NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

When the Clock Is Ticking: NOAA Creates Guidelines for Collecting Time-Sensitive Data During Arctic Oil Spills

This is a post by Dr. Sarah Allan, Alaska Regional Coordinator for NOAA’s Office of Response and Restoration, Assessment and Restoration Division.

The risk of an oil spill in the Alaskan Arctic looms large. This far-off region’s rapid changes and growing ship traffic, oil and gas development, and industrial activity are upping those chances for an accident. When Shell’s Arctic drilling rig Kulluk grounded on a remote island in the Gulf of Alaska in stormy seas in December 2012, the United States received a glimpse of what an Arctic oil spill response might entail. While no fuel spilled, the Kulluk highlighted the need to have a science plan ready in case we needed to study the environmental impacts of an oil spill in the even more remote Arctic waters to the north. Fortunately, that was exactly what we were working on.

Soon, the NOAA Office of Response and Restoration’s Assessment and Restoration Division will be releasing a series of sampling guidelines for collecting high-priority, time-sensitive, ephemeral data in the Arctic to support Natural Resource Damage Assessment (NRDA) and other oil spill science. These guidelines improve our readiness to respond to an oil spill in the Alaskan Arctic. They help ensure we collect the appropriate data, especially immediately during or after a spill, to support a damage assessment and help the coastal environment bounce back.

Why Is the Arctic a Special Case?

NOAA’s Office of Response and Restoration is planning for an oil spill response in the unique, remote, and often challenging Arctic environment. Part of responding to an oil spill is carrying out Natural Resource Damage Assessment. During this legal process, state and federal agencies assess injuries to natural and cultural resources and the services they provide. They then implement restoration to help return those resources to what they were before the oil spill.

The first step in the process often includes collecting time-sensitive ephemeral data to document exposure to oil and effects of those exposures. Ephemeral data are types of information that change rapidly over time and may be lost if not collected immediately, such as the concentration of oil chemicals in water or the presence of fish larvae in an area.

It will be especially challenging to collect this kind of data in the Alaskan Arctic because of significant scientific and logistical challenges. The inaccessibility of remote sites in roadless areas, limited resources and infrastructure, extreme weather, and dangerous wildlife make it very difficult to safely deploy a field team to collect information.

However, the uniqueness of the fish, wildlife, and habitats in the Arctic and the lack of baseline data for many of them mean collecting pre- and post-impact ephemeral data is even more important and makes advance planning essential.

What Do We Need and How Do We Get It?

The first step in developing these guidelines was to identify the highest priority ephemeral data needs for damage assessment in the Arctic. We accomplished this by developing a conceptual model of oil exposure and injury, conducting meetings with communities in the Alaskan Arctic, and consulting with NRDA practitioners and Artic experts.

Our guidelines do not cover marine mammals and birds because the NOAA National Marine Fisheries Service and U.S. Fish and Wildlife Service already have developed such guidelines. Instead, our guidelines are focused on nearshore habitats and natural resources, which in the Arctic include sand, gravel, rock, and tundra shorelines and estuarine lagoons. These environments are at risk of being affected by onshore and nearshore oil spills and offshore spills when oil drifts toward the coast. Though Arctic lagoons and coastlines are covered with ice most of the year, they are important habitat for a wide range of organisms, many of which are important subsistence foods for local communities.

Once we defined our high-priority ephemeral data needs, we developed the data collection guidelines based on guidance documents for other regions, published sampling methods, lessons learned from other spills, and shared traditional knowledge. Draft versions of the guidelines were reviewed by NRDA practitioners and Arctic resource experts, including people from federal and state agencies, Alaskan communities, academia, nonprofit organizations, consulting companies, and industry groups.

With their significant and valuable input, we developed 17 guidelines for collecting data from plankton, fish, environmental media (e.g., oil, water, snow, sediments, tissues), and nearshore habitats and the living things associated with them.

What’s in One of These Guidelines?

Marine invertebrate measured next to a ruler.

