childhood as residents of the institution. In a 1992 article in the Philadelphia Daily News, Sister Kathleen Reilly explained that the children currently cared for by St. Vincent’s range in age from two to 12 years of age and are placed at the home temporarily through an arrangement between the City of Philadelphia Department of Human Services and Catholic Social Services. Today St. Vincent’s serves young people mostly through day programs. One thing hasn’t changed though—the lush grounds along the river are still beautiful.

Playground swings at St. Vincent's. Statue of St. Vincent with a child in front of large brick building. Elaborate locked iron gate with a cross. Pavilion with trees and river view.

From top left: A recent photo of part of the play area behind St. Vincent’s on the grounds facing the Delaware River. (NOAA) An old photo of a statue in front of St. Vincent’s Orphan Asylum, as it was originally named. (U.S. Library of Congress) The main building of the historic institution in Northeast Philadelphia that first opened its gates in 1857 as St. Vincent’s Orphans Asylum. Photo was taken in 2013. (NOAA) An old photo of a pavilion in the recreational area behind St. Vincent’s main building. The Delaware River and playground equipment is visible in the background. (U.S. Library of Congress)

The federal and state co-trustees for the ongoing Natural Resource Damage Assessment at the Metal Bank site include NOAA’s Damage Assessment, Remediation, and Restoration Program; the U.S. Fish and Wildlife Service; and multiple Pennsylvania state agencies. Collectively, the trustees are working together to further engage with the potentially responsible parties and build upon what has been accomplished at the site by the cleanup.

The trustees have invited the potentially responsible parties to join them in a cooperative effort to improve habitat for the injured natural resources (such as habitat along the river and wetlands) that support the clams, fish, and birds using the Delaware River. In addition, there is the potential for a trail to be routed through the property to a scenic view of St. Vincent’s and the river (an area which is now safe for recreational use). The trustees hope that the natural resources at the Metal Bank site can evolve to become a vibrant part of the historic Tacony neighborhood once again too.


Leave a comment

See Restoration in Action for California’s Kelp Forests

Healthy kelp forest in southern California.

Healthy kelp forest in southern California. (NOAA)

In July of 2013, a large-scale project to restore kelp forests began off the Palos Verdes peninsula of California. The Bay Foundation, with funding and technical assistance from NOAA’s Montrose Settlements Restoration Program, coordinated the effort to remove overpopulated and undernourished sea urchins from urchin barrens. The large numbers of sea urchins in these areas decimate kelp forests by eating every newly settled kelp plant before they have a chance to grow.

The good news is that these restoration efforts are working. Thanks to volunteer divers, commercial urchin divers, researchers, and local nonprofit groups, southern California’s kelp forests are on the road to recovery. Check out the before and after photos to see the radical difference this project is making. In just weeks after divers clear urchins, newly settled kelp and algae can be seen growing.

In the before photo, you can see what the area’s nearly 100 acres of urchin barrens look like—rocky reef covered in dense clusters of spiny purple urchins. In the after photo, taken several months after restoration began, long strands of giant kelp reach from the seafloor up toward the water’s surface. At some of the restoration sites, kelp have already grown more than 25 feet in length, creating better habitat for fish and other marine life.

Left, purple sea urchins on a rocky reef. Right, young kelp growing tall.

On the left is an urchin barren before divers cleared it of excess purple sea urchins and on the right is newly settled kelp already growing tall several months after restoration. (NOAA)

To date, volunteers have cleared roughly eight acres of reef habitat at four restoration sites, which are in various states of recovery, but we still have plenty more work ahead. In the next two to three years, we hope to reestablish between 75 and 80 acres of kelp forest on the Palos Verdes shelf.

For more information, check out:


2 Comments

A River Reborn: Restoring Salmon Habitat along Seattle’s Duwamish River

Industrial river with part of a boat in the view.

