NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Science of Oil Spills Training Now Accepting Applications for Summer 2014

Two people looking at forms and a booklet on the beach.

These classes help prepare responders to understand the environmental risks and scientific considerations when addressing oil spills. (California Office of Spill Prevention and Response)

NOAA’s Office of Response and Restoration, a leader in providing scientific information in response to marine pollution, has scheduled a Science of Oil Spills (SOS) class for the week of August 4–8, 2014 in Seattle, Wash.

We will accept applications for this class through Friday, June 13, 2014, and we will notify applicants regarding their participation status by Friday, June 27, 2014. Class will begin on Monday afternoon, August 4, and will conclude at noon on Friday, August 8.

SOS classes help spill responders increase their understanding of oil spill science when analyzing spills and making risk-based decisions. They are designed for new and mid-level spill responders.

These trainings cover topics including:

  • Fate and behavior of oil spilled in the environment.
  • An introduction to oil chemistry and toxicity.
  • A review of basic spill response options for open water and shorelines.
  • Spill case studies.
  • Principles of ecological risk assessment.
  • A field trip.
  • An introduction to damage assessment techniques.
  • Determining cleanup endpoints.

To view the topics for the next SOS class, download a sample agenda [PDF, 170 KB].

Please be advised that classes are not filled on a first-come, first-served basis. The Office of Response and Restoration tries to diversify the participant composition to ensure a variety of perspectives and experiences to enrich the workshop for the benefit of all participants. The class will be limited to 40 participants.

For more information, and to learn how to apply for the class, visit the SOS Classes page.


Leave a comment

Little “Bugs” Can Spread Big Pollution Through Contaminated Rivers

This is a post by the NOAA Restoration Center’s Lauren Senkyr.

When we think of natural resources harmed by pesticides, toxic chemicals, and oil spills, most of us probably envision soaring birds or adorable river otters.  Some of us may consider creatures below the water’s surface, like the salmon and other fish that the more charismatic animals eat, and that we like to eat ourselves. But it’s rare that we spend much time imagining what contamination means for the smaller organisms that we don’t see, or can’t see without a microscope.

Mayfly aquatic insect on river bottom.

A mayfly, pictured above, is an important component in the diet of salmon and other fish. (NOAA)

The tiny creatures that live in the “benthos”—the mud, sand, and stones at the bottoms of rivers—are called benthic macroinvertebrates. Sometimes mistakenly called “bugs,” the benthic macroinvertebrate community actually includes a variety of animals like snails, clams, and worms, in addition to insects like mayflies, caddisflies, and midges. They play several important roles in an ecosystem. They help cycle and filter nutrients and they are a major food source for fish and other animals.

Though we don’t see them often, benthic macroinvertebrates play an extremely important role in river ecosystems. In polluted rivers, such as the lower 10 miles of the Willamette River in Portland, Oregon, these creatures serve as food web pathways for legacy contaminants like PCBs and DDT. Because benthic macroinvertebrates live and feed in close contact with contaminated muck, they are prone to accumulation of contaminants in their bodies.  They are, in turn, eaten by predators and it is in this way that contaminants move “up” through the food web to larger, more easily recognizable animals such as sturgeon, mink, and bald eagles.

Some of the ways contaminants can move through the food chain in the Willamette River.

Some of the ways contaminants can move through the food chain in the Willamette River. (Portland Harbor Trustee Council)

The image above depicts some of the pathways that contaminants follow as they move up through the food web in Oregon’s Portland Harbor. Benthic macroinvertebrates are at the bottom of the food web. They are eaten by larger animals, like salmon, sturgeon, and bass. Those fish are then eaten by birds (like osprey and eagle), mammals (like mink), and people.

An illustration showing how concentrations of the pesticide DDT biomagnify 10 million times as they move up the food chain from macroinvertebrates to fish to birds of prey.

An illustration showing how concentrations of the pesticide DDT biomagnify 10 million times as they move up the food chain from macroinvertebrates to fish to birds of prey. (U.S. Fish and Wildlife Service)

As PCB and DDT contamination makes its way up the food chain through these organisms, it is stored in their fat and biomagnified, meaning that the level of contamination you find in a large organism like an osprey is many times more than what you would find in a single water-dwelling insect. This is because an osprey eats many fish in its lifetime, and each of those fish eats many benthic macroinvertebrates.

Therefore, a relatively small amount of contamination in a single insect accumulates to a large amount of contamination in a bird or mammal that may have never eaten an insect directly.  The graphic to the right was developed by the U.S. Fish and Wildlife Service to illustrate how DDT concentrations biomagnify 10 million times as they move up the food chain.

Benthic macroinvertebrates can be used by people to assess water quality. Certain types of benthic macroinvertebrates cannot tolerate pollution, whereas others are extremely tolerant of it.  For example, if you were to turn over a few stones in a Northwest streambed and find caddisfly nymphs (pictured below encased in tiny pebbles), you would have an indication of good water quality. Caddisflies are very sensitive to poor water quality conditions.

Caddisfly nymphs encased in tiny pebbles on a river bottom.

Caddisfly nymphs encased in tiny pebbles on a river bottom are indicators of high water quality. (NOAA)

Surveys in Portland Harbor have shown that we have a pretty simple and uniform benthic macroinvertebrate population in the area. As you might expect, it is mostly made up of pollution-tolerant species. NOAA Restoration Center staff are leading restoration planning efforts at Portland Harbor and it is our hope that once cleanup and restoration projects are completed, we will see a more diverse assemblage of benthic macroinvertebrates in the Lower Willamette River.