Arctic isopod collected for a tissue sample along the Chukchi coast in 2014. (NOAA)

Our Arctic ephemeral data collection guidelines cover a lot, from a sampling equipment list and considerations to address before heading out, to field data sheets and detailed sampling strategies and methods. In addition, we developed a document with alternative sampling equipment and methods to address what to do if certain required equipment, facilities, or conditions—such as preservatives for tissue samples—are not available in remote Alaskan Arctic locations.

These guidelines are focused, concise, detailed, Arctic-specific, and adaptable. They are intended to be used by NRDA personnel as well as other scientists doing baseline data collection or collecting samples for damage assessment and oil spill science, and may also be used by emergency responders.

Meanwhile, Out in the Real World

Though we often talk about the Arctic’s weather, wildlife, access, and logistical issues, it is always humbling and instructive to actually work in those conditions. This is why field validating the ephemeral data collection guidelines was an essential part of their development. We needed to make sure they were feasible and effective, improve them based on lessons learned in the field, and gauge the level of effort required to carry them out.

Many of the guidelines can only be used when there is no shore-fast ice present, while others are specific to ice habitats or can be used in any season. We field tested versions of the guidelines’ methods near Barrow, Alaska, in the summer of 2013 and spring and summer of 2014, adding important details and making other corrections as a result. More importantly, we know in practice, not just in theory, that these methods are a reasonable and effective way to collect samples for damage assessment in the Alaskan Arctic.

People preparing an inflatable boat on a shoreline with broken sea ice.

Preparing to deploy a beach seine net around broken sea ice on the Chukchi coast in 2013. (NOAA)

The guidelines for collecting high priority ephemeral data for oil spills in the Arctic will be available soon at response.restoration.noaa.gov/arctic.

Acknowledgements

Thank you to everyone who reviewed the Arctic ephemeral data collection guidelines and provided valuable input to their development.

A special thanks to Kevin Boswell, Ann Robertson, Mark Barton, Sam George, and Adam Zenone for allowing me to join their field team in Barrow and helping me get the samples I needed.

Dr. Sarah Allan.

Dr. Sarah Allan has been working with NOAA’s Office of Response and Restoration Emergency Response Division and as the Alaska Regional Coordinator for the Assessment and Restoration Division, based in Anchorage, Alaska, since February of 2012. Her work focuses on planning for natural resource damage assessment and restoration in the event of an oil spill in the Arctic.


1 Comment

Protecting, Restoring, and Celebrating Estuaries—Where Salt and Freshwater Meet

Collage: lighthouse, kids viewing wildlife, heron, canoe in water, flowers, and meandering wetlands.

Estuaries are ecosystems along the oceans or Great Lakes where freshwater and saltwater mix to create wetlands, bays, lagoons, sounds, or sloughs. (NOAA’s National Estuarine Research Reserves)

As the light, fresh waters of rivers rush into the salty waters of the sea, some incredible things can happen. As these two types of waters meet and mix, creating habitats known as estuaries, they also circulate nutrients, sediments, and oxygen. This mixing creates fertile waters for an array of life, from mangroves and salt-tolerant marsh grasses to oysters, salmon, and migrating birds. These productive areas also attract humans, who bring fishing, industry, and shipping along with them.

All of this activity along estuaries means they are often the site of oil spills and chemical releases. We at NOAA’s Office of Response and Restoration often find ourselves working in estuaries, trying to minimize the impacts of oil spills and hazardous waste sites on these important habitats.

A Time to Celebrate Where Rivers Meet the Sea

September 20–27, 2014 is National Estuaries Week. This year 11 states and the District of Columbia have published a proclamation recognizing the importance of estuaries. To celebrate these critical habitats, Restore America’s Estuaries member organizations, NOAA’s National Estuarine Research Reserve System, and EPA’s National Estuary Program are organizing special events such as beach cleanups, hikes, canoe and kayak trips, cruises, and workshops across the nation. Find an Estuary Week event near you.

You and your family and friends can take a personal stake in looking out for the health and well-being of estuaries by doing these simple things to protect these fragile ecosystems.

