NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

Update on the Texas City “Y” Response in Galveston Bay

Photo of workers deploying boom.

Workers deploy boom around the site of the oil spill in the Houston Ship Channel near the Texas City Dike, March 24, 2014. More than 71,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S. Coast Guard)

 

POSTED MARCH 25, 2014 | UPDATED MARCH 27, 2014 –The Saturday vessel collision in Galveston Bay (see “Vessel Collision and Spill in Galveston Bay”) that resulted in an oil spill of approximately 168,000 gallons, caused the closure of the heavily trafficked Port of Houston for 3 days. The Houston Ship Channel is now open, with some restrictions. There is a safety zone in effect in cleanup areas.

Photo of absorbent material in spilled oil.

Absorbent material is deployed near the Texas City Dike, March 24, 2014. More than 71,000 feet of boom has been deployed in response to the oil spill that occurred Saturday afternoon, after a bulk carrier and a barge collided in the Houston Ship Channel. (U.S. Coast Guard)

As predicted, strong southerly winds stranded much of the offshore oil overnight in the Matagorda region and these onshore winds are expected to bring ashore the remaining floating oil off Matagorda Island by Friday morning. Closer to the collision site, there have been very few new reports of remaining floating oil in Galveston Bay or offshore Galveston Island. However, new shoreline impacts may still be occurring in those areas due to re-mobilization of stranded oil or remaining scattered sheens and tarballs.

NOAA is providing scientific support to the U.S. Coast Guard, including trajectory forecasts of the floating oil movement, shoreline assessment, information management, overflight tracking of the oil, weather forecasts, and natural and economic resources at risk. Marine mammal and turtle stranding network personnel are responding. The NOAA Weather Service Incident Meteorologist is on-scene, as are additional NOAA personnel. Natural resource damage assessment personnel are at Galveston Bay and are initiating preassessment activities. The preassessment period is an on-scene evaluation of what the type of oil is, where it has gone, where it may be going and what resources are or may be at risk.

See the latest OR&R trajectory forecast map, showing the likely areas of oiling tomorrow.


Leave a comment

What Are Kids Reading About Oil Spills?

This is a post by Dr. Alan Mearns, NOAA Senior Staff Scientist.

Kids reading books in a book store.

Credit: Carolien Dekeersmaeker/Creative Commons Attribution-NonCommercial 2.0 Generic License

What are your children and their teachers reading? We might want to pay closer attention. The stories we tell our children are a reflection of how we see the world, and we want to make sure these stories have good information about our world.

I occasionally accompany my wife, a preschool teacher, to local children’s bookstores, and more often than not, find books about oil spills and other disasters.  Recently, I took a closer look at the quality of the information found in a sampling of children’s books on oil spills.

An Oil Spill Ecologist Dives into Kids’ Books

So far, the eight or so books I’ve looked at focus on one of the two major oil spills in the American mind: the 1989 Exxon Valdez oil spill in Alaska or the 2010 Deepwater Horizon spill in the Gulf of Mexico.

A number are heart-warming stories about wildlife speaking about their experience in oil and the nice people who captured, cleaned, and released them. Birds, especially pelicans, and sea otters often play a starring role in telling these stories. Several present case histories of the oil spills, their causes, and cleanup. Some books place oil spills in the context of our heavy reliance on oil, but many ignore why there’s so much oil being transported in the first place.

One book’s color drawings show oil spill cleanup methods so well you can actually see how they work—and which I think could even be used in trainings on oil spill science.

Something that may not be top-of-mind for many parents but which I appreciate is the presence of glossaries, indices, and citations for further reading. These resources can help adults and kids evaluate whether statements about these oil spills are supported by reliable information or not.

Reading Recommendations

When reading a book—whether it is about oil spills or not—with kids you know, keep the following recommendations in mind:

  • Make sure the story informs, as well as entertains.
  • Ask where the “facts” in the story came from.
  • Look for reputable, original sources of information.
  • Ask why different sources might be motivated to show information the way they do.
  • Talk to kids about thinking critically about where information comes from.

Learn more about the ocean, pollution, and creatures that live there from our list of resources for teachers and students.

Dr. Alan Mearns.Dr. Alan Mearns is Ecologist and Senior Staff Scientist with the Office of Response and Restoration’s Emergency Response Division in Seattle. He has over 40 years of experience in ecology and pollution assessment and response, with a focus on wastewater discharges and oil spills along the Pacific Coast and Alaska. He has worked in locations as varied as the Arctic Ocean, southern California, Israel, and Australia, and has participated in spill responses around the U.S. and abroad.


1 Comment

After an Oil Spill, Why Does NOAA Count Recreational Fishing Trips People Never Take?

Families fish off the edge of a seawall.

A perhaps less obvious impact of an oil spill is that people become unable to enjoy the benefits of the affected natural areas. For example, this could be recreational fishing, boating, swimming, or hiking. (NOAA)

From oil-coated birds to oil-covered marshes, the impacts of oil spills can be extremely visual. Our job here at NOAA is to document not only these easy-to-see damages to natural areas and the birds, fish, and wildlife that live there. We also do this for the many impacts of oil spills which may not be as obvious.