Lauren SenkyrLauren Senkyr is a Habitat Restoration Specialist with NOAA’s Restoration Center.  Based out of Portland, Ore., she works on restoration planning and community outreach for the Portland Harbor Superfund site as well as other habitat restoration efforts throughout the state of Oregon.


Leave a comment

Marine Life in Gulf of Mexico Faces Multiple Challenges

Editor’s Note: This is a revised posting by Maggie Broadwater of NOAA’s National Centers for Coastal Ocean Science that has corrected some factual misstatements in the original post.

photo of a bottlenose dolphin calf.

A bottlenose dolphin calf in the Gulf of Mexico. (NOAA)

Animals living in coastal waters can face a number of environmental stressors—both from nature and from humans—which, in turn, may have compounding effects. This may be the case for marine life in the Gulf of Mexico which experiences both oil spills and the presence of toxic algae blooms.

On the Lookout

Marine sentinels, like bottlenose dolphins in the Gulf of Mexico, share this coastal environment with humans and consume food from many of the same sources. As marine sentinels, these marine mammals are similar to the proverbial “canary in the coal mine.” Studying bottlenose dolphins may alert us humans to the presence of chemical pollutants, pathogens, and toxins from algae (simple ocean plants) that may be in Gulf waters.

Texas Gulf waters, for an example, are a haven for a diverse array of harmful algae. Additional environmental threats for this area include oil spills, stormwater and agricultural runoff, and industrial pollution.

Recently, we have been learning about the potential effects of oil on bottlenose dolphin populations in the Gulf of Mexico as a result of the Deepwater Horizon oil spill in April 2010. Dolphins with exposure to oil may develop lung disease and adrenal impacts, and be less able to deal with stress.

Certain types of algae produce toxins that can harm fish, mammals, and birds and cause illness in humans. During harmful algal blooms, which occur when colonies of algae “bloom” or grow out of control, the high toxin levels observed often result in illness or death for some marine life, and low-level exposure may compromise their health and increase their susceptibility to other stressors.

However, we know very little about the combined effects from both oil and harmful algal blooms.

A barge loaded with marine fuel oil sits partially submerged in the Houston Ship Channel, March 22, 2014. The bulk carrier Summer Wind, reported a collision between the Summer Wind and a barge, containing 924,000 gallons of fuel oil, towed by the motor vessel Miss Susan. (U.S. Coast Guard)

A barge loaded with marine fuel oil sits partially submerged in the Houston Ship Channel, March 22, 2014. The bulk carrier Summer Wind, reported a collision between the Summer Wind and a barge, containing 924,000 gallons of fuel oil, towed by the motor vessel Miss Susan. (U.S. Coast Guard)

Familiar Waters

Prior to the Galveston Bay oil spill, Texas officials closed Galveston Bay to the harvesting of oysters, clams, and mussels on March 14, 2014 after detecting elevated levels of Dinophysis. These harmful algae can produce toxins that result in diarrhetic shellfish poisoning when people eat contaminated shellfish. Four days later, on March 18, trained volunteers from NOAA’s Phytoplankton Monitoring Network detected Pseudo-nitzschia in Galveston Bay. NOAA Harmful Algal Bloom scientist Steve Morton, Ph.D., confirmed the presence of Pseudo-nitzchia multiseries, a type of algae known as a diatom that produces a potent neurotoxin affecting humans, birds, and marine mammals. NOAA’s Harmful Algal Bloom Analytical Response Team confirmed the toxin was present and notified Texas officials.

When Oil and Algae Mix

Studying marine mammal strandings and deaths helps NOAA scientists and coastal managers understand the effects of harmful algal blooms across seasons, years, and geographical regions. We know that acute exposure to algal toxins through diet can cause death in marine mammals, and that even exposures to these toxins that don’t kill the animal may result in serious long-term effects, including chronic epilepsy, heart disease, and reproductive failure.

But in many cases, we are still working to figure out which level of exposure to these toxins makes an animal ill and which leads to death. We also don’t yet know the effects of long-term low-level toxin exposure, exposure to multiple toxins at the same time, or repeated exposure to the same or multiple toxins. Current NOAA research is addressing many of these questions.

A dolphin mortality event may have many contributing factors; harmful algae may only be one piece in the puzzle. Thus, we do not yet know what effects recent Dinophysis and Pseudo-nitzchia blooms may have on the current marine mammal populations living in Texas coastal waters. Coastal managers and researchers are on alert for marine mammal strandings that may be associated with exposure to harmful algae, but the story is unfolding, and is very complex.

Photo of volunteer with a microscope.

Galveston volunteer with NOAA’s Phytoplankton Monitoring Network helps identify toxic algae. (NOAA)

On March 22, 2014, four days after harmful algae were found in Galveston Bay, the M/V Summer Wind collided with oil tank-barge Kirby 27706 in Galveston Bay near Texas City, releasing approximately 168,000 gallons of thick, sticky fuel oil. The Port of Houston was closed until March 27. State and federal agencies are responding via the Unified Command. NOAA is providing scientific support and Natural Resource Damage Assessment personnel are working to identify injured natural resources and restoration needs. Much of the oil has come ashore and survey teams are evaluating the shorelines to make cleanup recommendations.