How We Are Protecting and Restoring Estuaries

You may be scratching your head wondering whether you know of any estuaries, but you don’t need to go far to find some famous estuaries. The Chesapeake Bay and Delaware Bay are on the east coast, the Mississippi River Delta in the Gulf of Mexico, and San Francisco Bay and Washington’s Puget Sound represent some notable estuarine ecosystems on the west coast. Take a closer look at some of our work on marine pollution in these important estuaries.

Chesapeake Bay: NOAA has been working with the U.S. Environmental Protection Agency and Department of Defense on cleaning up and restoring a number of contaminated military facilities around the Chesapeake Bay. Because these Superfund sites are on federal property, we have to take a slightly different approach than usual and are trying to work restoration principles into the cleanup process as early as possible.

Delaware Bay: Our office has responded to a number of oil spills in and adjacent to Delaware Bay, including the Athos oil spill on the Delaware River in 2004. As a result, we are working on implementing several restoration projects around the Delaware Bay, which range from creating oyster reefs to restoring marshes, meadows, and grasslands.

Puget Sound: For Commencement Bay, many of the waterways leading into it—which provide habitat for salmon, steelhead, and other fish—have been polluted by industrial and commercial activities in this harbor for Tacoma, Washington. NOAA and other federal, state, and tribal partners have been working for decades to address the contamination and restore damaged habitat, which involves taking an innovative approach to maintaining restoration sites in the Bay.

Further north in Puget Sound, NOAA and our partners have worked with the airplane manufacturer Boeing to restore habitat for fish, shorebirds, and wildlife harmed by historical industrial activities on the Lower Duwamish River, a heavily used urban river in Seattle. Young Puget Sound Chinook salmon and Steelhead have to spend time in this part of the river, which is a Superfund Site, as they transition from the river’s freshwater to the saltwater of the Puget Sound. Creating more welcoming habitat for these fish gives them places to find food and escape from predators.

San Francisco Bay: In 2007 the M/V Cosco Busan crashed into the Bay Bridge and spilled 53,000 gallons of thick fuel oil into California’s San Francisco Bay. Our response staff conducted aerial surveys of the oil, modeled the path of the spill, and assessed the impacts to the shoreline. Working with our partners, we also evaluated the impacts to fish, wildlife, and habitats, and determined the amount of restoration needed to make up for the oil spill. Today we are using special buoys to plant eelgrass in the Bay as one of the spill’s restoration projects


2 Comments

Join NOAA for a Tweetchat on Preparing for Arctic Oil Spills

 

Coast Guard icebreaker in sea ice.

The U.S. Coast Guard Cutter Healy, a state-of-the-art icebreaker and the August 2014 home of a team of researchers evaluating oil spill technologies in the Arctic. (U.S. Coast Guard)

As Arctic waters continue to lose sea ice each summer, shipping, oil and gas exploration, tourism, and fishing will increase in the region. With more oil-powered activity in the Arctic comes an increased risk of oil spills.

In August of 2014, NOAA’s Office of Response and Restoration sent two GIS specialists aboard the U.S. Coast Guard Cutter Healy for an exercise in the Arctic Ocean demonstrating oil spill tools and technologies. This scientific expedition provided multiple agencies and institutions with the invaluable opportunity to untangle some of the region’s knotty logistical challenges on a state-of-the-art Coast Guard icebreaker in the actual Arctic environment. It is one piece of the Coast Guard’s broader effort known as Arctic Shield 2014.

Part of NOAA’s focus in the exercise was to test the Arctic Environmental Response Management Application (ERMA®), our interactive mapping tool for environmental response data, during a simulated oil spill.

Join us as we learn about NOAA’s role in the mission and what life was like aboard an icebreaker. Use Twitter to ask questions directly to NOAA GIS specialists Jill Bodnar and Zachary Winters-Staszak.

Get answers to questions such as:

  • What type of technologies did the Coast Guard Research and Development Center (RDC) and NOAA test while aboard the Healy and what did we learn?
  • What was a typical day like on a ship that can break through ice eight feet thick?
  • Why can’t we just simulate an Arctic oil spill at home? What are the benefits of first-hand experience?

Tweetchat Details: What You Need to Know

What: Use Twitter to chat directly with NOAA GIS specialists Jill Bodnar and Zachary Winters-Staszak.

