NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


1 Comment

How to Restore a Damaged Coral Reef: Undersea Vacuums, Power Washers, and Winter Storms

NOAA Fisheries Biologist Matt Parry contributed to this story and this restoration work.

After a ship runs aground on a coral reef, the ocean bottom becomes a messy place: thickly carpeted with a layer of pulverized coral several feet deep. This was the scene underwater off the Hawaiian island of Oahu in February of 2010. On February 5, the cargo ship M/T VogeTrader ran aground and was later removed from a coral reef in the brilliant blue waters of Kalaeloa/Barber’s Point Harbor.

NOAA and our partners suited up in dive gear and got to work restoring this damaged reef, beginning work in October 2013 and wrapping up in April 2014. While a few young corals have begun to repopulate this area in the time since the grounding, even fast-growing corals grow less than half an inch per year. The ones there now are mostly smaller than a golf ball and the seafloor was still covered in crushed and dislodged corals. These broken corals could be swept up and knocked around by strong currents or waves, potentially causing further injury to the recovering reef. This risk was why we pursued emergency restoration [PDF] activities for the reef.

What we didn’t expect was how a strong winter storm would actually help our restoration work in a way that perhaps has never before been done.

How Do You Start Fixing a Damaged Reef?

First, we had to get the lay of the (underwater) land, using acoustic technology to map exactly where the coral rubble was located and determine the size of the affected area. Next, our team of trained scuba divers gathered any live corals and coral fragments and transported them a short distance away from where they would be removing the rubble.

Then, we were ready to clean up the mess from the grounding and response activity and create a place on the seafloor where corals could thrive. Divers set up an undersea vacuum on the bottom of the ocean, which looks like a giant hose reaching 35 feet down from a boat to the seafloor. It gently lifted rubble up through the hose—gently, because we wanted to avoid ripping everything off of the seafloor. Eventually, our team would remove nearly 800 tons (more than 700 metric tons) of debris from the area hit by the ship.

Unexpected Gifts from a Powerful Storm

In the middle of this work, the area experienced a powerful winter storm, yielding 10-year high winter swells that reduced visibility underwater and temporarily halted the restoration work. When the divers returned after the storm subsided, they were greeted by a disappointing discovery: the cache of small coral remnants they had stockpiled to reattach to the sea bottom was gone. The swells had scoured the seafloor and scattered what they had gathered.

But looking around, the divers realized that the energetic storm had broken off and dislodged a number of large corals nearby. Corals that were bigger than those they lost and which otherwise would have died as a result of the storm. With permission from the State of Hawaii, they picked up some of these large, naturally detached corals, which were in good condition, and used them as donor corals to finish the restoration project.

Finding suitable donor corals is one of the most difficult aspects of coral restoration. This may have been the first time people have been able to take advantage of a naturally destructive event to restore corals damaged by a ship grounding.

A Reef Restored

Once our team transported the donor corals to the restoration site a few hundred yards away, they scraped the seafloor, at first by hand and then with a power washer, to prepare it for reattaching the corals. Using a cement mixer on a 70-foot-long boat, they mixed enough cement to secure 643 corals to the seafloor.

While originally planning to reattach 1,200 coral colonies, the storm-blown corals were so large (and therefore so much more valuable to the recovering habitat) that the divers ran out of space to reattach the corals. In the end, they didn’t replace these colonies in the exact same area that they removed the coral rubble. When the ship hit the reef, it displaced about three feet of reef, exposing a fragmented, crumbly surface below. They left this area open for young corals to repopulate but traveled a little higher up on the reef shelf to reattach the larger corals on a more secure surface, one only lightly scraped by the ship.

The results so far are encouraging. Very few corals were lost during the moving and cementing process, and the diversity of coral species in the reattachment area closely reflects what is seen in unaffected reefs nearby. These include the common coral species of the genus Montipora (rice coral), Porites lobata (lobe coral), and Pocillopora meandrina (cauliflower coral). As soon as the divers finished cleaning and cementing the corals to the ocean floor, reef fish started moving in, apparently pleased with the state of their new home.

But our work isn’t done yet. We’ll be keeping an eye on these corals as they recover, with plans to return for monitoring dives in six months and one year. In addition, we’ll be working with our partners to develop even more projects to help restore these beautiful and important parts of Hawaii’s undersea environment.


