NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Out of Sandy, Lessons in Helping Coastal Marshes Recover from Storms

Cleanup workers scoop oil out of an oiled marsh with containment boom around the edges.

After Sandy’s flooding led to an oil spill at a Motiva refinery, Motiva cleanup workers extract oil from Smith Creek, a waterway connected to the Arthur Kill, in Woodbridge, New Jersey, on November 5, 2012. (NOAA)

Boats capsized in a sea of grass. Tall trees and power lines toppled over. A dark ring of oil rimming marsh grasses. This was the scene greeting NOAA’s Simeon Hahn and Carl Alderson a few days after Sandy’s floodwaters had pulled back from New Jersey in the fall of 2012.

They were surveying the extent of an oil spill in Woodbridge Creek, which is home to a NOAA restoration project and feeds into the Arthur Kill, a waterway separating New Jersey from New York’s Staten Island. When the massive storm known as Sandy passed through the area, its flooding lifted up a large oil storage tank at the Motiva Refinery in Sewaren, New Jersey. After the floodwaters set the tank back down, it caused roughly 336,000 gallons of diesel fuel to leak into the creek and surrounding wetlands.

That day, the NOAA team was there with Motiva and the New Jersey Department of Environmental Protection (DEP) to begin what can be a long and litigious process of determining environmental impacts, damages, and required restoration—the Natural Resource Damage Assessment process.

In this case, however, not only did the group reach a cooperative agreement—in less than six months—on a restoration plan for the oiled wetlands, but at another wetland affected by Sandy, NOAA gained insight into designing restoration projects better able to withstand the next big storm.

Cleaning up the Mess After a Hurricane

Hurricanes and other large storms cause a surprising number of oil and hazardous chemical spills along the coast. After Sandy hit New York and New Jersey, the U.S. Coast Guard began receiving reports of petroleum products, biodiesel, and other chemicals leaking into coastal waters from damaged refineries, breached petroleum storage tanks, and sunken and stranded vessels. The ruptured tank at the Motiva Refinery was just one of several oil spills after the storm, but the approach in the wake of the spill is what set it apart from many other oil spills.

“Early on we decided that we would work together,” reflected Hahn, Regional Resource Coordinator for NOAA’s Office of Response and Restoration. “There was a focus on doing the restoration rather than doing lengthy studies to quantify the injury.”

This approach was possible because Motiva agreed to pursue a cooperative Natural Resource Damage Assessment with New Jersey as the lead and with support from NOAA. This meant, for example, that up front, the company agreed to provide funding for assessing the environmental impacts and implementing the needed restoration, and agreed on and shared the data necessary to determine those impacts. This cooperative process resulted in a timely and cost-effective resolution, which allowed New Jersey and NOAA to transition to the restoration phase.

Reaching Restoration

Because of the early agreement with Motiva, NOAA and New Jersey DEP did not conduct exhaustive new studies detailing specific harm to these particular tidal wetlands. Instead, they turned to the wealth of data from the oil spill response and existing data from the Arthur Kill to make an accurate assessment of the oil’s impacts.

People driving small boats up a marshy river in winter.

A few days after the oil spill, Motiva’s contractors ferried the assessment team up Woodbridge Creek in New Jersey, looking for impacts from the oil. (NOAA)

From their shoreline, aerial, and boat surveys, they knew that the marsh itself had a bathtub ring of oil around the edge, affecting marsh grasses such as Spartina. No oiled wildlife turned up. However, the storm’s immediate impacts made it difficult to take water and sediment samples or directly examine potential effects to fish. Fortunately, the assessment team was able to use a lot of data from a nearby past oil spill and damage assessment in the Arthur Kill. In addition, they could rely on both general scientific research on oil spill toxicology and maps from the response team detailing the areas most heavily oiled.