When: Thursday, September 18, 2014 from 11:00 a.m. Pacific to 12:00 p.m. Pacific (2:00 p.m. Eastern to 3:00 p.m. Eastern).

How: Tweet questions to @NOAAcleancoasts using hashtag #ArcticShield14. You can also submit questions in advance via orr.rsvp.requests@noaa.gov, at www.facebook.com/noaaresponserestoration, or in the comments here.

About NOAA’s Spatial Data Branch

Jill Bodnar is a GIS specialist in the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. She is an experienced oil spill responder and has been mapping data during oil spills for more than a decade. This is her first trip to the Arctic.

Zachary Winters-Staszak is a GIS specialist in the Assessment and Restoration Division of NOAA’s Office of Response and Restoration. While not aboard the Healy, he co-leads an effort to manage data and foster partnerships for Arctic ERMA. This is his second time participating in the annual Arctic Technology Evaluation in support of Arctic Shield. You can listen to him discuss this exercise and NOAA’s participation in a NOAA’s Ocean Service audio podcast from August 2014.

About Oil Spills and NOAA

Every year NOAA’s Office of Response and Restoration (OR&R) responds to more than a hundred oil and chemical spills in U.S. waters. OR&R is a center of expertise in preparing for, evaluating, and responding to threats to coastal environments, including oil and chemical spills, releases from hazardous waste sites, and marine debris. This work also includes determining damage to coastal lands and waters after oil spills and other releases and rotecting and restoring marine and coastal areas, including coral reefs.

Learn more about how NOAA responds to oil spills and the full range of OR&R’s activities in the Arctic.


Leave a comment

In Oregon, an Innovative Approach to Building Riverfront Property for Fish and Wildlife

This is a post by Robert Neely of NOAA’s Office of Response Restoration.

Something interesting is happening on the southern tip of Sauvie Island, located on Oregon’s Willamette River, a few miles downstream from the heart of Portland. Construction is once again underway along the river’s edge in an urban area where riverfront property typically is prized as a location for luxury housing, industrial activities, and maritime commerce. But this time, something is different.

This project will not produce a waterfront condominium complex, industrial facility, or marina. And as much as it may look like a typical construction project today, the results of all this activity will look quite different from much of what currently exists along the shores of the lower Willamette River from Portland to the Columbia River.

Indeed, when the dust settles, the site will be transformed into a home and resting place for non-human residents and visitors. Of course, I’m not referring to alien life forms, but rather to the fish, birds, mammals, and other organisms that have existed in and around the Willamette River since long before humans set up home and shop here. Yet in the last century, humans have substantially altered the river and surrounding lands, and high-quality habitat is now a scarce commodity for many stressed critters that require it for their survival.

On the site of a former lumber mill, the Alder Creek Restoration Project is the first habitat restoration project [PDF] that will be implemented specifically to benefit fish and wildlife affected by contamination in the Portland Harbor Superfund Site. The project, managed by a habitat development company called Wildlands, will provide habitat for salmon, lamprey, mink, bald eagle, osprey, and other native fish and wildlife living in Portland Harbor.

Mink at a river's edge.

The Alder Creek Restoration Project will benefit Chinook salmon, mink, and other fish and wildlife living in Portland Harbor. (Roy W. Lowe)

Habitat will be restored by removing buildings and fill from the floodplain, reshaping the riverbanks, and planting native trees and shrubs. The project will create shallow water habitat to provide resting and feeding areas for young salmon and lamprey and foraging for birds. In addition, the construction at Alder Creek will restore beaches and wetlands to provide access to water and food for mink and forests to provide shelter and nesting opportunities for native birds.

Driving this project is a Natural Resource Damage Assessment conducted by the Portland Harbor Natural Resource Trustee Council to quantify natural resource losses resulting from industrial contamination of the river with the toxic compounds PCBs, the pesticide DDT, oil compounds known as PAHs, and other hazardous substances. The services, or benefits from nature, provided by the Alder Creek Restoration Project—such as healthy habitat, clean water, and cultural value—will help make up for the natural resources that were lost over time because of contamination.

Young Chinook salmon on river bottom.