2 Comments

A River Reborn: Restoring Salmon Habitat along Seattle’s Duwamish River

Industrial river with part of a boat in the view.

Cutting through south Seattle, the Duwamish River is still very much an industrial river. (NOAA)

Just south of Seattle, the airplane manufacturer Boeing Company has created one of the largest habitat restoration projects on the Lower Duwamish River. Boeing worked with NOAA and our partners under a Natural Resource Damage Assessment to restore habitat for fish, shorebirds, and wildlife harmed by historical industrial activities on this heavily used urban river. We documented and celebrated this work in a short video.

What Kind of Restoration?

In this video, you can learn about the restoration techniques used in the project and how they will benefit the communities of people, fish, and wildlife of the Duwamish River. The restoration project included activities such as:

  • Reshaping the shoreline and adding 170,000 native plants and large woody debris, which provide areas where young salmon can seek refuge from predators in the river.
  • Creating 2 acres of wetlands to create a resting area for migrating salmon.
  • Transforming more than a half mile of former industrial waterfront back into natural shoreline.

Watch the video:

Why Does this River Need Restoring?

In 1913, the U.S. Army Corps of Engineers excavated and straightened the Duwamish River to expand Seattle’s commercial navigation, removing more than 20 million cubic yards of mud and sand and opening the area to heavy industry. But development on this waterway stretches back to the 1870s.

Ninety-seven percent of the original habitat for salmon—including marsh, mudflats, and toppled trees along multiple meandering channels— was lost when they transformed a 9-mile estuary into a 5-mile industrial channel.

As damaged and polluted as the Lower Duwamish Waterway is today, the habitat here is crucial to ensuring the survival and recovery of threatened fish species, including the Puget Sound Chinook and Puget Sound Steelhead. These young fish have to spend time in this part of the Duwamish River, which is a Superfund Site, as they transition from the river’s freshwater to the saltwater of the Puget Sound and Pacific Ocean. Creating more welcoming habitat for these fish gives them places to find food and escape from predators.

Fortunately, this restored waterfront outside of a former Boeing plant will be maintained for all time, and further cleanup and restoration of the river is in various stages as well.

UPDATE 6/17/2014: On June 17, 2014, Boeing hosted a celebration on the newly restored banks of the Lower Duwamish River to recognize the partners who helped make the restoration a reality. Speakers at the event included NOAA, Boeing, the Muckleshoot Tribe, and a local community group. This also gave us the opportunity to share the video “A River Reborn,” which was well received.


Leave a comment

Watch Bald Eagle Restoration Come Alive in California’s Channel Islands

On the heels of Endangered Species Day, we take a look at the incredible recovery story of the Bald Eagle, which teetered on the edge of extinction in the second half of the twentieth century, in part due to impacts from people releasing the pesticide DDT into the environment.

By the early 1960s Bald Eagles had disappeared from southern California’s Channel Islands after chemical companies near Los Angeles discharged into the ocean millions of pounds of the toxic chemicals DDT and PCBs [PDF], both of which stay in the environment for a very long time. Once DDT worked its way up the marine food chain to the eagles, it weakened the shells of their eggs, causing the parent eagles to crush the eggs before they could hatch.

However, thanks to the efforts of NOAA’s Montrose Settlements Restoration Program and our partners, including the Institute for Wildlife Studies, Bald Eagles have made a comeback in southern California’s Channel Islands.

Learn more about this notable conservation work in this Thank You Ocean Report video podcast:

“This program has been 30 years in the making and after that amount of time we have finally started to see natural hatching out on the islands,” says bird biologist Annie Little of the Montrose Settlements Restoration Program. “I think it shows the persistence of these types of chemicals in the environment and that restoration doesn’t happen overnight.”

But it does happen with a lot of hard work and dedication. Between 2006 and 2013, a total of 81 Bald Eagle chicks have hatched in the Channel Islands. You can watch the eagles’ recovery in real time as they build nests and hatch chicks on the islands via the Bald Eagle web cams.

Also from Thank You Ocean, here’s an everyday action you can take to protect the ocean and the animals dependent on it: “Avoid the use of toxic chemicals and keep trash and chemicals out of storm drains. Polluted water from storm drains flows into the sea and can harm marine life and the environment.”