For example, after spilled oil washes on shore, people often can no longer swim, picnic, or play at that beach. Or you may see fewer or no recreational fishers on a nearby pier.

Restoring Nature’s Benefits to People

After a spill, these public lands, waters, and wildlife become cut off from people. At NOAA, we have the responsibility to make sure those lost trips to the beach for fishing or swimming are documented—and made up for—along with the oil spill’s direct harm to nature.

Why do we collect the number of fishing trips or days of swimming that don’t occur during a spill? It’s simple. Our job is to work with the organization or person responsible for the oil spill to make sure projects are completed that compensate the public for the time during the spill they could not enjoy nature’s benefits. If people did not fish recreationally in the wake of a spill because a fishery was closed or inaccessible, opportunities for them to fish—and the quality of their fishing experience—after the spill need to be increased. These opportunities may come in the form of building more boat ramps or new public access points to the water or creating healthier waters for fish.

Working with our partners, NOAA develops restoration plans that recommend possible projects that increase opportunities for and public access to activities such as fishing, swimming, or hiking. We then seek public input to make sure these projects are supported by the affected community. The funding for these finalized restoration projects comes from those responsible for the spill.

What Does This Look Like in Practice?

On April 7, 2000, a leak was detected in a 12-inch underground pipeline that supplies oil to the Potomac Electric Power Company’s (PEPCO) Chalk Point generating station in Aquasco, Md. Approximately 140,000 gallons of fuel oil leaked into Swanson Creek, a small tributary of the Patuxent River. About 40 miles of vulnerable downstream creeks and shorelines were coated in oil as a result.

We and our partners assessed the impacts to recreational fishing, boating, and shoreline use (such as swimming, picnicking, and wildlife viewing). We found that 10 acres of beaches were lightly, moderately, or heavily oiled and 125,000 trips on the river were affected. In order to compensate the public for these lost days of enjoying the river, we worked with our partners to implement the following projects:

  • Two new canoe and kayak paddle-in campsites on the Patuxent River.
  • Boat ramp and fishing pier improvements at Forest Landing.
  • Boat launch improvements to an existing fishing pier at Nan’s Cove.
  • Recreational improvements at Maxwell Hall Natural Resource Management Area.
  • An Americans with Disabilities Act (ADA)-accessible kayak and canoe launch at Greenwell State Park.

For more detail, you can learn how NOAA economists count and calculate the amount of restoration needed after pollution is released and also watch a short video lesson in economics and value from NOAA’s National Ocean Service.


1 Comment

What Restoration Is in Store for Massachusetts and Rhode Island after 2003 Bouchard Barge 120 Oil Spill?

A large barge is being offloaded next to a tugboat in the ocean.

On April 27, 2003, Bouchard Barge 120 was being offloaded after initial impact with a submerged object, causing 98,000 gallons of oil to spill into Massachusett’s Buzzards Bay. (NOAA)

The Natural Resource Damages Trustee Council for the Bouchard Barge 120 oil spill have released a draft restoration plan (RP) and environmental assessment (EA) [PDF] for shoreline, aquatic, and recreational use resources impacted by the 2003 spill in Massachusetts and Rhode Island.

It is the second of three anticipated plans to restore natural resources injured and uses affected by the 98,000-gallon spill that oiled roughly 100 miles of shoreline in Buzzards Bay. A $6 million natural resource damages settlement with the Bouchard Transportation Co., Inc. is funding development and implementation of restoration, with $4,827,393 awarded to restore shoreline and aquatic resources and lost recreational uses.

The draft plan evaluates alternatives to restore resources in the following categories of injuries resulting from the spill:

  • Shoreline resources, including tidal marshes, sand beaches, rocky coast, and gravel and boulder shorelines;
  • Aquatic resources, including benthic organisms such as American lobster, bivalves, and their habitats, and finfish such as river herring and their habitats; and
  • Lost uses, including public coastal access, recreational shell-fishing, and recreational boating.

The plan considers various alternatives to restore these resources and recommends funding for more than 20 projects throughout Buzzards Bay in Massachusetts and Rhode Island.

Shoreline and aquatic habitats are proposed to be restored at Round Hill Marsh and Allens Pond Marsh in Dartmouth, as well as in the Weweantic River in Wareham. Populations of shellfish, including quahog, bay scallop, and oyster will be enhanced through transplanting and seeding programs in numerous towns in both states. These shellfish restoration areas will be managed to improve recreational shell-fishing opportunities.

Public access opportunities will be created through a variety of projects, including trail improvements at several coastal parks, amenities for universal access, a handicapped accessible fishing platform in Fairhaven, Mass., and acquisition of additional land to increase the Nasketucket Bay State Reservation in Fairhaven and Mattapoisett. New and improved public boat ramps are proposed for Clarks Cove in Dartmouth and for Onset Harbor in Wareham.

A map of the preferred restoration projects for the Bouchard Barge 120 spill, as identified in the second draft restoration plan.