Fish and wildlife species targeted for restoration include salmon (such as the juvenile Chinook salmon pictured here), lamprey, sturgeon, bald eagle, osprey, spotted sandpiper, and mink. (U.S. Fish and Wildlife Service)

Wildlands purchased the land in order to create and implement an early restoration project. This “up-front” approach to restoration allows for earlier implementation of projects that provide restored habitat to injured species sooner, placing those species on a trajectory toward recovery. The service credits—ecological and otherwise—that will be generated by this new habitat will be available for purchase by parties that have liability for the environmental and cultural losses calculated in the damage assessment.

Thus when a party reaches an agreement with the Trustee Council regarding the amount of their liability, they can resolve it by purchasing restoration credits from Wildlands. And Wildlands, as the seller of restoration credits, recoups the financial investment it made to build the project. Finally, and most importantly, a substantial piece of land with tremendous potential value for the fish, birds, and other wildlife of the lower Willamette River has been locked in as high-quality habitat and thus protected from future development for other, less ecologically friendly purposes.

Robert NeelyRobert Neely is an environmental scientist with the National Oceanic and Atmospheric Administration’s Office of Response and Restoration. He has experience in ocean and coastal management, brownfields revitalization, Ecological Risk Assessment, and Natural Resource Damage Assessment. He started with NOAA in 1998 and has worked for the agency in Charleston, South Carolina; Washington, DC; New Bedford, Massachusetts; and Seattle, Washington, where he lives with his wife and daughter. He’s been working with his co-trustees at Portland Harbor since 2005.


Leave a comment

On the Chesapeake Bay, Overcoming the Unique Challenges of Bringing Restoration to Polluted Military Sites

Transformations are taking place at more than 10 government facilities, mostly owned by the Department of Defense, across the Chesapeake Bay and its tributaries. These properties typically include large, relatively undisturbed natural areas, which often serve as key habitats for endangered fish, birds, and wildlife. Yet the same federal facilities also have become Superfund sites, slated for cleanup under CERCLA, with pollution at levels which threaten the health of humans and the environment.

Heavy equipment clearing a former landfill for restoration.

Naval Amphibious Base Little Creek, a major base for the Navy’s Atlantic fleet, is one of the facilities that was slate for cleanup on the Chesapeake Bay. Here, heavy equipment prepare a former landfill for restoration post-cleanup in 2006. (U.S. Navy)

Yet in spite of some unique challenges, these areas are being cleaned up and restored to become healthy places for all once more. Success has stemmed largely from two critical pieces of the process: collaborating closely among numerous government agencies and incorporating restoration into the process as early and often as possible.

According to Paula Gilbertson of the U.S. Navy, “The close partnership among the many federal and state agencies involved has provided a framework for success. Great things can happen when people work together toward a common goal.”

Moving Past the Past

Past activities leading to pollution at U.S. Army, Air Force, and Navy sites on Chesapeake Bay were many and varied, and included: incineration, landfilling, ship and airplane repair and maintenance, military testing, and pesticide and munitions disposal. As a result, beginning in the 1980s, entire facilities along the bay became Superfund sites and listed for priority cleanup.

Typically during the Superfund process, the party responsible for polluting has to work with the U.S. Environmental Protection Agency (EPA), which leads the cleanup, and other state and federal agencies—known as trustees—which represent affected public lands and waters.

A landfill on the Little Creek naval base before cleanup.

A landfill on the Little Creek naval base before cleanup in 2006. (U.S. Navy)

But in these cases, the Department of Defense has to play multiple roles: trustee of natural resources on the property, entity responsible for contamination, and lead cleanup agency. In addition, the EPA still oversees the effectiveness of the Superfund cleanup, and the military branches at each site still have to coordinate with the other trustees: NOAA, the U.S. Fish and Wildlife Service, and state agencies.

NOAA and the Fish and Wildlife Service also are part of a special technical group run by the EPA (the Biological Technical Assistance Group, or BTAG), which coordinates trustee participation and offers scientific review throughout the ecological risk assessment and cleanup process at each site.

According to Bruce Pluta, coordinator of the EPA BTAG, “The collaborative efforts of the EPA Project Team, including the BTAG, and our partners at the Department of Defense have resulted in model projects which integrate remediation and ecological restoration.”