Cutting through south Seattle, the Duwamish River is still very much an industrial river. (NOAA)

Just south of Seattle, the airplane manufacturer Boeing Company has created one of the largest habitat restoration projects on the Lower Duwamish River. Boeing worked with NOAA and our partners under a Natural Resource Damage Assessment to restore habitat for fish, shorebirds, and wildlife harmed by historical industrial activities on this heavily used urban river. We documented and celebrated this work in a short video.

What Kind of Restoration?

In this video, you can learn about the restoration techniques used in the project and how they will benefit the communities of people, fish, and wildlife of the Duwamish River. The restoration project included activities such as:

  • Reshaping the shoreline and adding 170,000 native plants and large woody debris, which provide areas where young salmon can seek refuge from predators in the river.
  • Creating 2 acres of wetlands to create a resting area for migrating salmon.
  • Transforming more than a half mile of former industrial waterfront back into natural shoreline.

Watch the video:

Why Does this River Need Restoring?

In 1913, the U.S. Army Corps of Engineers excavated and straightened the Duwamish River to expand Seattle’s commercial navigation, removing more than 20 million cubic yards of mud and sand and opening the area to heavy industry. But development on this waterway stretches back to the 1870s.

Ninety-seven percent of the original habitat for salmon—including marsh, mudflats, and toppled trees along multiple meandering channels— was lost when they transformed a 9-mile estuary into a 5-mile industrial channel.

As damaged and polluted as the Lower Duwamish Waterway is today, the habitat here is crucial to ensuring the survival and recovery of threatened fish species, including the Puget Sound Chinook and Puget Sound Steelhead. These young fish have to spend time in this part of the Duwamish River, which is a Superfund Site, as they transition from the river’s freshwater to the saltwater of the Puget Sound and Pacific Ocean. Creating more welcoming habitat for these fish gives them places to find food and escape from predators.

Fortunately, this restored waterfront outside of a former Boeing plant will be maintained for all time, and further cleanup and restoration of the river is in various stages as well.

UPDATE 6/17/2014: On June 17, 2014, Boeing hosted a celebration on the newly restored banks of the Lower Duwamish River to recognize the partners who helped make the restoration a reality. Speakers at the event included NOAA, Boeing, the Muckleshoot Tribe, and a local community group. This also gave us the opportunity to share the video “A River Reborn,” which was well received.


2 Comments

What Have We Done for Endangered Species Lately?

Floating brown pelican.

The brown pelican, a successfully recovered species, was removed from the Endangered Species List in 2009. (U.S. Fish and Wildlife Service)

Endangered species have a tough time of it. These plants and animals have been trampled, hunted, contaminated, and pushed out of their homes by humans to the point that their very existence on this planet becomes dangerously uncertain. In the United States, this is when the federal government steps in to list a species as threatened or endangered under the 1973 Endangered Species Act.

Over 40 years later, this critical piece of legislation has had many successes in protecting native animals and plants and the natural areas where they live—perhaps most notably bringing back the national symbol, the bald eagle, from the brink of extinction. Yet with more than 1,500 types of animals and plants remaining threatened or endangered in the United States, we still have more work to do.

On May 16, 2014, we’re going to take the time to recognize this very important national conservation effort by celebrating Endangered Species Day and the many ways, big and small, each of us can help save our nation’s incredible array of plants and animals from extinction—like the now-recovered brown pelican!

Tools for Protecting Species During Oil Spills

So, what has NOAA been doing for endangered species? One example is the Office of Response and Restoration’s special data mapping tools that come into play during oil spills.

When an oil spill occurs along the coast, one priority for our office is identifying whether any threatened or endangered species live in the area near the spill. The responders dealing with the spill have to take into account factors such as what time of year these protected species are breeding or how they might come into contact with spilled oil or the response. This means knowing whether young Chinook salmon may be migrating out to sea through an estuary where a ship may have accidentally discharged fuel. Or knowing if the beaches where spill responders need to clean up oil are also important nesting grounds for a shorebird such as the piping plover.