Leave a comment

Watch Art Explain What Kind of Habitat Young Salmon Need to Thrive

Illustration from video of two salmon swimming by tree roots.What do young salmon need to grow into the kind of big, healthy adult salmon enjoyed by people as well as bears, seals, and other wildlife? A recent collaboration between NOAA Fisheries and the Pacific Northwest College of Arts makes the answer come to life in a beautiful animation by artists Beryl Allee and John Summerson.

Watch the intersection of art and science as we follow young salmon happily swimming through the cool, shallow waters along a shore. We see the bits of wood, tangled tree roots, and scattered rocks that provide these fish with both insects to eat and protection from predators.

But what happens when a home or business shows up along the water’s edge? How do people remake the shoreline? What kind of environment does this create for those same little salmon?

NOAA partnered with the Pacific Northwest College of Arts to create this moving and educational tool to raise awareness among waterfront landowners and the general public about how the decisions we make affect endangered salmon. In particular, NOAA wanted to address the practice of “armoring,” or using physical structures such as rocks and concrete to protect shorelines from coastal erosion. As we can see in the animation, armored shorelines do not make for happy, healthy young salmon.

Illustration from animation of a sad fish and an armored shoreline.

However, alternatives to armoring shorelines with hard materials are emerging. They include using plants and organic materials to stabilize the shores while also preserving or creating the kind of habitat young salmon need.

Creating better habitat for fish is often the goal of NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP). When we determine that fish were harmed after an oil spill or hazardous chemical release, we, with the help of a range of partners and the public, identify and implement restoration projects to make up for this harm.

Take a look at a few examples in which we built better habitat for salmon:

Beaver Creek, Oregon

A tanker truck carrying gasoline overturned on scenic Highway 26 through central Oregon in 1999, spilling 5,000 gallons of gasoline into Beaver Butte Creek and impacting steelhead trout and Chinook salmon. Working with the Confederated Tribes of the Warm Springs Reservation of Oregon and other partners, we have helped implement five restoration projects. They range from adding large wood to stream banks to provide fish habitat to installing two beaver dam–mimicking structures to improve water quality.

White River, Washington

In 2006 a system failure sent 18,000 gallons of diesel into creeks and wetlands important to endangered Chinook salmon around Washington’s White River. To improve and expand habitat for these salmon, NOAA and our partners removed roadfill and added large pieces of wood (“logjams”) along the edges of the nearby Greenwater River. This restoration project will help slow and redirect the river’s straight, fast-moving currents, creating deep pools for salmon to feed and hide from predators and allowing some of the river water to overflow into slower, shallower tributaries perfect for spawning salmon.

Adak, Alaska

On the remote island of Adak in Alaska’s Aleutian Islands, a tanker overfilled an underground storage tank in 2010. This resulted in up to 142,800 gallons of diesel eventually flowing into the nearby salmon stream, Helmet Creek. Pink salmon and Dolly Varden trout were particularly affected. In 2013 NOAA and our partners restored fish passage to the creek, improved habitat and water quality, made stream flow and channel improvements, and removed at least a dozen 55-gallon drums from the creek bed and banks.

You can also watch a video to learn how NOAA is restoring recreationally and commercially important fish through a variety of projects in the northeast United States.


Leave a comment

NOAA and Partners Invest in an Innovative New Stewardship Program for Washington’s Commencement Bay

A group of people holding a giant check for $4.9 million.

NOAA hands off a $4.9 million check to the nonprofit EarthCorps, which will use the funding for planning, restoration, monitoring, and maintenance at 17 restoration sites across Washington’s Commencement Bay. U.S. Representatives Dennis Heck (WA), Derek Kilmer (WA), and Peter DeFazio (OR) were also in attendance. (NOAA)

Last week, NOAA and partners awarded $4.9 million to EarthCorps for long-term stewardship of restoration sites in Commencement Bay near Tacoma, Washington. The Commencement Bay Stewardship Collaborative is part of a larger investment that will conserve habitat for fish and wildlife and give local urban communities access to the shoreline.

EarthCorps, which was competitively selected for this funding, is a non-profit organization that trains environmental leaders through local service projects.

Volunteers plant ferns at a restoration site in Commencement Bay.

Volunteers restore a site in Commencement Bay. (NOAA)

The funding will support planning, restoration, monitoring, and maintenance at 17 sites across the Bay. These sites were restored over the past 20 years as part of the ongoing Commencement Bay natural resource damage assessment (NRDA) case. This is the first time that a third party has received funding to launch a comprehensive stewardship program as part of a NRDA case. We hope it will become a model of stewardship for future cases.