A map of the preferred restoration projects for the Bouchard Barge 120 spill, as identified in the second draft restoration plan. (NOAA)

The draft plan also identifies Tier 2 preferred projects; these are projects that may be funded, if settlement funds remain following the selection and implementation of Tier 1 and/or other restoration projects that will be identified in the Final RP/EA to be prepared and released by the Trustee Council following receipt and consideration of input from the public.

“We continue to make progress, together with our federal and state partners, in restoring this bay and estuary where I have spent so much of my life,” said John Bullard, National Oceanic and Atmospheric Administration (NOAA) Fisheries Northeast Regional administrator. “And, we’re eager to hear what members of the public think of the ideas in this plan, which are intended to further this work. We hope to improve habitats like salt marshes and eelgrass beds in the bay. These will benefit river herring, shellfish and other species and support recreational activities for the thousands of people who use the bay.”

The public is invited to review the Draft RP/EA and submit comments during a 45-day period, extending through Sunday, March 23, 2014. The electronic version of this Draft RP/EA document is available for public review at the following website:

http://www.darrp.noaa.gov/northeast/buzzard/index.html

Comments on the Draft RP/EA should be submitted in writing to:

NOAA Restoration Center
Attention: Buzzards Bay RP/EA Review Coordinator
28 Tarzwell Drive
Narragansett, R.I. 02882
BuzzardsBay.RP.EA.Review@noaa.gov


1 Comment

PCBs: Why Are Banned Chemicals Still Hurting the Environment Today?

Heavy machinery removes soil and rocks in a polluted stream.

PCB contamination is high in the Housatonic River and New Bedford Harbor in Massachusetts. How high? The “highest concentrations of PCBs ever documented in a marine environment.” (U.S. Fish and Wildlife Service)

For the United States, the 20th century was an exciting time of innovation in industry and advances in technology. We were manufacturing items such as cars, refrigerators, and televisions, along with the many oils, dyes, and widgets that went with them. Sometimes, however, technology races ahead of responsibility, and human health and the environment can suffer as a result.

This is certainly the case for the toxic compounds known as polychlorinated biphenyls, or PCBs. From the 1920s until they were banned in 1979, the U.S. produced an estimated 1.5 billion pounds of these industrial chemicals. They were used in a variety of manufacturing processes, particularly for electrical parts, across the country. Wastes containing PCBs were often improperly stored or disposed of or even directly discharged into soils, rivers, wetlands, and the ocean.

Unfortunately, the legacy of PCBs for humans, birds, fish, wildlife, and habitat has been a lasting one. As NOAA’s National Ocean Service notes:

Even with discontinued use, PCBs, or polychlorinated biphenyls, are still present in the environment today because they do not breakdown quickly. The amount of time that it takes chemicals such as PCBs to breakdown naturally depends on their size, structure, and chemical composition. It can take years to remove these chemicals from the environment and that is why they are still present decades after they have been banned.

Sign by Hudson River warning against eating contaminated fish.

According to a NOAA, U.S. Fish and Wildlife Service, and State of New York report on the Hudson River, “Fish not only absorb PCBs directly from the river water but are also exposed through the ingestion of contaminated prey, such as insects, crayfish, and smaller fish…New York State’s “eat none” advisory and the restriction on taking fish for this section of the Upper Hudson has been in place for 36 years.” (NOAA)

PCBs are hazardous even at very low levels. When fish and wildlife are exposed to them, this group of highly toxic compounds can travel up the food chain, eventually accumulating in their tissues, becoming a threat to human health if eaten. What happens after animals are exposed to PCBs? According to a NOAA, U.S. Fish and Wildlife Service, and State of New York report [PDF], PCBs are known to cause:

  • Cancer
  • Birth defects
  • Reproductive dysfunction
  • Growth impairment
  • Behavioral changes
  • Hormonal imbalances
  • Damage to the developing brain
  • Increased susceptibility to disease

Because of these impacts, NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) works on a number of damage assessment cases to restore the environmental injuries of PCBs. Some notable examples include:

Yet the list could go on—fish and birds off the southern California coast, fish and waterfowl in Wisconsin’s Sheboygan River, a harbor in Massachusetts with the “highest concentrations of PCBs ever documented in a marine environment.”

These and other chemical pollutants remain a challenge but also a lesson for taking care of the resources we have now. While PCBs will continue to be a threat to human and environmental health, NOAA and our partners are working hard to restore the damage done and protect people and nature from future impacts.


Leave a comment

NOAA, U.S. Fish and Wildlife Service Correct GE’s Misinformation in Latest Hudson River Pollution Report

A manufacturing facility on the banks of a dammed river.

General Electric plant on the Hudson River in New York. (Hudson River Natural Resource Trustees)

The Federal Hudson River Natural Resource Trustees sent a letter to General Electric (GE) today, addressing misinformation and correcting the public record in regard to the recently released Hudson River Project Report, submitted by GE to the New York Office of the State Comptroller. Trustees are engaged in a natural resource damage assessment and restoration (NRDAR) of the Hudson River, which is extensively contaminated with polychlorinated biphenyls (PCBs) released by GE.