Together, this created a picture of the environmental injuries the oil spill caused to Woodbridge Creek. Next, NOAA economists used the habitat equivalency analysis approach to calculate the amount of restoration needed to make up for these injuries: 1.23 acres of tidal wetlands. They then extrapolated how much it will cost to do this restoration based on seven restoration projects within a 50 mile radius, coming to $380,000 per acre. As a result, NOAA and New Jersey agreed that Motiva needed to provide $469,000 for saltwater marsh restoration and an additional $100,000 for monitoring, on top of Motiva’s cleanup costs for the spill itself.

To use this relatively small amount of money most efficiently, New Jersey DEP, as the lead agency, is planning to combine it with another, larger restoration project already in the works. While still negotiating which project that will be, the team has been eyeing a high-profile, 80-acre marsh restoration project practically in the shadow of the Statue of Liberty. Meanwhile, the monitoring project will take place upstream from the site of the Motiva oil spill at the 67-acre Woodbridge Creek Marsh, which received light to moderate oiling. NOAA already has data on the state of the animals and plants at this previously established restoration site, which will provide a rare comparison for before and after the oil spill.

Creating More Resilient Coasts

A storm as damaging as Sandy highlights the need for restoring wetlands. These natural buffers offer protection for human infrastructure, absorbing storm surge and shielding shorelines from wind and waves. Yet natural resource managers are still learning how to replicate nature’s designs, especially in urban areas where river channels often have been straightened and adjoining wetlands filled and replaced with shorelines armored by concrete riprap.

To the south in Philadelphia, Sandy contributed to significant erosion at a restored tidal marsh and shoreline at Lardner’s Point Park, located on the Delaware River. This storm revealed that shoreline restoration techniques which dampen wave energy before it hits the shore would help protect restored habitat and reduce erosion and scouring.

Out of this destructive storm, NOAA and our partners are trying to learn as much as possible—both about how to reach the restoration phase even more efficiently and how to make those restoration projects even more resilient. The wide range of coastal threats is not going away, but we at NOAA can help our communities and environment bounce back when they do show up on our shores.

Learn more about coastal resilience and how NOAA’s Ocean Service is helping our coasts and communities bounce back after storms, floods, and other disasters and follow #NOAAResilience on social media.


1 Comment

Protecting, Restoring, and Celebrating Estuaries—Where Salt and Freshwater Meet

Collage: lighthouse, kids viewing wildlife, heron, canoe in water, flowers, and meandering wetlands.

Estuaries are ecosystems along the oceans or Great Lakes where freshwater and saltwater mix to create wetlands, bays, lagoons, sounds, or sloughs. (NOAA’s National Estuarine Research Reserves)

As the light, fresh waters of rivers rush into the salty waters of the sea, some incredible things can happen. As these two types of waters meet and mix, creating habitats known as estuaries, they also circulate nutrients, sediments, and oxygen. This mixing creates fertile waters for an array of life, from mangroves and salt-tolerant marsh grasses to oysters, salmon, and migrating birds. These productive areas also attract humans, who bring fishing, industry, and shipping along with them.

All of this activity along estuaries means they are often the site of oil spills and chemical releases. We at NOAA’s Office of Response and Restoration often find ourselves working in estuaries, trying to minimize the impacts of oil spills and hazardous waste sites on these important habitats.

A Time to Celebrate Where Rivers Meet the Sea

September 20–27, 2014 is National Estuaries Week. This year 11 states and the District of Columbia have published a proclamation recognizing the importance of estuaries. To celebrate these critical habitats, Restore America’s Estuaries member organizations, NOAA’s National Estuarine Research Reserve System, and EPA’s National Estuary Program are organizing special events such as beach cleanups, hikes, canoe and kayak trips, cruises, and workshops across the nation. Find an Estuary Week event near you.

You and your family and friends can take a personal stake in looking out for the health and well-being of estuaries by doing these simple things to protect these fragile ecosystems.

How We Are Protecting and Restoring Estuaries

You may be scratching your head wondering whether you know of any estuaries, but you don’t need to go far to find some famous estuaries. The Chesapeake Bay and Delaware Bay are on the east coast, the Mississippi River Delta in the Gulf of Mexico, and San Francisco Bay and Washington’s Puget Sound represent some notable estuarine ecosystems on the west coast. Take a closer look at some of our work on marine pollution in these important estuaries.