Time will tell if the harmful algal toxins and oil in Galveston Bay have a major negative effect on the marine mammals, fish, and sea turtles that live in surrounding waters. Fortunately, NOAA scientists with a range of expertise—from dolphins to harmful algae to oil spills—are on the job.

Maggie BroadwaterMaggie Broadwater is a Research Chemist and serves as coordinator for NOAA’s Harmful Algal Bloom Analytical Response Team at the National Centers for Coastal Ocean Science in Charleston, S.C.  Dr. Broadwater earned a Ph.D. in Biochemistry from the Medical University of South Carolina in 2012 and has a M.S. in Biomedical Sciences and a B.S. in Biochemistry.


Leave a comment

Latest Research Finds Serious Heart Troubles When Oil and Young Tuna Mix

Atlantic bluefin tuna prepares to eat a smaller fish.

Atlantic bluefin tuna are a very ecologically and economically valuable species. However, populations in the Gulf of Mexico are at historically low levels. (Copyright: Gilbert Van Ryckevorsel/TAG A Giant)

In May of 2010, when the Deepwater Horizon rig was drilling for oil in the open waters of the Gulf of Mexico, schools of tuna and other large fish would have been moving into the northern Gulf. This is where, each spring and summer, they lay delicate, transparent eggs that float and hatch near the ocean surface. After the oil well suffered a catastrophic blowout and released 4.9 million barrels of oil, these fish eggs may have been exposed to the huge slicks of oil floating up through the same warm waters.

An international team of researchers from NOAA, Stanford University, the University of Miami, and Australia recently published a study in the journal Proceedings of the National Academy of Sciences exploring what happens when tuna mix with oil early in life.

“What we’re interested in is how the Deepwater Horizon accident in the Gulf of Mexico would have impacted open-ocean fishes that spawn in this region, such as tunas, marlins, and swordfishes,” said Stanford University scientist Barbara Block.

This study is part of ongoing research to determine how the waters, lands, and life of the Gulf of Mexico were harmed by the Deepwater Horizon oil spill and response. It also builds on decades of research examining the impacts of crude oil on fish, first pioneered after the 1989 Exxon Valdez oil spill in Alaska. Based on those studies, NOAA and the rest of the research team knew that crude oil was toxic to young fish and taught them to look carefully at their developing hearts.

“One of the most important findings was the discovery that the developing fish heart is very sensitive to certain chemicals derived from crude oil,” said Nat Scholz of NOAA’s Northwest Fisheries Science Center.

This is why in this latest study they examined oil’s impacts on young bluefin tuna, yellowfin tuna, and amberjack, all large fish that hunt at the top of the food chain and reproduce in the warm waters of the open ocean. The researchers exposed fertilized fish eggs to small droplets of crude oil collected from the surface and the wellhead from the Deepwater Horizon spill, using concentrations comparable to those during the spill. Next, they put the transparent eggs and young fish under the microscope to observe the oil’s impacts at different stages of development. Using a technology similar to doing ultrasounds on humans, the researchers were able create a digital record of the fishes’ beating hearts.

All three species of fish showed dramatic effects from the oil, regardless of how weathered (broken down) it was. Severely malformed and malfunctioning hearts was the most severe impact. Depending on the oil concentration, the developing fish had slow and irregular heartbeats and excess fluid around the heart. Other serious effects, including spine, eye, and jaw deformities, were a result of this heart failure.

Top: A normal young yellowfin tuna. Bottom: A deformed yellowfin tuna exposed to oil during development.

A normal yellowfin tuna larva not long after hatching (top), and a larva exposed to Deepwater Horizon crude oil as it developed in the egg (bottom). The oil-exposed larva shows a suite of abnormalities including excess fluid building up around the heart due to heart failure and poor growth of fins and eyes. (NOAA)

“Crude oil shuts down key cellular processes in fish heart cells that regulate beat-to-beat function,” noted Block, referencing another study by this team.

As the oil concentration, particularly the levels of polycyclic aromatic hydrocarbons (PAHs), went up, so did the severity of the effects on the fish. Severely affected fish with heart defects are unlikely to survive. Others looked normal on the outside but had underlying issues like irregular heartbeats. This could mean that while some fish survived directly swimming through oil, heart conditions could follow them through life, impairing their (very important) swimming ability and perhaps leading to an earlier-than-natural death.

“The heart is one of the first organs to appear, and it starts beating before it’s completely built,” said NOAA Fisheries biologist John Incardona. “Anything that alters heart rhythm during embryonic development will likely impact the final shape of the heart and the ability of the adult fish to survive in the wild.”

Even at low levels, oil can have severe effects on young fish, not only in the short-term but throughout the course of their lives. These subtle but serious impacts are a lesson still obvious in the recovery of marine animals and habitats still happening 25 years after the Exxon Valdez oil spill.


3 Comments

Detecting Change in a Changing World: 25 Years After the Exxon Valdez Oil Spill

Life between high and low tide along the Alaskan coast is literally rough and tumble.

The marine animals and plants living there have to deal with both crashing sea waves at high tide and the drying heat of the sun at low tide. Such a life can be up and down, boom and bust, as favorable conditions come and go quickly and marine animals and plants are forced to react and repopulate just as quickly.

But what happens when oil from the tanker Exxon Valdez enters this dynamic picture—and 25 years later, still hasn’t completely left? What happens when bigger changes to the ocean and global climate begin arriving in these waters already in flux?

