NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


2 Comments

How NOAA Uses Coral Nurseries to Restore Damaged Reefs

Staghorn coral fragments hanging on an underwater tree structure of PVC pipes.

NOAA uses coral nurseries to help corals recover after traumatic events, such as a ship grounding. Hung on a tree structure, the staghorn coral shown here will have a better chance of surviving and being transplanted back onto a reef. (NOAA)

The cringe-inducing sound of a ship crushing its way onto a coral reef is often the beginning of the story. But, thanks to NOAA’s efforts, it is not usually the end. After most ship groundings on reefs, hundreds to thousands of small coral fragments may litter the ocean floor, where they would likely perish rolling around or buried under piles of rubble. However, by bringing these fragments into coral nurseries, we give them the opportunity to recover.

In the waters around Florida, Puerto Rico, and the U.S. Virgin Islands, NOAA works with a number of partners in various capacities to maintain 27 coral nurseries. These underwater safe havens serve a dual function. Not only do they provide a stable environment for injured corals to recuperate, but they also produce thousands of healthy young corals, ready to be transplanted into previously devastated areas.

Checking into the Nursery

When they enter coral nurseries, bits of coral typically measure about four inches long. They may come from the scene of a ship grounding or have been knocked loose from the seafloor after a powerful storm. Occasionally and with proper permission, they have been donated from healthy coral colonies to help stock nurseries. These donor corals typically heal within a few weeks. In fact, staghorn and elkhorn coral, threatened species which do well in nurseries, reproduce predominantly via small branches breaking off and reattaching somewhere new.

In the majority of nurseries, coral fragments are hung like clothes on a clothesline or ornaments on trees made of PVC pipes. Floating freely in the water, the corals receive better water circulation, avoid being attacked by predators such as fireworms or snails, and generally survive at a higher rate.

After we have established a coral nursery, divers may visit as little as a few times per year or as often as once per month if they need to keep algae from building up on the corals and infrastructure. “It helps if there is a good fish population in the area to clean the nurseries for you,” notes Sean Griffin, a coral reef restoration ecologist with NOAA.

Injured corals generally take at least a couple months to recover in the nurseries. After a year in the nursery, we can transplant the original staghorn or elkhorn colonies or cut multiple small fragments from them, which we then use either to expand the nursery or transplant them to degraded areas.


One of the fastest growing species, staghorn coral can grow up to eight inches in a year while elkhorn can grow four inches. We are still investigating the best ways to cultivate some of the slower growing species, such as boulder star coral and lobed star coral.

Growing up to Their Potential

In 2014, we placed hundreds of coral fragments from four new groundings into nurseries in Puerto Rico and the U.S. Virgin Islands. This represents only a fraction of this restoration technique’s potential.

After the tanker Margara ran aground on coral reefs in Puerto Rico in 2006, NOAA divers rescued 11,000 salvageable pieces of broken coral, which were reattached at the grounding site and established a nursery nearby using 100 fragments from the grounding. That nursery now has 2,000 corals in it. Each year, 1,600 of them are transplanted back onto the seafloor. The 400 remaining corals are broken into smaller fragments to restock the nursery. We continue to grow healthy corals in this nursery and then either transplant them back to the area affected by the grounded ship, help restore other degraded reefs, or use some of them to start the process over for another year.

Nurseries in Florida, Puerto Rico, and the U.S. Virgin Islands currently hold about 50,000 corals. Those same nurseries generate another 50,000 corals which we transplant onto restoration sites each year. Sometimes we are able to use these nurseries proactively to protect and preserve corals at risk. In the fall of 2014, a NOAA team worked with the University of Miami to rescue more than 200 threatened staghorn coral colonies being affected by excessive sediment in the waters off of Miami, Florida. The sedimentation was caused by a dredging project to expand the Port of Miami entrance channel.

We relocated these colonies to the coral nurseries off Key Biscayne run by our partners at the University of Miami. The corals were used to create over 1,000 four-inch-long fragments in the nursery. There, they will be allowed to recover until dredge operations finish at the Port of Miami and sedimentation issues are no longer a concern. The corals then can either be transplanted back onto the reef where they originated or used as brood stock in the nursery to propagate more corals for future restoration.


Leave a comment

When Ships Threaten Corals in the Caribbean, NOAA Dives to Their Rescue

Growing less than a quarter inch per year, the elaborate coral reefs off the south coast of Puerto Rico originally took thousands of years to form. And over the course of two days in late April 2006, portions of them were ground into dust.

The tanker Margara ran aground on these reefs near the entrance to Guayanilla Bay. Then, in the attempt to remove and refloat the ship, it made contact with the bottom several times and became grounded again. By the end, roughly two acres of coral were lost or injured. The seafloor was flattened and delicate corals crushed. Even today, a carpet of broken coral and rock remains in part of the area. This loose rubble becomes stirred up during storms, smothering young coral and preventing the reef’s full recovery.