“We take our responsibility to keep the public informed throughout the damage assessment process seriously,” said Wendi Weber, Northeast Regional Director of the U.S. Fish and Wildlife Service, one of the Trustees engaged in the NRDAR process. “An informed public is key to the conservation and restoration of our treasured natural resources.”

“The extensive PCB contamination of the Hudson River by General Electric has clearly injured natural resources and the services those resources provide to the people of New York State,” said Robert Haddad, Assessment and Restoration Division Chief of NOAA’s Office of Response and Restoration, a Federal Trustee in the Hudson River NRDAR process.

The Federal Trustees affirm these five facts in the letter [PDF]:

(1) Trustees have documented injuries to natural resources that the Report does not acknowledge.

Trustees have published injury determination reports for three categories of the Hudson River’s natural resources that GE does not mention in the report. Trustees anticipate that GE will be liable for the restoration of these injured natural resources.

  • Fishery injury: For more than 30 years, PCB levels in fish throughout the 200 mile Hudson River Superfund Site have exceeded the Food and Drug Administration’s (FDA) limit for PCBs in fish. Fish consumption advisories for PCB-contaminated fish have existed since 1975.
  • Waterfowl injury: In the upper Hudson River, over 90 percent of the mallard ducks tested had PCB levels higher than the FDA limit for PCBs in poultry. The bodies of mallard ducks in the Upper Hudson River have PCB levels approximately 100 times greater than those from a reference area.
  • Surface and ground water injury: Both surface water in the Hudson River itself and groundwater in the Towns of Fort Edward, Hudson Falls and Stillwater have PCB contamination in excess of New York’s water quality criteria. PCBs levels higher than these standards count as injuries. Additionally, the injuries to surface water have resulted in a loss of navigational services on the Hudson River.

(2) GE has been advised that additional dredging would reduce their NRD liability.

Federal trustees have urged GE to remove additional contaminated sediments to lessen the injuries caused by GE’s PCB contamination. Federal trustees publicly released maps showing hot spots that could be targeted for sediment removal over and above that called for in the U.S. Environmental Protection Agency remedy, and calculated the acreage to be dredged based on specific surface cleanup triggers. Information on these recommendations is publicly and explicitly available. Therefore, GE’s statement that they have “no basis to guess how much additional dredging the trustee agencies might want, in which locations, and applying which engineering or other performance standards” is incorrect.

(3) GE’s very large discharges of PCBs prior to 1975 were not authorized by any permit.

Two GE manufacturing facilities began discharging PCBs into the river in the late 1940s, resulting in extensive contamination of the Hudson River environment. In its report, GE states that “GE held the proper government permits to discharge PCBs to the river at all times required,” suggesting that all of GE’s PCB releases were made pursuant to a permit.

The implication that all of GE’s PCB releases were permitted is inaccurate. In fact, the company had no permit to discharge PCBs between 1947 and the mid-1970s, and thus GE discharged and released massive, unpermitted amounts of PCBs to the Hudson River from point sources (engineered wastewater outfalls) and non-point sources (soil and groundwater) at the Fort Edward and Hudson Falls facilities. After GE obtained discharge permits in the mid-1970s, the company at times released PCBs directly to the River in violation of the permits that it did hold. Not all of GE’s releases were permitted, and regardless, GE is not absolved of natural resource damage liability for their PCB releases.

(4) GE’s characterization of inconclusive studies on belted kingfisher and spotted sandpiper is misleading.

Trustees hold the scientific process in high regard. In its report, GE inaccurately states that studies on spotted sandpiper and belted kingfisher demonstrate no harm to those species from exposure to PCBs. In truth, those studies were simply unable to show an association between PCBs and impacts to these species. Both studies make a point of stating that the lack of association may have resulted from the sample size being too small. The studies are therefore inconclusive.

(5) The Trustees value public input and seek to ensure the public is informed and engaged.

The Trustees are stewards of the public’s natural resources and place high value in engaging with the public. GE incorrectly implies in the report that the Trustees have been secretive with respect to their NRDAR assessment. The Trustees strive to keep the public informed of progress by presenting at Hudson River Community Advisory Group meetings and at events organized by scientific, educational, and nonprofit organizations, as well as releasing documents for public review and providing information through web sites and a list serve.

To access the letter to GE and for more information, visit the Hudson River NRDAR Trustee websites:

www.fws.gov/contaminants/restorationplans/hudsonriver/index.html

www.darrp.noaa.gov/northeast/hudson/index.html

www.dec.ny.gov/lands/25609.html

The Hudson River Natural Resource Trustees agencies are the U.S. Department of Commerce (DOC), the U.S. Department of the Interior (DOI) and the state of New York. These entities have each designated representatives that possess the technical knowledge and authority to perform Natural Resource Damage Assessments. For the Hudson River, the designees are the National Oceanic and Atmospheric Administration (NOAA), which represents DOC; the U.S. Fish and Wildlife Service (FWS), which represents DOI bureaus (FWS and the National Park Service) and the New York State Department of Environmental Conservation, which represents the State of New York.