Working Together for the Future

What does not change during this process is that the trustees are working to protect and restore the “trust resources,” including lands, waters, birds, fish, and wildlife affected by contamination coming from these military sites. This can include natural areas adjacent to the sites and the animals that could migrate onto the federal properties, such as striped bass, herring, blue crabs, eagles, and herons.

Other important differences exist governing how all these government entities work together in the Superfund cleanup process. For example, NOAA often works to evaluate ecological risks and determine environmental injuries resulting from hazardous material releases at Superfund sites. Then we implement restoration projects to compensate for the injuries to coastal and marine natural resources and the benefits they provide to the public. This is the Natural Resource Damage Assessment process. NOAA seeks legal damages (payment) or works with those responsible for the pollution through cooperative agreements to restore, replace, or acquire the equivalent natural resources.

Restored wetlands.

A site transformed: Immediately after completion of cleanup and restoration activities at a landfill on the Little Creek naval base on the Chesapeake Bay. (U.S. Environmental Protection Agency)

As federal trustees, we are significantly limited in our ability to conduct a formal damage assessment against a fellow federal agency doing cleanup because we are both trustees of the affected natural resources. However, all federal and state trustees can work together with EPA to protect the lands, waters, and living things during cleanup, maximize the potential for restoration at each site, and develop measures to ensure both environmental recovery and resilience.

“By considering restoration early in the process and getting input from natural resource managers, many simple, common sense measures are being incorporated that benefit ecosystems, reduce overall costs, and improve the effectiveness of the cleanup,” says Simeon Hahn of NOAA.

Overcoming Challenges

Having so many government agencies involved in overlapping but distinct roles requires a great deal of collaboration and communication. This became clear early in the process if each case were to achieve multiple objectives:

  • Cleaning up the military sites and returning the lands and waters to productive uses.
  • Performing cleanups using environmentally friendly strategies to remove, recycle, and reuse materials while also addressing climate resiliency.
  • Protecting and restoring natural resources.
  • Accomplishing everything within a reasonable budget and timeframe.

Despite the many challenges, the process of cleaning up and restoring these contaminated military facilities has been going well. EPA, the Department of Defense, and fellow trustees have collaborated to protect and restore affected natural resources while also helping adapt these areas to the threats and impacts of climate change. By integrating restoration into cleanup planning early and often, we have made significant progress toward a healthier Chesapeake Bay—at lower costs and in less time.

Map of hazardous waste sites on federal properties in the Chesapeake Bay area.

Hazardous waste sites on federal properties in the Chesapeake Bay area. (NOAA)

Over the coming months, we will be sharing more about these successes here on the blog. We will recount the removal and recycling of thousands of tons of concrete; the restoration of hundreds of acres of wetlands, shorelines, creeks, and forested areas; and the revitalization of numerous acres of land contributing to benefits such as natural defenses for coastal communities. Stay tuned!


2 Comments

How Much do Coastal Ecosystems Protect People from Storms and What is It Worth?

Sand dunes with grass.

Sand dunes along the New Jersey shore. (NOAA)

 This post was written by the Office of Response and Restoration’s Meg Imholt and is based on research done during the summer of 2014 by OR&R intern, Emory Wellman.

Nearly a year ago, one lawsuit spurred the question–how much do coastal ecosystems protect people from storms and what is that worth?  It’s a question NOAA scientists and economists are working to answer.

At NOAA, our job is to protect our coasts, but often, coastal ecosystems are the ones protecting us. When a severe storm hits, wetlands, sand dunes, reefs, and other coastal ecosystems can slow waves down, reducing their height and intensity, and prevent erosion.  That means less storm surge, more stable shorelines, and more resilient coastal communities.

When the coastal Borough of Harvey Cedars, New Jersey, replenished beaches with sand dunes to offer this ecosystem service, a New Jersey couple, the Karans, sued on the grounds that the newly placed dunes obstructed the ocean view from their home. Initially, the court barred the jury from considering storm protection benefits from the dunes in their decision. The jury awarded the Karans $375,000, but New Jersey Supreme Court overturned the ruling. The jury should consider storm protection benefits, according to the Supreme Court, and when it did, the Karan’s settlement dropped to $1.