Chesapeake Bay: NOAA has been working with the U.S. Environmental Protection Agency and Department of Defense on cleaning up and restoring a number of contaminated military facilities around the Chesapeake Bay. Because these Superfund sites are on federal property, we have to take a slightly different approach than usual and are trying to work restoration principles into the cleanup process as early as possible.

Delaware Bay: Our office has responded to a number of oil spills in and adjacent to Delaware Bay, including the Athos oil spill on the Delaware River in 2004. As a result, we are working on implementing several restoration projects around the Delaware Bay, which range from creating oyster reefs to restoring marshes, meadows, and grasslands.

Puget Sound: For Commencement Bay, many of the waterways leading into it—which provide habitat for salmon, steelhead, and other fish—have been polluted by industrial and commercial activities in this harbor for Tacoma, Washington. NOAA and other federal, state, and tribal partners have been working for decades to address the contamination and restore damaged habitat, which involves taking an innovative approach to maintaining restoration sites in the Bay.

Further north in Puget Sound, NOAA and our partners have worked with the airplane manufacturer Boeing to restore habitat for fish, shorebirds, and wildlife harmed by historical industrial activities on the Lower Duwamish River, a heavily used urban river in Seattle. Young Puget Sound Chinook salmon and Steelhead have to spend time in this part of the river, which is a Superfund Site, as they transition from the river’s freshwater to the saltwater of the Puget Sound. Creating more welcoming habitat for these fish gives them places to find food and escape from predators.

San Francisco Bay: In 2007 the M/V Cosco Busan crashed into the Bay Bridge and spilled 53,000 gallons of thick fuel oil into California’s San Francisco Bay. Our response staff conducted aerial surveys of the oil, modeled the path of the spill, and assessed the impacts to the shoreline. Working with our partners, we also evaluated the impacts to fish, wildlife, and habitats, and determined the amount of restoration needed to make up for the oil spill. Today we are using special buoys to plant eelgrass in the Bay as one of the spill’s restoration projects


Leave a comment

10 Unexpected Reasons to Join This Year’s International Coastal Cleanup

Volunteers in a boat use nets to remove debris from waters in Honolulu.

Volunteers collect debris from the water during the 2013 International Coastal Cleanup in Honolulu, Hawaii. (NOAA)

There are plenty of obvious reasons to join the more than half a million other volunteers picking up trash during this year’s International Coastal Cleanup on Saturday, September 20, 2014. Keeping our beaches clean and beautiful. Preventing sea turtles and other marine life from eating plastic. Not adding to the size of the garbage patches.

But just in case you’re looking for a few less obvious incentives, here are 10 more reasons to sign up to cleanup.

Weird finds from the 2013 International Coastal Cleanup. Credit: Ocean Conservancy

Weird finds from the 2013 International Coastal Cleanup. Credit: Ocean Conservancy

After this one day of cleaning up trash on beaches across the world, you could:

  1. Furnish a studio apartment (fridge, TV, complete bed set? Check).
  2. Get ready for an upcoming wedding with the wedding dress and veil, top hat, and bowties that have turned up in the past.
  3. Outfit a baby (including clothes, bottles, high chairs, and baby monitor).
  4. Find your lost cell phone.
  5. Adopt a cyborg sea-kitty.
  6. Make friends with the 200,000+ others participating in the United States.
  7. Get some exercise (and fresh air). In 2013, U.S. volunteers cleaned up 8,322 miles of shoreline.
  8. Create a massive marine debris mosaic mural with the nearly 2.3 million, less-than-an-inch long pieces of plastic, foam, and glass found on beaches worldwide.
  9. Stock up the entire United States with enough fireworks to celebrate Fourth of July (and then organize a Fifth of July cleanup).
  10. Help you and your neighbors benefit millions of dollars by keeping your local beaches spic-and-span.