Telling the Difference

Two people wearing chest waders sift for marine life in shallow rocky waters.

In 2011 NOAA marine biologist Gary Shigenaka (right) sifts through the sediments of Alaska’s Lower Herring Bay, looking for the tiny marine life that live there. (Photo by Gerry Sanger/Sound Ecosystem Adventures)

In the 25 years since the Exxon Valdez oil spill hit Alaska’s Prince William Sound, NOAA scientists, including marine biologist Gary Shigenaka and ecologist Alan Mearns, have been studying the impacts of the spill and cleanup measures on these animals and plants in rocky tidal waters.

Their experiments and monitoring over the long term revealed a high degree of natural variability in these communities that was unrelated to the oil spill. They saw large changes in, for example, numbers of mussels, seaweeds, and barnacles from year to year even in areas known to be unaffected by the oil spill.

This translated into a major challenge. How do scientists tell the difference between shifts in marine communities due to natural variability and those changes caused by the oil spill?

Several key themes emerged from NOAA’s long-term monitoring and subsequent experimental research:

  • impact. How do we measure it?
  • recovery. How do we define it?
  • variability. How do we account for it?
  • subtle connection to large-scale oceanic influences. How do we recognize it?

What NOAA has learned from these themes informs our understanding of oil spill response and cleanup, as well as of ecosystems on a larger scale. None of this, however, would have been apparent without the long-term monitoring effort. This is an important lesson learned from the Exxon Valdez experience: that monitoring and research, often viewed as an unnecessary luxury in the context of a large oil spill response, are useful, even essential, for framing the scientific and practical lessons learned.

Remote Possibilities

As NOAA looks ahead to the future—and with the Gulf of Mexico’s Deepwater Horizon oil spill in our recent past—we can incorporate and apply lessons of the Exxon Valdez long-term program into how we will support response decisions and define impact and recovery.

The Arctic is a region of intense interest and scrutiny. Climate change is opening previously inaccessible waters and dramatically shifting what scientists previously considered “normal” environmental conditions. This is allowing new oil production and increased maritime traffic through Arctic waters, increasing the risk of oil spills in remote and changing environments.

If and when something bad happens in the Arctic, how do scientists determine the impact and what recovery means, if our reference point is a rapidly moving target? What is our model habitat for restoring one area impacted by oil when the “unimpacted” reference areas are undergoing their own major changes?

Illustrated infographic showing timeline of ecological recovery after the Exxon Valdez oil spill.

Tracking the progress of recovery for marine life and habitats following the Exxon Valdez oil spill is no easy task. Even today, not all of the species have recovered or we don’t have enough information to know. (NOAA) Click to enlarge.

Listening in

NOAA marine biologist Gary Shigenaka explores these questions as he reflects on the 25 years since the Exxon Valdez oil spill in the following Making Waves podcast from the National Ocean Service:

[NARRATOR] This all points back at what Gary says is the main take-away lesson after 25 years of studying the aftermath of this spill: the natural environment in Alaska and in the Arctic are rapidly changing. If we don’t understand that background change, then it’s really hard to say if an area has recovered or not after a big oil spill.

[GARY SHIGENAKA] “I think we need to really keep in mind that maybe our prior notions of recovery as returning to some pre-spill or absolute control condition may be outmoded. We need to really overlay that with the dynamic changes that are occurring for whatever reason and adjust our assessments and definitions accordingly. I don’t have the answers for the best way to do that. We’ve gotten some ideas from the work that we’ve done, but I think that as those changes begin to accelerate and become much more marked, then it’s going to be harder to do.”


Read a report by Gary Shigenaka summarizing information about the Exxon Valdez oil spill and response along with NOAA’s role and research on its recovery over the past 25 years.


1 Comment

After an Oil Spill, Why Does NOAA Count Recreational Fishing Trips People Never Take?

Families fish off the edge of a seawall.

A perhaps less obvious impact of an oil spill is that people become unable to enjoy the benefits of the affected natural areas. For example, this could be recreational fishing, boating, swimming, or hiking. (NOAA)

From oil-coated birds to oil-covered marshes, the impacts of oil spills can be extremely visual. Our job here at NOAA is to document not only these easy-to-see damages to natural areas and the birds, fish, and wildlife that live there. We also do this for the many impacts of oil spills which may not be as obvious.

For example, after spilled oil washes on shore, people often can no longer swim, picnic, or play at that beach. Or you may see fewer or no recreational fishers on a nearby pier.

Restoring Nature’s Benefits to People

After a spill, these public lands, waters, and wildlife become cut off from people. At NOAA, we have the responsibility to make sure those lost trips to the beach for fishing or swimming are documented—and made up for—along with the oil spill’s direct harm to nature.

Why do we collect the number of fishing trips or days of swimming that don’t occur during a spill? It’s simple. Our job is to work with the organization or person responsible for the oil spill to make sure projects are completed that compensate the public for the time during the spill they could not enjoy nature’s benefits. If people did not fish recreationally in the wake of a spill because a fishery was closed or inaccessible, opportunities for them to fish—and the quality of their fishing experience—after the spill need to be increased. These opportunities may come in the form of building more boat ramps or new public access points to the water or creating healthier waters for fish.

Working with our partners, NOAA develops restoration plans that recommend possible projects that increase opportunities for and public access to activities such as fishing, swimming, or hiking. We then seek public input to make sure these projects are supported by the affected community. The funding for these finalized restoration projects comes from those responsible for the spill.