Leave a comment

A Delaware Salt Marsh Finds its way to Restoration by Channeling Success

This is a post by Simeon Hahn, Regional Resource Coordinator for the Office of Response and Restoration’s Assessment and Restoration Division.

You can find the Indian River Power Plant situated along the shores of Indian River Bay in southern Delaware. This shallow body of water is protected from the Atlantic Ocean by a narrow spit of land to the east and is downriver of the town of Millsboro to the west.

In December 1999, the power plant’s owner at the time, Delmarva Power and Light, discovered a leak in an underground fuel line that over a decade had released approximately 500,000 gallons of oil.  The fuel oil had leaked into the soil and groundwater beneath the plant. When the edge of the underground oil plume reached Indian River Bay, oil seeping from the shoreline impacted the fringe of salt marsh growing along the beach, as well as the shallow-water area a short distance offshore.

In the cleanup that followed, about 1,000 tons of oily sediment were excavated from these marshes and replaced with a similar sand quarried from nearby. As part of the restoration, Delmarva replanted the area with hundreds of seedlings of smooth cordgrass (Spartina alterniflora) and other native plants common to the shores of Delaware’s inland bays. But further restoration was needed to compensate for the environmental services lost during the period when the marshes were oiled.

When I took on this case in 2007 as a NOAA coordinator  for the subsequent Natural Resource Damage Assessment, Slough’s Gut Marsh had already been selected as the site of an additional restoration project on Indian River Bay. Slough’s Gut Marsh, east of the James Farm Ecological Preserve near Ocean View, Del., is located on land owned by Sussex County and managed by the Delaware Center for the Inland Bays. The area was described to me as 24 acres of eroded and degraded salt marsh. After a lot of hard work, some innovative thinking, and five years of monitoring the results, I’m pleased to report that Slough’s Gut Marsh has been successfully restored.

What Does it Take to Fix a Marsh?

Previously, however, Slough’s Gut was on the decline, with many of the plants growing in its salty waters either stunted or dying off. The overriding goal, as with many marsh restoration projects, was to reverse this trend and increase the vegetative cover. But does just revegetating a marsh really restore it? On the other hand, some folks, including a few at NOAA, asked whether Slough’s Gut should even be considered for “restoration” since it was already functionally a marsh and … wasn’t the ecosystem working OK? The answer on both accounts was: We were about to find out.

Although the cause of the marsh plant die-offs was not entirely clear, we suspected it had to do with changes to the natural water drainage systems associated with:

  1. Historical mosquito ditching.
  2. Sea level rise.
  3. The gradual sinking of the land.
  4. All of the above.

These suspicions were based on monitoring conducted before Slough’s Gut was ever slated for restoration. It appeared that water would not drain sufficiently off the marsh during the tidal cycle and this was suppressing the vegetation, in a phenomenon known as “waterlogging.”

I became involved as we began scoping the restoration project design. At this point, I suggested that although revegetating the marsh was a reasonable goal, the primary emphasis should be on restoring a more natural network of tidal channels, replacing the old mosquito ditches. Around the 1940s, this salt marsh had been dug up and filled in, creating a series of parallel ditches connecting at a straightened main river channel (a now-questionable practice known as “mosquito ditching” because it aimed to reduce mosquito populations). The current configuration of channels that was leading to the loss of vegetation in Slough’s Gut was likely also impacting the fish, crabs, and other aquatic life that would normally use the marsh.

Looking to a similar project on Washington, DC’s Anacostia River, the design team decided on a technique for restoring tidal channels that uses observations from relatively unimpacted marshes. This example helped us answer questions such as:

  • How big should the channels be?
  • What would a natural channel network look like? (e.g., how often would the channels split, how much would they wind)?

Next, Delmarva Power and Light hired the contractor Cardno ENTRIX to develop a restoration design that used the existing channels as much as possible but restored the channel network by creating new channels while plugging and filling others. The Delaware Department of Natural Resources and Environmental Control (DNREC), which has extensive experience working in wetlands, executed the design. Then, we watched and waited.

The End Game

The number of birds observed at Slough's Gut Marsh has doubled since 2008. Here, a heron perches at the site.

The number of birds observed at Slough’s Gut Marsh has doubled since 2008. Here, a heron perches at the site. (Cardno ENTRIX)

Cardno ENTRIX monitored the renovated marsh for five years and collected data on its recovery. This past summer, the natural resource agencies involved (NOAA, the Delaware DNREC, and the U.S. Fish and Wildlife Service) together with Delmarva Power and Light, Cardno ENTRIX, and the Center for Inland Bays (the project hosts) visited Slough’s Gut Marsh to view and discuss its progress.

Based on the past five years of data, the marsh is on a path toward successful restoration. There has been a 50 percent increase in the density of fish, shrimp, and crabs living in Slough’s Gut, compared with levels before we restored the natural tidal channels. With this extra food, the number of birds observed there has doubled since 2008.