The NOAA Marine Debris Program is a proud sponsor of the International Coastal Cleanup and we’ll be right there pitching in too. Last year NOAA volunteers across the nation helped clean up more than 1,000 pounds of debris from our Great Lakes, ocean, and waterways in Washington, D.C.; Alabama; Washington; Oregon; California; and Hawaii.

Join us on Saturday, September 20 from 9:00 a.m. to noon and help keep our seas free of trash with any one (or all) of these 10 easy steps:

10 things you can do for trash-free seas. Credit: Ocean Conservancy

10 things you can do for trash-free seas. Credit: Ocean Conservancy

You can find more trashy facts in the Ocean Conservancy’s 2014 Ocean Trash Index.


2 Comments

Diving for Debris: Washington’s Success Story in Fishing Nets out of the Ocean

The scale of the challenges facing the ocean—such as overfishing, pollution, and acidification—is enormous, and their solutions, achievable but complex. That is why the impressive progress in cleaning up a major problem in one area—Washington’s Puget Sound—can be so satisfying. Get a behind-the-scenes look at this inspiring progress in a new video from NOAA-affiliate Oregon SeaGrant on the Northwest Straits Foundation net removal project.

For over a decade, the Northwest Straits Foundation, supported by the NOAA Marine Debris Program, the U.S. Environmental Protection Agency, state agencies, and many others, has been removing lost and abandoned fishing nets from the inland ocean waters of Puget Sound.

A problem largely invisible to most of us, these fishing nets are a legacy of extensive salmon fishing in the Puget Sound which is now much diminished. Lost during fishing operations, the nets are now suspended in the water column or settled on the seafloor, where they snare dozens of marine species, including marine birds and mammals, and degrade the ocean habitat where they were lost. Made of plastic, these nets do not degrade significantly and continue to catch and kill animals indiscriminately for many years.

Man on a boat removing derelict nets from Puget Sound.

Removing derelict nets south of Pt. Roberts in Washington’s Puget Sound. (NOAA)

However, with the help of highly skilled divers, the foundation has removed over 4,700 of these lost nets from Puget Sound. They estimate there are fewer than 900 left in the area and, working with local commercial fishers, have a good handle on the small number of nets currently lost each year.

The NOAA Marine Debris Program has collaborated on or funded over 200 projects to research, prevent, and remove marine debris from waters around the United States. You can learn more about our other projects, such as the Fishing for Energy program, at clearinghouse.marinedebris.noaa.gov.


3 Comments

What Does the Sahara Desert Have to Do with Hurricanes?

This is a post by Charlie Henry, Director, NOAA’s Gulf of Mexico Disaster Response Center and Jeff Medlin, Meteorologist in Charge, National Weather Service Weather Forecast Office Mobile.

Sahara Desert dunes from space.

Sahara Desert dunes photographed from the International Space Station on July 7, 2007. This large desert has a surprising degree of influence on the frequency of hurricanes we see in the United States. (NASA)

What does the Sahara Desert in Africa have to do with hurricanes in the Atlantic, Gulf of Mexico, and Eastern Pacific Ocean? You might think this sounds a little crazy because hurricanes are very wet and deserts are very dry, but if it weren’t for this huge, hot, dry region in North Africa, we would see far fewer hurricanes in the United States.

The Sahara Desert is massive, covering 10 percent of the continent of Africa. It would be the largest desert on Earth, but based strictly on rainfall amounts, the continent of Antarctica qualifies as a desert and is even larger. Still, rainfall in the Sahara is very infrequent; some areas may not get rain for years and the average total rainfall is less than three inches per year. While not the largest or driest of the deserts, the Sahara has a major influence on weather across the Western Hemisphere.

How a Tropical Storm Starts A-Brewin’

The role the Sahara Desert plays in hurricane development is related to the easterly winds (coming from the east) generated from the differences between the hot, dry desert in north Africa and the cooler, wetter, and forested coastal environment directly south and surrounding the Gulf of Guinea in west Africa. The result is a strong area of high altitude winds commonly called the African Easterly Jet. If these winds were constant, we would also experience fewer hurricanes.