What Does This Look Like in Practice?

On April 7, 2000, a leak was detected in a 12-inch underground pipeline that supplies oil to the Potomac Electric Power Company’s (PEPCO) Chalk Point generating station in Aquasco, Md. Approximately 140,000 gallons of fuel oil leaked into Swanson Creek, a small tributary of the Patuxent River. About 40 miles of vulnerable downstream creeks and shorelines were coated in oil as a result.

We and our partners assessed the impacts to recreational fishing, boating, and shoreline use (such as swimming, picnicking, and wildlife viewing). We found that 10 acres of beaches were lightly, moderately, or heavily oiled and 125,000 trips on the river were affected. In order to compensate the public for these lost days of enjoying the river, we worked with our partners to implement the following projects:

  • Two new canoe and kayak paddle-in campsites on the Patuxent River.
  • Boat ramp and fishing pier improvements at Forest Landing.
  • Boat launch improvements to an existing fishing pier at Nan’s Cove.
  • Recreational improvements at Maxwell Hall Natural Resource Management Area.
  • An Americans with Disabilities Act (ADA)-accessible kayak and canoe launch at Greenwell State Park.

For more detail, you can learn how NOAA economists count and calculate the amount of restoration needed after pollution is released and also watch a short video lesson in economics and value from NOAA’s National Ocean Service.


Leave a comment

A Pennsylvania Mining Town Moves Beyond Toxic History of Denuded Mountains and Contaminated Creeks

Palmerton, a small town in eastern Pennsylvania’s coal region, had its beginnings largely as a company town. In fact, it was incorporated in 1912 around the area’s growing zinc mining industry, which began in 1898. For many years, the New Jersey Zinc Company was the largest U.S. producer of zinc, which is used to make brass and construction materials. The town actually was named after Stephen Palmer, once head of the company. But this company left more than just a name imprinted on this part of Pennsylvania. It also left a toxic legacy on the people and the landscape.

One of the New Jersey Zinc Company's abandoned factories, located on the west side of the site in Palmerton, Penn.

One of the New Jersey Zinc Company’s abandoned factories, located on the west side of the site in Palmerton, Penn. Credit: Dennis Hendricks/Creative Commons Attribution-NonCommercial 2.0 Generic License.

The backdrop for this industrial town of just under 5,500 people is Blue Mountain, a few miles from the Appalachian Trail, and Aquashicola Creek, which drains into the Lehigh River, used extensively for transporting the region’s coal and a tributary of the Delaware River.

As a result of the industrial activities that took place in Palmerton for more than 80 years, the town was left with an enormous smelting residue pile called the “Cinder Bank.” The Cinder Bank is what is left of the 33 million tons of slag (rocky waste) left by the New Jersey Zinc Company as a byproduct of their mining operations. According to the U.S. Environmental Protection Agency (EPA), this pile extends for 2.5 miles and is over 100 feet high and 500 to 1000 feet wide.

Lehigh River runs between a mountain and ridge with a town in the background.

Palmerton and the former zinc smelters are located near the Lehigh River, which flows through a valley between Blue Mountain (left) and Stony Ridge. (Christine McAndrew/Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic License)

In addition, the smelting operations, a high-heat process that extracts metals from ore, released heavy metals, including cadmium, lead, and zinc, into the air and waters of the surrounding area. These activities killed off vegetation on 2,000 acres of Blue Mountain and allowed contaminants to flow into the Aquashicola Creek and Lehigh River. According to the EPA, children in this area tested over the years showed elevated levels of lead in their blood. Horses, cattle, and fish were also shown to contain contaminants.

Because of a declining market for zinc and increased attention to hazards of environmental contamination, zinc smelting in Palmerton stopped in 1980. The Palmerton site was added to the Superfund National Priorities List on September 8, 1983. Cleanup of the town, Blue Mountain, and the Cinder Bank, overseen by U.S. EPA Region 3, has been going on since 1987. It has included activities such as grading, revegetation, cleaning of residences, cleanup of surface water, and water treatment.

People standing on both sides of a state game lands sign in a field.

In August 2013, the Natural Resource Trustee Council members and guests celebrated the acquisition of more than 300 acres for state game lands and the Cherry Valley National Wildlife Refuge. (NOAA)

NOAA and other federal and state agencies, comprising the natural resource trustee council for this Superfund site, reached a settlement for damages to natural resources in 2009. Over $20 million in cash and property have been paid to compensate the United States and the Commonwealth of Pennsylvania for the natural resource damages to the Aquashicola Creek and Lehigh River watershed. Throughout this process, the Office of Response and Restoration’s Peter Knight and the National Marine Fisheries Services’ John Catena have been providing scientific review and input on the environmental cleanup and restoration plans for this site.

In August of 2013, the Palmerton Natural Resource Trustee Council and its partners announced the acquisition of more than 300 acres for state game lands and the Cherry Valley National Wildlife Refuge, home to the endangered bog turtle, and located just 30 minutes from Palmerton. Other properties designated for restoration include habitats along Aquashicola Creek and its tributaries. Acquiring and protecting these lands and waters are part of the larger restorative effort making up for the loss of both natural areas and their benefits due to Palmerton’s mining activities.

After many years of collaboration by a number of organizations and individuals, today the Lehigh River is popular with rafters and Blue Mountain is home to a lush 750 acre nature preserve and a 12 lift ski resort. According to its Chamber of Commerce, Palmerton is again a growing town and making incredible progress in moving beyond the once-tainted shadow of its history.