Additional environmental sampling showed localized drainage improvements, indicating that the new channel network is stable yet adaptable, as it should be in natural marshes. This feature is particularly beneficial when confronted with issues like sea level rise and hurricanes. Protecting and restoring tidal wetlands is an important effort in adapting to climate change in coastal areas.

This project demonstrates that ecological impacts in tidal marshes from historical ditching and diking can be restored by reconstructing a more natural tidal channel network. But don’t take my word for it. Next time you’re in the area, go see the success at Slough’s Gut yourself and leave time to visit the Center for the Inland Bays to learn more about other great environmental efforts going on in Delaware’s inland bays. The center is easily accessible and the view is tremendous.

The natural resource trustees celebrate the restoration of Slough's Gut Marsh in August 2013. Simeon Hahn is at the far right.

The natural resource trustees celebrate the restoration of Slough’s Gut Marsh in August 2013. Simeon Hahn is at the far right. (Cardno ENTRIX)

Simeon Hahn is an Office of Response and Restoration Regional Resource Coordinator in the Mid-Atlantic Region for the NOAA Damage Assessment, Remediation, and Restoration Program. He is located in EPA Region 3 in Philadelphia, Pa., and works on Superfund and state remedial projects and Natural Resource Damage Assessment cases. He has been an environmental scientist with expertise in ecological risk assessment, site remediation, and habitat restoration at NOAA for 15 years and 10 years before that with the Department of Defense.


Leave a comment

As NOAA Damage Assessment Rules Turn 18, Restoration Trumps Arguing Over the Price Tag of a Turtle

Kemp's Ridley sea turtle on beach in Texas.

How do you put a price tag on natural resources like this endangered Kemp’s Ridley sea turtle? (U.S. Environmental Protection Agency)

What is a fish or sea turtle or day of sailing worth?  Some resources may be easily valued, such as a pound of lobsters, but other natural resources may not be assigned values as easily, such as injured habitats or non-game wildlife. And what about the value of a lobster in nature rather than in a soup pot? In 1989, under the paradigm in place at the time of the Exxon Valdez oil spill, damage assessments were based on the economic value of natural resources and their uses lost as a result of a spill.

Eighteen years ago, on January 6, 1996, NOAA issued its final rules for conducting Natural Resource Damage Assessments (NRDA) for oil spills. The Oil Pollution Act of 1990, prompted by the Exxon Valdez spill, changed many aspects of the U.S. response to oil spills, including the approach to damage assessments.

One of the lessons learned from the Exxon Valdez and other incidents was that restoration became delayed when the focus was on arguing over the monetary value of natural resource damages. This was because once government agencies reached a dollar-based settlement with the organization responsible for the spill, we still had to conduct studies to figure out what restoration was really necessary. Furthermore, since the process focused on calculating monetary damages rather than restoration costs, the trustees did not always receive sufficient funds to conduct restoration (the economic value of a fish or acre of wetland may not represent the costs to restore that resource).

NOAA's Doug Helton during the response to the August 10, 1993, Tampa Bay oil spill.

NOAA’s Doug Helton during the response to the August 10, 1993, Tampa Bay oil spill. A collision between a freighter and two fuel barges resulted in hundreds of thousands of gallons of oil spilled into the Bay. The damage assessment that evaluated injuries to birds, sea turtles, mangrove habitat, seagrasses, salt marshes, and recreational uses was an early example of a restoration-based claim, and NOAA used this experience in developing the damage assessment rules. A number of ecological and recreational restoration projects were conducted to address or compensate for these injuries. For more information, see http://www.darrp.noaa.gov/southeast/tampabay/

To reform this issue, the Oil Pollution Act of 1990 required that NOAA promulgate new damage assessment regulations, and I was assigned to work with a team of attorneys and scientists to help develop a rule that made sense legally and scientifically. In response to the lessons learned from the Exxon Valdez and other recent oil spills, we developed a new approach, focusing on the ultimate goal of restoration rather than attempting to establish a price tag for each fish, bird, or marine mammal injured by a spill. In other words, the damage claim submitted to the responsible party is based on the cost to conduct restoration projects for the damages rather than the value of the injured resource.

The Oil Pollution Act regulations also turned Natural Resource Damage Assessment into a more open process through three major changes:

  • Making assessment results and critical documents available to the public in an administrative record.
  • Requiring that the public have a chance to review and comment on restoration plans.
  • Inviting the organizations responsible for the spill to actively cooperate in the assessment and restoration planning.

The rulemaking process took several years, and we had lots of comments from the public, nongovernmental organizations, and the marine insurance, shipping, and oil industries. Finally, after incorporating all of the comments and developing a series of guidance documents, we published the final rule on January 6, 1996.

We had little time to relax, however. The first test of those cooperative, restoration-based regulations came a couple weeks later when the Barge North Cape and Tug Scandia ran aground in Rhode Island on January 19.  Stay tuned for the story of how that grounding off of a former nudist beach inspired an unexpected career for a young college student.


5 Comments

In New Jersey, Celebrating a Revived Marsh and the Man who Made it Possible

This is a post by the NOAA Restoration Center’s Carl Alderson.