However, the African Easterly Jet is unstable, resulting in undulations in a north-south direction, often forming a corresponding north to south trough, or wave, that moves westward off the West African Coast. When these waves of air have enough moisture, lift, and instability, they readily form clusters of thunderstorms, sometimes becoming correlated with a center of air circulation. When this happens, a tropical cyclone may form as the areas of disturbed weather move westward across the Atlantic.

Throughout most of the year, these waves typically form every two to three days in a region near Cape Verde (due west of Africa), but it is the summer to early fall when conditions can become favorable for tropical cyclone development. Not all hurricanes that form in the Atlantic originate near Cape Verde, but this has been the case for most of the major hurricanes that have impacted the continental United States.

Map of North America with historical tracks of hurricanes in North Atlantic and Northeast Pacific Oceans.

All North Atlantic and Eastern North Pacific hurricanes
(at least Category 1 on the Saffir-Simpson Hurricane Scale). Note how many originate at the edge of Africa’s West Coast, where the desert meets the green forests to the south. (NOAA)

Wave of the Future (Weather)

In fact, just such a tropical wave formed off Cape Verde in mid-August of 1992. Up to that point, there had not been any significant tropical cyclone development in the Atlantic that year. However, the wave did intensify into a hurricane, and on August 24 Andrew came ashore in south Florida as a Category 5 hurricane, becoming one of the most costly and destructive natural disasters in U.S. history … until Sandy. Hurricane Sandy, which eventually struck the U.S. east coast as a post-tropical cyclone, also began as a similar tropical wave that formed off the coast of west Africa in October of 2012.

Some of these “waves” drift all the way to the Pacific Ocean by crossing Mexico and Central America. Many of the Eastern Pacific tropical cyclones originate, at least in part, from tropical waves coming off Cape Verde in Africa. Many of these waves traverse the entire Atlantic Ocean without generating storm development until after crossing Central America and entering the warm Eastern Pacific waters. Then, if the conditions are right, tropical cyclone formation is possible there. Hurricane Iselle, which hit the Big Island of Hawaii on August 8, 2014, was likely part of a wave that formed more than 8,000 miles away off of the West Coast of Africa and an example of the far-reaching influence the Sahara Desert has on our planet’s weather.

While these waves with origins in the Sahara Desert might generate numerous thunderstorms and a pattern with the potential for developing into a tropical cyclone, often the conditions are not quite right. Hurricane Cristobal formed from a classic Cape Verde wave last week and currently is churning Atlantic waters, but is not expected to be a threat to the United States. The formation of these disturbances off the West Coast of Africa will remain a potential source of tropical storms through the end of Atlantic hurricane season in late November. Each wave is investigated by the NOAA National Hurricane Center and you can view these active disturbances on their website.

The Sahara Desert and You

When it comes to hurricanes and hurricane preparedness, it’s interesting to know how a desert half a world away can influence the formation of severe weather on our coasts—and even parts of the Pacific Ocean. And no matter where you live, the old rule of planning for the worst and hoping for the best remains the surest way to stay safe.

Learn more about how we at NOAA’s National Ocean Service are staying prepared for hurricanes [PDF], and how you can create your own hurricane plan [PDF].


Leave a comment

On the Chesapeake Bay, Overcoming the Unique Challenges of Bringing Restoration to Polluted Military Sites

Transformations are taking place at more than 10 government facilities, mostly owned by the Department of Defense, across the Chesapeake Bay and its tributaries. These properties typically include large, relatively undisturbed natural areas, which often serve as key habitats for endangered fish, birds, and wildlife. Yet the same federal facilities also have become Superfund sites, slated for cleanup under CERCLA, with pollution at levels which threaten the health of humans and the environment.

Heavy equipment clearing a former landfill for restoration.

Naval Amphibious Base Little Creek, a major base for the Navy’s Atlantic fleet, is one of the facilities that was slate for cleanup on the Chesapeake Bay. Here, heavy equipment prepare a former landfill for restoration post-cleanup in 2006. (U.S. Navy)

Yet in spite of some unique challenges, these areas are being cleaned up and restored to become healthy places for all once more. Success has stemmed largely from two critical pieces of the process: collaborating closely among numerous government agencies and incorporating restoration into the process as early and often as possible.