Commencement Bay is the harbor for Tacoma, Washington, at the southern end of Puget Sound. Many of the waterways leading into the Bay—which provide habitat for salmon, steelhead, and other fish—have been polluted by industrial and commercial activities. NOAA and other federal, state, and tribal partners have been working for decades to address the contamination and restore damaged habitat.

One of the sites that EarthCorps will maintain is the Sha Dadx project on the bank of the Puyallup River. The lower Puyallup River was straightened in the early 20th century, leaving little off-channel habitat—which juvenile salmon use for rearing and foraging. The project reconnected the river to a curve that had been cut off by levees. This restored 20 acres of off-channel habitat, and fish and wildlife are using the site.

Most of the parties responsible for the contamination have settled and begun implementing restoration. NOAA and its partners are evaluating options for pursuing parties that haven’t settled yet. As new sites are added, stewardship funds will be secured at settlement and likely added to the overall long-term effort.

This story was originally posted on NOAA’s National Marine Fisheries Service Habitat Conservation website.


Leave a comment

NOAA Scientists Offer In-depth Workshops at 2014 International Oil Spill Conference

2014 International Oil Spill Conference banner with sea turtle graphicEvery three years, experts representing organizations ranging from government and industry to academic research and spill response gather at the International Oil Spill Conference. This event serves as a forum for sharing knowledge and addressing challenges in planning for and responding to oil spills. NOAA plays a key role in planning and participating in this conference and is one of the seven permanent sponsors of the event.

This year is no different. In addition to presenting on topics such as subsea applications of dispersants and long-term ecological evaluations, Office of Response and Restoration staff are teaching several half-day workshops giving deeper perspectives, offering practical applications, and even providing hands-on experience.

If you’ll be heading to the conference in Savannah, Ga., from May 5–8, 2014, take advantage of the following short courses to pick our brains and expand yours. Or, if you can’t make it, consider applying for our next Science of Oil Spills training this August in Seattle, Wash.

Environmental Trade-offs Focusing on Protected Species

When: Monday, May 5, 2014, 8:00 a.m. to 12:00 p.m. Eastern

Who: Ed Levine (Scientific Support Coordinator), Jim Jeansonne (Scientific Support Coordinator), Gary Shigenaka (Marine Biologist), Paige Doelling (Scientific Support Coordinator)

Level: Introductory

What: Learn the basics about a variety of marine protected species, including whales, dolphins, sea turtles, birds, fish, corals, invertebrates, and plants. This course will cover where they are found, the laws that protect them, and other information necessary to understand how they may be affected by an oil spill. The course will discuss the impacts of specific response operations on marine protected species, and the decision making process for cleaning up the oil while also working in the best interest of the protected species. We will also discuss knowledge gaps and research needs and considerations when information is not available.

A man points out something on a computer screen to another person.Advanced Oil Spill Modeling and Data Sources

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Glen Watabayashi (Oceanographer), Amy MacFadyen (Oceanographer), Chris Barker (Oceanographer)

Level: Intermediate

What: This is a rare opportunity to get hands-on experience with NOAA’s oil spill modeling tools for use in response planning and trajectory forecasting. We will lead participants as they use our General NOAA Operational Modeling Environment (GNOME) model for predicting oil trajectories and the Automated Data Inquiry for Oil Spills (ADIOS) model for predicting oil weathering.

Arctic Drilling Environmental Considerations

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Kate Clark (Acting Chief of Staff), Mary Campbell Baker (Northwest/Great Lakes Damage Assessment Supervisor)

Level: Introductory

What: How are Arctic development decisions being made given environmental, political, and societal uncertainty? How should they be made? Examine how a changing Arctic is intersecting with increased shipping and oil development to alter the profile of human and environmental risks.

Worldwide Practice Approaches to Environmental Liability Assessment

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Ian Zelo (Oil Spill Coordinator) and Jessica White (Deputy Director, NOAA’s Disaster Response Center)

Level: Intermediate

What: In the United States, Natural Resource Damage Assessment (NRDA) regulations promulgated pursuant to the Oil Pollution Act of 1990 institutionalized the concept of NRDA and the cooperative NRDA. Learn some of the key principles related the NRDA and restoration process in the context of oil spills, as well as suggested best practices and how they may be implemented at various sites in the U.S. and worldwide.