Ernie Oros speaking next to Woodbridge marsh.

Former State Assemblyman and champion of open space, Ernie Oros at the Woodbridge marsh dedication ceremony on Oct 16, 2007. (New York New Jersey Baykeeper/Greg Remaud)

Ernie Oros, former New Jersey State Assemblyman and octogenarian, stood next to me on the bank of a newly created tributary to the Woodbridge River and looked out across an expanse of restored tidal marsh. It was May 2008 and the marsh that he had long championed was now lush and green and teeming with fish. This inspiring sight before us was the result of a marsh restoration project undertaken by NOAA, the Army Corps of Engineers, New Jersey Department of Environmental Protection, and the Port Authority of New York and New Jersey.

Years ago a tall berm was raised between the Woodbridge River and this marshland, effectively walling it off from the reach of the tides that replenished it. Reeds that grow in damaged marshes choked off the tides even further.

He gave a pause, drew a breath and was on to the next subject before I had finished marveling at the sea of grass standing before us. “When can you get the observation walkway back up?” Ernie asked me. “Soon,” I replied, “we have a plan.” “Good,” he said, “I’m not getting any younger.”

That’s how the conversation went until August 2012 when Ernie passed away at the age of 88. The construction of the tidal marsh itself—with all the complexities of hydrology, chemistry, biology, logistical twists and turns, negotiations, permits, and contract discussions—seemed to go up in a snap. In two years it went from design contract to dedication ceremony. Yet, the observation boardwalks—there were now two—seemed to lag behind in a mire of contract disputes, tight budgets, two hurricanes, and extension after extension of funding agreements.

A Vision to Restore

I never wondered why Ernie was so anxious to move forward; he was after all in his 80s and by his own account in failing health. In his knock-around clothes, he looked like an old clam digger, but in his best suit, like the one he wore the day of the marsh dedication ceremony, he still cut the figure of the State Assemblyman he once was. Ernie had a vision for this place, and he was now on a roll. He had long ago established Woodbridge River Watch, a community organization to advocate for open space in Woodbridge, N.J.; he had guided the town through major acquisition and conservation efforts; he gathered momentum for his butterfly garden; planned to landscape the perimeter with local historic artifacts; and now he could add the marsh restoration to his list of achievements.

Among all of his accomplishments, nothing could be more dramatic than having blown life into this dying marshland. It linked the past and the future to a community that blossomed at the cross roads of the American colonial experience in the 17th century, soared to the peak of industrialization beginning in the 18th and 19th centuries, then boomed and at last came to rest upon the suburbanization movement of the 20th century. For myself, I could live with the simple sweet note of this being an urban habitat: a rebirth for colonial wading birds, ribbed mussels, fiddler crabs, and young juvenile bluefish called “snappers.” But for Ernie, the marsh was the opening hymn to a chorus of American history.

It took me a long time to realize what Ernie was up to. The marsh wasn’t just a host for the history garden; it itself was an artifact. The marsh represented every century that came before the first European settlers arrived. Better than any artifact, the marsh was living history as far as Ernie was concerned.

An interpretative sign displaying the flora and fauna found in Woodbridge Marsh.

An interpretative sign displaying the flora and fauna found in Woodbridge Marsh. (Illustrations: Jorge Cotto. Design: Ann Folli)

The observation boardwalks were the last piece of the plan. Both Ernie and I viewed the future boardwalks and their brightly designed story panels as a means of drawing in the citizens of Woodbridge. Boardwalks send a signal of welcome where a marsh alone often does not. The signs would interpret for them the plants, the animals, the natural processes unfolding in the marsh around them.

That is why Ernie was so anxious to see this vision through to completion. Despite the town’s position on the waterfront of three major bodies of water—the Raritan River, Raritan Bay, and Arthur Kill (a tidal straight separating the township from New York City)—very little of it was accessible to the public. Ernie hoped to change that by inviting people into a renewed Woodbridge Marsh.

A Day to Remember

Greg Remaud is the Deputy Director for the New York/New Jersey Baykeeper. The Baykeeper, a long-time partner of NOAA and advocate for open space in New York Harbor, is a non-profit organization committed to the conservation and restoration of the Hudson-Raritan Estuary. For Remaud, it had become increasingly apparent that the post-industrial age presented opportunities to create New Jersey’s waterfront in a new image.

Greg had met up with Ernie Oros years before. With the help of many others, this pair championed a new way forward for the Woodbridge River. Eventually, they were able to draw the attention of key agencies and help these dreams take the shape of Spartina grasses, High Tide bush, and killifish.

Then, earlier this year, I learned of the Baykeeper’s plan to honor Ernie’s memory with a day-long celebration.

One of the sons and great-grandsons of Ernie Oros canoeing on the banks of the Woodbridge River on Ernie Oros Celebration Day, September 28, 2013.