Agencies represented by the Palmerton Natural Resource Trustee Council include the U.S. Fish and Wildlife Service, National Park Service, National Oceanic and Atmospheric Administration (NOAA), Pennsylvania Game Commission, Pennsylvania Fish and Boat Commission, Pennsylvania Department of Environmental Protection, and the Pennsylvania Department of Conservation and Natural Resources. The Office of Response and Restoration represents NOAA on this council.


Leave a comment

NOAA, U.S. Fish and Wildlife Service Correct GE’s Misinformation in Latest Hudson River Pollution Report

A manufacturing facility on the banks of a dammed river.

General Electric plant on the Hudson River in New York. (Hudson River Natural Resource Trustees)

The Federal Hudson River Natural Resource Trustees sent a letter to General Electric (GE) today, addressing misinformation and correcting the public record in regard to the recently released Hudson River Project Report, submitted by GE to the New York Office of the State Comptroller. Trustees are engaged in a natural resource damage assessment and restoration (NRDAR) of the Hudson River, which is extensively contaminated with polychlorinated biphenyls (PCBs) released by GE.

“We take our responsibility to keep the public informed throughout the damage assessment process seriously,” said Wendi Weber, Northeast Regional Director of the U.S. Fish and Wildlife Service, one of the Trustees engaged in the NRDAR process. “An informed public is key to the conservation and restoration of our treasured natural resources.”

“The extensive PCB contamination of the Hudson River by General Electric has clearly injured natural resources and the services those resources provide to the people of New York State,” said Robert Haddad, Assessment and Restoration Division Chief of NOAA’s Office of Response and Restoration, a Federal Trustee in the Hudson River NRDAR process.

The Federal Trustees affirm these five facts in the letter [PDF]:

(1) Trustees have documented injuries to natural resources that the Report does not acknowledge.

Trustees have published injury determination reports for three categories of the Hudson River’s natural resources that GE does not mention in the report. Trustees anticipate that GE will be liable for the restoration of these injured natural resources.

  • Fishery injury: For more than 30 years, PCB levels in fish throughout the 200 mile Hudson River Superfund Site have exceeded the Food and Drug Administration’s (FDA) limit for PCBs in fish. Fish consumption advisories for PCB-contaminated fish have existed since 1975.
  • Waterfowl injury: In the upper Hudson River, over 90 percent of the mallard ducks tested had PCB levels higher than the FDA limit for PCBs in poultry. The bodies of mallard ducks in the Upper Hudson River have PCB levels approximately 100 times greater than those from a reference area.
  • Surface and ground water injury: Both surface water in the Hudson River itself and groundwater in the Towns of Fort Edward, Hudson Falls and Stillwater have PCB contamination in excess of New York’s water quality criteria. PCBs levels higher than these standards count as injuries. Additionally, the injuries to surface water have resulted in a loss of navigational services on the Hudson River.

(2) GE has been advised that additional dredging would reduce their NRD liability.

Federal trustees have urged GE to remove additional contaminated sediments to lessen the injuries caused by GE’s PCB contamination. Federal trustees publicly released maps showing hot spots that could be targeted for sediment removal over and above that called for in the U.S. Environmental Protection Agency remedy, and calculated the acreage to be dredged based on specific surface cleanup triggers. Information on these recommendations is publicly and explicitly available. Therefore, GE’s statement that they have “no basis to guess how much additional dredging the trustee agencies might want, in which locations, and applying which engineering or other performance standards” is incorrect.

(3) GE’s very large discharges of PCBs prior to 1975 were not authorized by any permit.

Two GE manufacturing facilities began discharging PCBs into the river in the late 1940s, resulting in extensive contamination of the Hudson River environment. In its report, GE states that “GE held the proper government permits to discharge PCBs to the river at all times required,” suggesting that all of GE’s PCB releases were made pursuant to a permit.

The implication that all of GE’s PCB releases were permitted is inaccurate. In fact, the company had no permit to discharge PCBs between 1947 and the mid-1970s, and thus GE discharged and released massive, unpermitted amounts of PCBs to the Hudson River from point sources (engineered wastewater outfalls) and non-point sources (soil and groundwater) at the Fort Edward and Hudson Falls facilities. After GE obtained discharge permits in the mid-1970s, the company at times released PCBs directly to the River in violation of the permits that it did hold. Not all of GE’s releases were permitted, and regardless, GE is not absolved of natural resource damage liability for their PCB releases.

(4) GE’s characterization of inconclusive studies on belted kingfisher and spotted sandpiper is misleading.

Trustees hold the scientific process in high regard. In its report, GE inaccurately states that studies on spotted sandpiper and belted kingfisher demonstrate no harm to those species from exposure to PCBs. In truth, those studies were simply unable to show an association between PCBs and impacts to these species. Both studies make a point of stating that the lack of association may have resulted from the sample size being too small. The studies are therefore inconclusive.

(5) The Trustees value public input and seek to ensure the public is informed and engaged.

The Trustees are stewards of the public’s natural resources and place high value in engaging with the public. GE incorrectly implies in the report that the Trustees have been secretive with respect to their NRDAR assessment. The Trustees strive to keep the public informed of progress by presenting at Hudson River Community Advisory Group meetings and at events organized by scientific, educational, and nonprofit organizations, as well as releasing documents for public review and providing information through web sites and a list serve.