2 Comments

Little “Bugs” Can Spread Big Pollution Through Contaminated Rivers

This is a post by the NOAA Restoration Center’s Lauren Senkyr.

When we think of natural resources harmed by pesticides, toxic chemicals, and oil spills, most of us probably envision soaring birds or adorable river otters.  Some of us may consider creatures below the water’s surface, like the salmon and other fish that the more charismatic animals eat, and that we like to eat ourselves. But it’s rare that we spend much time imagining what contamination means for the smaller organisms that we don’t see, or can’t see without a microscope.

Mayfly aquatic insect on river bottom.

A mayfly, pictured above, is an important component in the diet of salmon and other fish. (NOAA)

The tiny creatures that live in the “benthos”—the mud, sand, and stones at the bottoms of rivers—are called benthic macroinvertebrates. Sometimes mistakenly called “bugs,” the benthic macroinvertebrate community actually includes a variety of animals like snails, clams, and worms, in addition to insects like mayflies, caddisflies, and midges. They play several important roles in an ecosystem. They help cycle and filter nutrients and they are a major food source for fish and other animals.

Though we don’t see them often, benthic macroinvertebrates play an extremely important role in river ecosystems. In polluted rivers, such as the lower 10 miles of the Willamette River in Portland, Oregon, these creatures serve as food web pathways for legacy contaminants like PCBs and DDT. Because benthic macroinvertebrates live and feed in close contact with contaminated muck, they are prone to accumulation of contaminants in their bodies.  They are, in turn, eaten by predators and it is in this way that contaminants move “up” through the food web to larger, more easily recognizable animals such as sturgeon, mink, and bald eagles.

Some of the ways contaminants can move through the food chain in the Willamette River.

Some of the ways contaminants can move through the food chain in the Willamette River. (Portland Harbor Trustee Council)

The image above depicts some of the pathways that contaminants follow as they move up through the food web in Oregon’s Portland Harbor. Benthic macroinvertebrates are at the bottom of the food web. They are eaten by larger animals, like salmon, sturgeon, and bass. Those fish are then eaten by birds (like osprey and eagle), mammals (like mink), and people.

An illustration showing how concentrations of the pesticide DDT biomagnify 10 million times as they move up the food chain from macroinvertebrates to fish to birds of prey.

An illustration showing how concentrations of the pesticide DDT biomagnify 10 million times as they move up the food chain from macroinvertebrates to fish to birds of prey. (U.S. Fish and Wildlife Service)

As PCB and DDT contamination makes its way up the food chain through these organisms, it is stored in their fat and biomagnified, meaning that the level of contamination you find in a large organism like an osprey is many times more than what you would find in a single water-dwelling insect. This is because an osprey eats many fish in its lifetime, and each of those fish eats many benthic macroinvertebrates.

Therefore, a relatively small amount of contamination in a single insect accumulates to a large amount of contamination in a bird or mammal that may have never eaten an insect directly.  The graphic to the right was developed by the U.S. Fish and Wildlife Service to illustrate how DDT concentrations biomagnify 10 million times as they move up the food chain.

Benthic macroinvertebrates can be used by people to assess water quality. Certain types of benthic macroinvertebrates cannot tolerate pollution, whereas others are extremely tolerant of it.  For example, if you were to turn over a few stones in a Northwest streambed and find caddisfly nymphs (pictured below encased in tiny pebbles), you would have an indication of good water quality. Caddisflies are very sensitive to poor water quality conditions.

Caddisfly nymphs encased in tiny pebbles on a river bottom.

Caddisfly nymphs encased in tiny pebbles on a river bottom are indicators of high water quality. (NOAA)

Surveys in Portland Harbor have shown that we have a pretty simple and uniform benthic macroinvertebrate population in the area. As you might expect, it is mostly made up of pollution-tolerant species. NOAA Restoration Center staff are leading restoration planning efforts at Portland Harbor and it is our hope that once cleanup and restoration projects are completed, we will see a more diverse assemblage of benthic macroinvertebrates in the Lower Willamette River.

Lauren SenkyrLauren Senkyr is a Habitat Restoration Specialist with NOAA’s Restoration Center.  Based out of Portland, Ore., she works on restoration planning and community outreach for the Portland Harbor Superfund site as well as other habitat restoration efforts throughout the state of Oregon.

Follow

Get every new post delivered to your Inbox.

Join 398 other followers