Ernie’s son Richard Oros and Michael Kohler, Ernie’s great-grandson, canoeing on the banks of the Woodbridge River on Ernie Oros Celebration Day, September 28, 2013. (Carl Alderson/all rights reserved)

On the astonishingly beautiful Saturday morning of September 28, 2013, the NOAA Restoration Center was on hand to be part of a very special event to honor Ernie’s life. To honor his legacy, the New York/New Jersey Baykeeper held a family-friendly event right next to what I consider Ernie’s greatest environmental achievement: the 67-acre Woodbridge River Wetland Restoration Project.

In a day that featured music, games, picnics, and face painting, the most popular event was the free kayak tours with the very capable staff of the Baykeeper, who led citizens through a seeming maze of restored marshes and tidal creeks. Several of Ernie’s family members were present. His sons, granddaughters, and great-grandkids jumped into canoes and kayaks to venture a ride through Ernie’s great achievement.

A Role for NOAA

NOAA’s involvement with the Woodbridge River Wetland Restoration Project began to take shape sometime in the late 1990s. We provided funds from natural resource damage settlements for two local oil spills to conduct feasibility studies, design, and permitting in 2000. Under a partnership of federal and state agencies, the project was designed and constructed between 2006 and 2007. NOAA and New Jersey Department of Environmental Protection provided $2.3 million, combining it with funds from the Army Corps of Engineers Harbor Deepening Program to make the full project come together for the Woodbridge River.

The project removed berms and obstructions that had sealed the former wetland from the Woodbridge River for decades and reunited two large tracts of land with the tides via created tidal creeks and planted marsh grasses. Today, the site is once again the home of wading birds, waterfowl, fiddler crabs, ribbed mussels, and seemingly hundreds of thousands of killifish. Ernie had tirelessly dedicated much of his adult life to campaign for the acquisition, protection, and restoration of his beloved Woodbridge River wetlands and his achievements will live on in their vibrant waters.

Carl Alderson.

Carl Alderson (left, NOAA) and Greg Remaud (right, NY/NJ Baykeeper) on the banks of the Woodbridge River on Ernie Oros Celebration Day, Sept. 28, 2013. Credit: Susan Alderson.

Carl Alderson is a Marine Resource Specialist with the NOAA Restoration Center, located at the JJ Howard Marine Science Lab in Highlands, N.J. Carl provides oversight of coastal habitat restoration projects and marine debris programs through NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) and Community-based Restoration Grants Program (CRP) in the mid-Atlantic region. He is a graduate of Rutgers University and is a Licensed Landscape Architect. Before joining NOAA, Carl worked for the City of New York and led a decade long effort to restore tidal wetlands, marine bird, and fish habitat as compensation for natural resources damages resulting from oil spills in New York Harbor. Carl is recognized as a national leader in restoration of coastal wetlands and bay habitats.


Leave a comment

See What Restoration Looks Like for an Oiled Stream on an Isolated Alaskan Island

This is a post by NOAA Restoration Center’s Erika Ammann.

Location of Adak Island among Alaska's Aleutian Islands (red arrow).

Location of Adak Island (red arrow) among Alaska’s Aleutian Islands.

Earlier this year, NOAA Oil Spill Coordinator Ian Zelo shared the story of a 2010 diesel spill on Adak Island in the central Aleutian Islands of Alaska: a tanker overfilling an underground storage tank; the fuel entering the salmon stream Helmet Creek and nearby Sweeper Cove; the nightmarish logistics of getting to the remote, sparsely populated island; and assessing environmental injury to both the stream and marine habitats amid blizzards, possible unexploded ammunition, and the dark of night.

In the wake of the spill, dead fish were collected from Helmet Creek, where diesel was observed both in the creek’s waters as well as in the habitat along its banks. As a result, pink salmon and Dolly Varden trout eggs, riparian (stream-side) habitat, and aquatic insects likely were affected in the creek and adjacent riparian area. The spill also may have affected marine mammals in Sweeper Cove and as many as eight marine birds may have died due to oil exposure and subsequent hypothermia.

Fortunately, however, the story does not end there.

After considering the environmental injuries caused by the diesel spill in Helmet Creek, the natural resource trustees, including NOAA, U.S. Fish and Wildlife Service, and the Alaska Departments of Natural Resources, Environmental Conservation, and Fish and Game, developed restoration projects intended to compensate for injuries to fish, the stream, and surrounding habitat.

On July 8, 2013, NOAA Restoration Center, Alaska Department of Fish and Game, and representatives from the fuel facility responsible for the spill traveled to Adak Island to undertake restoration work for the harm done to fish, wildlife, and their habitat by the oil spill.

During this trip, we restored fish passage to the creek and improved habitat and water quality by removing creosote pilings and grates over culvert openings which had created barriers and changes to the stream profile, re-grading the stream bed, restoring the main flow channel, and removing at least a dozen 55-gallon drums from the creek bed and banks.

Erika Ammann in a fishing boat.Erika Ammann is a Fisheries Biologist with NOAA’s Restoration Center. Based out of Anchorage, Alaska, she works on habitat restoration efforts, oil spill restoration, and marine debris throughout the state of Alaska.

Follow

Get every new post delivered to your Inbox.

Join 337 other followers