To access the letter to GE and for more information, visit the Hudson River NRDAR Trustee websites:

www.fws.gov/contaminants/restorationplans/hudsonriver/index.html

www.darrp.noaa.gov/northeast/hudson/index.html

www.dec.ny.gov/lands/25609.html

The Hudson River Natural Resource Trustees agencies are the U.S. Department of Commerce (DOC), the U.S. Department of the Interior (DOI) and the state of New York. These entities have each designated representatives that possess the technical knowledge and authority to perform Natural Resource Damage Assessments. For the Hudson River, the designees are the National Oceanic and Atmospheric Administration (NOAA), which represents DOC; the U.S. Fish and Wildlife Service (FWS), which represents DOI bureaus (FWS and the National Park Service) and the New York State Department of Environmental Conservation, which represents the State of New York.


Leave a comment

A Delaware Salt Marsh Finds its way to Restoration by Channeling Success

This is a post by Simeon Hahn, Regional Resource Coordinator for the Office of Response and Restoration’s Assessment and Restoration Division.

You can find the Indian River Power Plant situated along the shores of Indian River Bay in southern Delaware. This shallow body of water is protected from the Atlantic Ocean by a narrow spit of land to the east and is downriver of the town of Millsboro to the west.

In December 1999, the power plant’s owner at the time, Delmarva Power and Light, discovered a leak in an underground fuel line that over a decade had released approximately 500,000 gallons of oil.  The fuel oil had leaked into the soil and groundwater beneath the plant. When the edge of the underground oil plume reached Indian River Bay, oil seeping from the shoreline impacted the fringe of salt marsh growing along the beach, as well as the shallow-water area a short distance offshore.

In the cleanup that followed, about 1,000 tons of oily sediment were excavated from these marshes and replaced with a similar sand quarried from nearby. As part of the restoration, Delmarva replanted the area with hundreds of seedlings of smooth cordgrass (Spartina alterniflora) and other native plants common to the shores of Delaware’s inland bays. But further restoration was needed to compensate for the environmental services lost during the period when the marshes were oiled.

When I took on this case in 2007 as a NOAA coordinator  for the subsequent Natural Resource Damage Assessment, Slough’s Gut Marsh had already been selected as the site of an additional restoration project on Indian River Bay. Slough’s Gut Marsh, east of the James Farm Ecological Preserve near Ocean View, Del., is located on land owned by Sussex County and managed by the Delaware Center for the Inland Bays. The area was described to me as 24 acres of eroded and degraded salt marsh. After a lot of hard work, some innovative thinking, and five years of monitoring the results, I’m pleased to report that Slough’s Gut Marsh has been successfully restored.

What Does it Take to Fix a Marsh?

Previously, however, Slough’s Gut was on the decline, with many of the plants growing in its salty waters either stunted or dying off. The overriding goal, as with many marsh restoration projects, was to reverse this trend and increase the vegetative cover. But does just revegetating a marsh really restore it? On the other hand, some folks, including a few at NOAA, asked whether Slough’s Gut should even be considered for “restoration” since it was already functionally a marsh and … wasn’t the ecosystem working OK? The answer on both accounts was: We were about to find out.

Although the cause of the marsh plant die-offs was not entirely clear, we suspected it had to do with changes to the natural water drainage systems associated with:

  1. Historical mosquito ditching.
  2. Sea level rise.
  3. The gradual sinking of the land.
  4. All of the above.

These suspicions were based on monitoring conducted before Slough’s Gut was ever slated for restoration. It appeared that water would not drain sufficiently off the marsh during the tidal cycle and this was suppressing the vegetation, in a phenomenon known as “waterlogging.”

I became involved as we began scoping the restoration project design. At this point, I suggested that although revegetating the marsh was a reasonable goal, the primary emphasis should be on restoring a more natural network of tidal channels, replacing the old mosquito ditches. Around the 1940s, this salt marsh had been dug up and filled in, creating a series of parallel ditches connecting at a straightened main river channel (a now-questionable practice known as “mosquito ditching” because it aimed to reduce mosquito populations). The current configuration of channels that was leading to the loss of vegetation in Slough’s Gut was likely also impacting the fish, crabs, and other aquatic life that would normally use the marsh.

Looking to a similar project on Washington, DC’s Anacostia River, the design team decided on a technique for restoring tidal channels that uses observations from relatively unimpacted marshes. This example helped us answer questions such as:

  • How big should the channels be?
  • What would a natural channel network look like? (e.g., how often would the channels split, how much would they wind)?

Next, Delmarva Power and Light hired the contractor Cardno ENTRIX to develop a restoration design that used the existing channels as much as possible but restored the channel network by creating new channels while plugging and filling others. The Delaware Department of Natural Resources and Environmental Control (DNREC), which has extensive experience working in wetlands, executed the design. Then, we watched and waited.

The End Game

The number of birds observed at Slough's Gut Marsh has doubled since 2008. Here, a heron perches at the site.

The number of birds observed at Slough’s Gut Marsh has doubled since 2008. Here, a heron perches at the site. (Cardno ENTRIX)

Cardno ENTRIX monitored the renovated marsh for five years and collected data on its recovery. This past summer, the natural resource agencies involved (NOAA, the Delaware DNREC, and the U.S. Fish and Wildlife Service) together with Delmarva Power and Light, Cardno ENTRIX, and the Center for Inland Bays (the project hosts) visited Slough’s Gut Marsh to view and discuss its progress.