According to Paula Gilbertson of the U.S. Navy, “The close partnership among the many federal and state agencies involved has provided a framework for success. Great things can happen when people work together toward a common goal.”

Moving Past the Past

Past activities leading to pollution at U.S. Army, Air Force, and Navy sites on Chesapeake Bay were many and varied, and included: incineration, landfilling, ship and airplane repair and maintenance, military testing, and pesticide and munitions disposal. As a result, beginning in the 1980s, entire facilities along the bay became Superfund sites and listed for priority cleanup.

Typically during the Superfund process, the party responsible for polluting has to work with the U.S. Environmental Protection Agency (EPA), which leads the cleanup, and other state and federal agencies—known as trustees—which represent affected public lands and waters.

A landfill on the Little Creek naval base before cleanup.

A landfill on the Little Creek naval base before cleanup in 2006. (U.S. Navy)

But in these cases, the Department of Defense has to play multiple roles: trustee of natural resources on the property, entity responsible for contamination, and lead cleanup agency. In addition, the EPA still oversees the effectiveness of the Superfund cleanup, and the military branches at each site still have to coordinate with the other trustees: NOAA, the U.S. Fish and Wildlife Service, and state agencies.

NOAA and the Fish and Wildlife Service also are part of a special technical group run by the EPA (the Biological Technical Assistance Group, or BTAG), which coordinates trustee participation and offers scientific review throughout the ecological risk assessment and cleanup process at each site.

According to Bruce Pluta, coordinator of the EPA BTAG, “The collaborative efforts of the EPA Project Team, including the BTAG, and our partners at the Department of Defense have resulted in model projects which integrate remediation and ecological restoration.”

Working Together for the Future

What does not change during this process is that the trustees are working to protect and restore the “trust resources,” including lands, waters, birds, fish, and wildlife affected by contamination coming from these military sites. This can include natural areas adjacent to the sites and the animals that could migrate onto the federal properties, such as striped bass, herring, blue crabs, eagles, and herons.

Other important differences exist governing how all these government entities work together in the Superfund cleanup process. For example, NOAA often works to evaluate ecological risks and determine environmental injuries resulting from hazardous material releases at Superfund sites. Then we implement restoration projects to compensate for the injuries to coastal and marine natural resources and the benefits they provide to the public. This is the Natural Resource Damage Assessment process. NOAA seeks legal damages (payment) or works with those responsible for the pollution through cooperative agreements to restore, replace, or acquire the equivalent natural resources.

Restored wetlands.

A site transformed: Immediately after completion of cleanup and restoration activities at a landfill on the Little Creek naval base on the Chesapeake Bay. (U.S. Environmental Protection Agency)

As federal trustees, we are significantly limited in our ability to conduct a formal damage assessment against a fellow federal agency doing cleanup because we are both trustees of the affected natural resources. However, all federal and state trustees can work together with EPA to protect the lands, waters, and living things during cleanup, maximize the potential for restoration at each site, and develop measures to ensure both environmental recovery and resilience.

“By considering restoration early in the process and getting input from natural resource managers, many simple, common sense measures are being incorporated that benefit ecosystems, reduce overall costs, and improve the effectiveness of the cleanup,” says Simeon Hahn of NOAA.

Overcoming Challenges

Having so many government agencies involved in overlapping but distinct roles requires a great deal of collaboration and communication. This became clear early in the process if each case were to achieve multiple objectives:

  • Cleaning up the military sites and returning the lands and waters to productive uses.
  • Performing cleanups using environmentally friendly strategies to remove, recycle, and reuse materials while also addressing climate resiliency.
  • Protecting and restoring natural resources.
  • Accomplishing everything within a reasonable budget and timeframe.