Our biologists and ecologists help provide this kind of information during an oil spill response, but our office also produces tools to organize and display all of this information for both NOAA and oil spill planners and responders outside our agency. One of these tools is NOAA’s Environmental Sensitivity Index (ESI) maps. These maps characterize coastal environments and wildlife based on their sensitivity to spilled oil. The main components of these maps are sensitive wildlife, shoreline habitats, and the resources people use there, such as a fishery or recreational beach.

A related Geographic Information Systems (GIS) tool, the Threatened and Endangered Species Geodatabases, make up a subset of the original ESI data from our maps. These data focus on the coastal species and habitats that are federally and/or state listed as endangered, threatened, protected, or as a species of concern. These databases offer a more user-friendly option to access some of the most critical biological information for a region.

In the example below, you see a map of Great South Bay from the Long Island ESI atlas. The colored shapes (red, blue, green, and maroon) indicate where the piping plover, shortnose sturgeon, eastern mud turtle, and seabeach amaranth occur in June.

Screen capture of Environmental Sensitivity Map showing habitat of some threatened and endangered species, indicated by the blue, red, maroon, and green coloration, found in the Great South Bay of Long Island Sound, New York.

Habitat of some threatened and endangered species, indicated by the blue, red, maroon, and green coloration, found in the Great South Bay of Long Island Sound, New York. (NOAA)

Using the Threatened and Endangered Species Geodatabases allows oil spill planners and responders to easily gather complex information for a region, such as groupings of species with similar habitat preferences and feeding styles, threatened and endangered status, concentration, and life history summaries. This tool also features the ability to search for presence of a species in a particular month or season. You can take a look at these data, pulled from our many state and federal partners, for anywhere in the United States using this online map application.

What You Can Do

If you’re not an oil spill planner or responder, how can you help protect endangered species? Learn what you can do, such as protecting habitat by planting native rather than invasive plants in your yard, in this podcast from the U.S. Fish and Wildlife Service. Or find an Endangered Species Day event this weekend near you.


Leave a comment

Watch Art Explain What Kind of Habitat Young Salmon Need to Thrive

Illustration from video of two salmon swimming by tree roots.What do young salmon need to grow into the kind of big, healthy adult salmon enjoyed by people as well as bears, seals, and other wildlife? A recent collaboration between NOAA Fisheries and the Pacific Northwest College of Arts makes the answer come to life in a beautiful animation by artists Beryl Allee and John Summerson.

Watch the intersection of art and science as we follow young salmon happily swimming through the cool, shallow waters along a shore. We see the bits of wood, tangled tree roots, and scattered rocks that provide these fish with both insects to eat and protection from predators.

But what happens when a home or business shows up along the water’s edge? How do people remake the shoreline? What kind of environment does this create for those same little salmon?

NOAA partnered with the Pacific Northwest College of Arts to create this moving and educational tool to raise awareness among waterfront landowners and the general public about how the decisions we make affect endangered salmon. In particular, NOAA wanted to address the practice of “armoring,” or using physical structures such as rocks and concrete to protect shorelines from coastal erosion. As we can see in the animation, armored shorelines do not make for happy, healthy young salmon.

Illustration from animation of a sad fish and an armored shoreline.

However, alternatives to armoring shorelines with hard materials are emerging. They include using plants and organic materials to stabilize the shores while also preserving or creating the kind of habitat young salmon need.

Creating better habitat for fish is often the goal of NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP). When we determine that fish were harmed after an oil spill or hazardous chemical release, we, with the help of a range of partners and the public, identify and implement restoration projects to make up for this harm.