Cases like this one spur a lot of questions for both science and the courts.

NOAA has been supporting ecosystem services in court for decades through Natural Resource Damage Assessments (NRDA), but putting a price tag on ecosystem services isn’t easy. Instead, NOAA often determines how ecosystem services were hurt and what it will take to replace them.  Following a spill or chemical release, NOAA is one of a number of mandated state and federal natural resource trustees that assess if and how ecosystem services were injured and typically focuses on habitat and recreation. That assessment is then used to determine how much restoration the responsible party must provide to compensate for the injury.

Destroyed homes along the coast.

At the end of October 2012, Hurricane Sandy sped toward the East Coast, eventually sweeping waves of oil, hazardous chemicals, and debris into the coastal waters of New Jersey, New York, and Connecticut. (U.S. Air Force)

Determining exactly how much storm protection may have been lost is another challenge. We know that already; there are a variety of estimates showing how much coastal ecosystems reduce a storm’s impact. Still, the science of storm protection is complicated. For example, an ecosystem’s type, location, topography, and local tides all impact its ability to protect us from storms. So, determining how much storm protection services were lost, who they benefited, and what type of restoration could compensate depends on all of those factors too.

Ultimately, the decision on how to assess storm protection benefits may be up to the courts.  The next case like Borough of Harvey Cedars v. Karan may provide some clues, but until then, we’ll keep working on the science.


Leave a comment

Buoys Serve as Latest Gardening Tool for Restoring Eelgrass in San Francisco Bay

Bright red buoys floating on a bay.

“Seed buoys” are dotting the waters of San Francisco Bay. Below the water, they are attached to mesh bags filled with shoots of eelgrass, which spread seeds that will eventually sprout and restore habitat on the bay’s bottom. (NOAA)

Many of us likely have spent some time planting seeds in our yards to grow vegetables or flowers. But how do scientists plant seeds to help restore plants in our bays and coastal waters? If you look out on the waters of San Francisco Bay right now, you can see the answer.

Floating on the surface of the bay is a series of “seed buoys.” Each buoy is connected to a mesh bag containing shoots of the underwater plant eelgrass (Zostera marina). These shoots, which are flowering, were harvested by biologists and will soon be releasing ripening seeds. These buoys will move with the tides, distributing seeds that, by next spring, will develop into new eelgrass seedlings on the bay bottom. The seed buoy is a relatively easy, low-tech way of growing this underwater grass. The traditional method of planting eelgrass—by hand in the bay’s floor using scuba divers—can be dangerous, expensive, and labor intensive.

Mesh bags holding flowering eelgrass plants.

Anchored to various locations on the sea floor, seed buoys perform like flowering eelgrass plants, dispersing seeds as the water current moves these mesh bags. Buoys are placed where underwater soil conditions are optimal for the seeds to germinate into young plants. (NOAA)

By seeding and transplanting eelgrass in this area where none currently exists, we hope to create vibrant eelgrass beds that provide cover and food for fish, juvenile Dungeness crabs, and birds. Eelgrass beds provide important habitat in California’s San Francisco Bay, serving as nurseries for young fish and foraging areas for many species of fish, invertebrates, and birds. They also improve water quality by reducing turbidity, or cloudiness, of the water.

This work is part of a restoration project which has the ultimate goal of compensating for past oil spill impacts in San Francisco Bay as a result of the 2007 M/V Cosco Busan oil spill. It aims to create 70 new acres of eelgrass habitat at several sites throughout San Francisco Bay over nine years. This project is funded by the legal settlement resulting from the cargo ship Cosco Busan striking one of the towers of the San Francisco-Oakland Bay Bridge and releasing 53,000 gallons of heavy oil into the surrounding waters.

A result of the work of the Cosco Busan Oil Spill Trustee Council, the eelgrass restoration project also is carried out in cooperation with San Francisco State University and Merkel and Associates, Inc.

For more information, you can read about:

Follow

Get every new post delivered to your Inbox.

Join 454 other followers