Based on the past five years of data, the marsh is on a path toward successful restoration. There has been a 50 percent increase in the density of fish, shrimp, and crabs living in Slough’s Gut, compared with levels before we restored the natural tidal channels. With this extra food, the number of birds observed there has doubled since 2008.

Additional environmental sampling showed localized drainage improvements, indicating that the new channel network is stable yet adaptable, as it should be in natural marshes. This feature is particularly beneficial when confronted with issues like sea level rise and hurricanes. Protecting and restoring tidal wetlands is an important effort in adapting to climate change in coastal areas.

This project demonstrates that ecological impacts in tidal marshes from historical ditching and diking can be restored by reconstructing a more natural tidal channel network. But don’t take my word for it. Next time you’re in the area, go see the success at Slough’s Gut yourself and leave time to visit the Center for the Inland Bays to learn more about other great environmental efforts going on in Delaware’s inland bays. The center is easily accessible and the view is tremendous.

The natural resource trustees celebrate the restoration of Slough's Gut Marsh in August 2013. Simeon Hahn is at the far right.

The natural resource trustees celebrate the restoration of Slough’s Gut Marsh in August 2013. Simeon Hahn is at the far right. (Cardno ENTRIX)

Simeon Hahn is an Office of Response and Restoration Regional Resource Coordinator in the Mid-Atlantic Region for the NOAA Damage Assessment, Remediation, and Restoration Program. He is located in EPA Region 3 in Philadelphia, Pa., and works on Superfund and state remedial projects and Natural Resource Damage Assessment cases. He has been an environmental scientist with expertise in ecological risk assessment, site remediation, and habitat restoration at NOAA for 15 years and 10 years before that with the Department of Defense.


Leave a comment

As NOAA Damage Assessment Rules Turn 18, Restoration Trumps Arguing Over the Price Tag of a Turtle

Kemp's Ridley sea turtle on beach in Texas.

How do you put a price tag on natural resources like this endangered Kemp’s Ridley sea turtle? (U.S. Environmental Protection Agency)

What is a fish or sea turtle or day of sailing worth?  Some resources may be easily valued, such as a pound of lobsters, but other natural resources may not be assigned values as easily, such as injured habitats or non-game wildlife. And what about the value of a lobster in nature rather than in a soup pot? In 1989, under the paradigm in place at the time of the Exxon Valdez oil spill, damage assessments were based on the economic value of natural resources and their uses lost as a result of a spill.

Eighteen years ago, on January 6, 1996, NOAA issued its final rules for conducting Natural Resource Damage Assessments (NRDA) for oil spills. The Oil Pollution Act of 1990, prompted by the Exxon Valdez spill, changed many aspects of the U.S. response to oil spills, including the approach to damage assessments.

One of the lessons learned from the Exxon Valdez and other incidents was that restoration became delayed when the focus was on arguing over the monetary value of natural resource damages. This was because once government agencies reached a dollar-based settlement with the organization responsible for the spill, we still had to conduct studies to figure out what restoration was really necessary. Furthermore, since the process focused on calculating monetary damages rather than restoration costs, the trustees did not always receive sufficient funds to conduct restoration (the economic value of a fish or acre of wetland may not represent the costs to restore that resource).

NOAA's Doug Helton during the response to the August 10, 1993, Tampa Bay oil spill.

NOAA’s Doug Helton during the response to the August 10, 1993, Tampa Bay oil spill. A collision between a freighter and two fuel barges resulted in hundreds of thousands of gallons of oil spilled into the Bay. The damage assessment that evaluated injuries to birds, sea turtles, mangrove habitat, seagrasses, salt marshes, and recreational uses was an early example of a restoration-based claim, and NOAA used this experience in developing the damage assessment rules. A number of ecological and recreational restoration projects were conducted to address or compensate for these injuries. For more information, see http://www.darrp.noaa.gov/southeast/tampabay/

To reform this issue, the Oil Pollution Act of 1990 required that NOAA promulgate new damage assessment regulations, and I was assigned to work with a team of attorneys and scientists to help develop a rule that made sense legally and scientifically. In response to the lessons learned from the Exxon Valdez and other recent oil spills, we developed a new approach, focusing on the ultimate goal of restoration rather than attempting to establish a price tag for each fish, bird, or marine mammal injured by a spill. In other words, the damage claim submitted to the responsible party is based on the cost to conduct restoration projects for the damages rather than the value of the injured resource.

The Oil Pollution Act regulations also turned Natural Resource Damage Assessment into a more open process through three major changes:

  • Making assessment results and critical documents available to the public in an administrative record.
  • Requiring that the public have a chance to review and comment on restoration plans.
  • Inviting the organizations responsible for the spill to actively cooperate in the assessment and restoration planning.

The rulemaking process took several years, and we had lots of comments from the public, nongovernmental organizations, and the marine insurance, shipping, and oil industries. Finally, after incorporating all of the comments and developing a series of guidance documents, we published the final rule on January 6, 1996.

We had little time to relax, however. The first test of those cooperative, restoration-based regulations came a couple weeks later when the Barge North Cape and Tug Scandia ran aground in Rhode Island on January 19.  Stay tuned for the story of how that grounding off of a former nudist beach inspired an unexpected career for a young college student.

Follow

Get every new post delivered to your Inbox.

Join 337 other followers