Take a look at a few examples in which we built better habitat for salmon:

Beaver Creek, Oregon

A tanker truck carrying gasoline overturned on scenic Highway 26 through central Oregon in 1999, spilling 5,000 gallons of gasoline into Beaver Butte Creek and impacting steelhead trout and Chinook salmon. Working with the Confederated Tribes of the Warm Springs Reservation of Oregon and other partners, we have helped implement five restoration projects. They range from adding large wood to stream banks to provide fish habitat to installing two beaver dam–mimicking structures to improve water quality.

White River, Washington

In 2006 a system failure sent 18,000 gallons of diesel into creeks and wetlands important to endangered Chinook salmon around Washington’s White River. To improve and expand habitat for these salmon, NOAA and our partners removed roadfill and added large pieces of wood (“logjams”) along the edges of the nearby Greenwater River. This restoration project will help slow and redirect the river’s straight, fast-moving currents, creating deep pools for salmon to feed and hide from predators and allowing some of the river water to overflow into slower, shallower tributaries perfect for spawning salmon.

Adak, Alaska

On the remote island of Adak in Alaska’s Aleutian Islands, a tanker overfilled an underground storage tank in 2010. This resulted in up to 142,800 gallons of diesel eventually flowing into the nearby salmon stream, Helmet Creek. Pink salmon and Dolly Varden trout were particularly affected. In 2013 NOAA and our partners restored fish passage to the creek, improved habitat and water quality, made stream flow and channel improvements, and removed at least a dozen 55-gallon drums from the creek bed and banks.

You can also watch a video to learn how NOAA is restoring recreationally and commercially important fish through a variety of projects in the northeast United States.


Leave a comment

NOAA and Partners Invest in an Innovative New Stewardship Program for Washington’s Commencement Bay

A group of people holding a giant check for $4.9 million.

NOAA hands off a $4.9 million check to the nonprofit EarthCorps, which will use the funding for planning, restoration, monitoring, and maintenance at 17 restoration sites across Washington’s Commencement Bay. U.S. Representatives Dennis Heck (WA), Derek Kilmer (WA), and Peter DeFazio (OR) were also in attendance. (NOAA)

Last week, NOAA and partners awarded $4.9 million to EarthCorps for long-term stewardship of restoration sites in Commencement Bay near Tacoma, Washington. The Commencement Bay Stewardship Collaborative is part of a larger investment that will conserve habitat for fish and wildlife and give local urban communities access to the shoreline.

EarthCorps, which was competitively selected for this funding, is a non-profit organization that trains environmental leaders through local service projects.

Volunteers plant ferns at a restoration site in Commencement Bay.

Volunteers restore a site in Commencement Bay. (NOAA)

The funding will support planning, restoration, monitoring, and maintenance at 17 sites across the Bay. These sites were restored over the past 20 years as part of the ongoing Commencement Bay natural resource damage assessment (NRDA) case. This is the first time that a third party has received funding to launch a comprehensive stewardship program as part of a NRDA case. We hope it will become a model of stewardship for future cases.

Commencement Bay is the harbor for Tacoma, Washington, at the southern end of Puget Sound. Many of the waterways leading into the Bay—which provide habitat for salmon, steelhead, and other fish—have been polluted by industrial and commercial activities. NOAA and other federal, state, and tribal partners have been working for decades to address the contamination and restore damaged habitat.

One of the sites that EarthCorps will maintain is the Sha Dadx project on the bank of the Puyallup River. The lower Puyallup River was straightened in the early 20th century, leaving little off-channel habitat—which juvenile salmon use for rearing and foraging. The project reconnected the river to a curve that had been cut off by levees. This restored 20 acres of off-channel habitat, and fish and wildlife are using the site.

Most of the parties responsible for the contamination have settled and begun implementing restoration. NOAA and its partners are evaluating options for pursuing parties that haven’t settled yet. As new sites are added, stewardship funds will be secured at settlement and likely added to the overall long-term effort.

This story was originally posted on NOAA’s National Marine Fisheries Service Habitat Conservation website.

Follow

Get every new post delivered to your Inbox.

Join 390 other followers