Despite the many challenges, the process of cleaning up and restoring these contaminated military facilities has been going well. EPA, the Department of Defense, and fellow trustees have collaborated to protect and restore affected natural resources while also helping adapt these areas to the threats and impacts of climate change. By integrating restoration into cleanup planning early and often, we have made significant progress toward a healthier Chesapeake Bay—at lower costs and in less time.

Map of hazardous waste sites on federal properties in the Chesapeake Bay area.

Hazardous waste sites on federal properties in the Chesapeake Bay area. (NOAA)

Over the coming months, we will be sharing more about these successes here on the blog. We will recount the removal and recycling of thousands of tons of concrete; the restoration of hundreds of acres of wetlands, shorelines, creeks, and forested areas; and the revitalization of numerous acres of land contributing to benefits such as natural defenses for coastal communities. Stay tuned!


Leave a comment

With NOAA as a Model, India Maps Coastal Sensitivity to Oil Spills

This is a post by Vicki Loe and Jill Petersen of NOAA’s Office of Response and Restoration.

Boy running on beach.

Scientists in India have used NOAA’s Environmental Sensitivity Index maps as a model for preparing for oil spills on the west coast of India. (Credit: Samuel Kimlicka/Creative Commons Attribution 2.0 Generic License)

They say that imitation is the sincerest form of flattery, which is why we were thrilled to hear about recent efforts in India to mirror one of NOAA’s key oil spill planning tools, Environmental Sensitivity Index maps. A recent Times of India article alerted us to a pilot study led by scientists at the National Institute of Oceanography in India, which used our Environmental Sensitivity Index (ESI) shoreline classifications to map seven talukas, or coastal administrative divisions in India. Amid the estuaries mapped along India’s west coast, one of the dominant shoreline types is mangroves, which are a preferred habitat for many migratory birds as well as other species sensitive to oil.

Traditional ESI data categorize both the marine and coastal environments as well as their wildlife based on sensitivity to spilled oil. There are three main components: shoreline habitats (as was mapped in the Indian project), sensitive animals and plants, and human-use resources. The shoreline and intertidal zones are ranked based on their vulnerability to oil, which is determined by:

  • Shoreline type (such as fine-grained sandy beach or tidal flats).
  • Exposure to wave and tidal energy (protected vs. exposed to waves).
  • Biological productivity and sensitivity (How many plants and animals live there? Which ones?).
  • Ease of cleanup after a spill (For example, are there roads to access the area?).

The biology data available in ESI maps focus on threatened and endangered species, areas of high concentration, and areas where sensitive life stages (such as when nesting) may occur. Human use resources mapped include managed areas (parks, refuges, critical habitats, etc.) and resources that may be impacted by oiling or clean-up, such as beaches, archaeological sites, or marinas.

Many countries have adapted the ESI data standards developed and published by NOAA. India developed their ESI product independently, based on these standards. In other cases, researchers from around the world have come across ESI products and contacted NOAA for advice in developing their own ESI maps and data. In the recent past, Jill Petersen, the NOAA ESI Program Manager, has worked with scientists who have visited from Spain, Portugal, and Italy.

By publishing our data standards, we share information which enables states and countries to develop ESI maps and data independently while adhering to formats that have evolved and stood the test of time over many years. In addition to mapping the entire U.S. coast and territories, NOAA has conducted some of our own international mapping of ESIs. In the wake of Hurricane Mitch in 1998, we mapped the coastal natural resources in the affected areas of Nicaragua, Honduras, and Ecuador.

Currently, we are developing new ESI products for the north and mid-Atlantic coasts of the United States, many areas of which were altered by Hurricane Sandy in 2012. The new maps will provide a comprehensive and up-to-date picture of vulnerable shorelines, wildlife habitats, and key resources humans use. Having this information readily available will enable responders and planners to quickly make informed decisions in the event of a future oil spill or natural disaster.

For further information on NOAA’s ESI shoreline classification, see our past blog posts: Mapping How Sensitive the Coasts Are to Oil Spills and After Sandy, Adapting NOAA’s Tools for a Changing Shoreline.

Follow

Get every new post delivered to your Inbox.

Join 452 other followers