NOAA and the Puerto Rico Department of Natural and Environmental Resources have been working on a restoration plan for this area, a draft of which they released for public comment in September 2014 [PDF]. In order to stabilize these rubble fields and return topographic complexity to the flattened seafloor, they proposed placing limestone and large boulders over the rubble and then transplanting corals to the area.

This is in addition to two years of emergency restoration actions, which included stabilizing some of the large rubble, reattaching around 10,500 corals, and monitoring the slow comeback and survival of young coral. In the future, even more restoration will be in the works to make up for the full suite of environmental impacts from this incident.

Caribbean Cruising for a Bruising

Unfortunately, the story of the Margara is not an unusual one. In 2014 alone, NOAA received reports of 37 vessel groundings in Puerto Rico and the U.S. Virgin Islands. About half of these cases threatened corals, prompting NOAA’s Restoration Center to send divers to investigate.

After a ship gets stuck on a coral reef, the first step for NOAA is assessing the situation underwater. If the vessel hasn’t been removed yet, NOAA often provides the salvage company with information such as known coral locations and water depths, which helps them determine how to remove the ship with minimal further damage to corals. Sometimes that means temporarily removing corals to protect them during salvage or figuring out areas to avoid hitting as the ship is extracted.

Once the ship is gone, NOAA divers estimate how many corals and which species were affected, as well as how deep the damage was to the structure of the reef itself. This gives them an idea of the scale of restoration needed. For example, if less than 100 corals were injured, restoration likely will take a few days. On the other hand, dealing with thousands of corals may take months.

NOAA already has done some form of restoration at two-thirds of the 18 vessel groundings with coral damage in the region this year. They have reattached 2,132 corals to date.

What does this look like? At first, it’s a lot of preparation. Divers collect the corals and fragments knocked loose by the ship; transport them to a safe, stable underwater location where they won’t be moved around; and dig out any corals buried in debris. When NOAA is ready to reattach corals, divers clear the transplant area (sometimes that means using a special undersea vacuum). On the ocean surface, people in a boat mix cement and send it down in five-gallon buckets to the divers below. Working with nails, rebar, and cement, the divers carefully reattach the corals to the seafloor, with the cement solidifying in a couple hours.

Protecting Coral, From the Law to the High Seas

Corals freshly cemented to the seafloor.

Corals freshly cemented to the seafloor. After a couple weeks, the cement becomes colonized by algae and other marine life so that it blends in with the reef. (NOAA)

Nearly a third of the total reported groundings in Puerto Rico and the U.S. Virgin Islands this year have involved corals listed as threatened under the Endangered Species Act. In previous years, only 10 percent of the groundings involved threatened corals. What changed this year was the Endangered Species Act listing of five additional coral species in the Caribbean.

Another form of protection for corals is installing buoys to mark the location of reefs in areas where ships keep grounding on them. Since these navigational aids were put in place at one vulnerable site in Culebra, Puerto Rico this summer, NOAA hasn’t been called in to an incident there yet.

But restoring coral reefs after a ship grounding almost wouldn’t be possible without coral nurseries. Here, NOAA is able to regrow and rehabilitate coral, a technique being used at the site of the T/V Margara grounding. Stay tuned because we’ll be going more in depth on coral nurseries, what they look like, and how they help us restore these amazingly diverse ocean habitats.


Leave a comment

Before Breaking Ground for Restoration, Digging for Signs of the Past

This is a post by Carl Alderson of NOAA’s Restoration Center.

Birds flying over a flooded field with a nuclear power plant in the distance.

Glossy Ibis flocking to an accidental wet meadow, left by the farmer’s plow in early spring 2003 at Mad Horse Creek. Salem Nuclear Power Plant in the distance. (NOAA)

Looking across the open fields of the surrounding farm community, I am reminded of the long history of both European and Native American settlement in this portion of southwest New Jersey. Before Europeans arrived in the 17th century, this area was part of Lenape Indian territory.

Today, however, it is the site of a future restoration project at Mad Horse Creek Fish and Wildlife Management Area.

In partnership with the State of New Jersey, I’m involved in an effort to restore nearly 200 acres of degraded marshland, wet meadow, and grassland in this part of Salem County.

The restored habitat will provide food as well as roosting and nesting habitat for birds. This is one of many projects NOAA and our partners have developed as part of the restoration plan in the wake of the 2004 Athos I oil spill, which killed nearly 12,000 birds along the nearby Delaware River.

The Artifacts of Nature

Numerous historical artifacts have been uncovered on lands surrounding Mad Horse Creek, so it’s important that before we begin restoring the natural habitat, we make sure we are preserving any colonial or Native American artifacts that might be hidden beneath these fields.

I’ve been working with Vincent Maresca, a Senior Historic Preservation Specialist with the State of New Jersey to develop plans for a Phase I archaeological investigation of the area. Using a disk cultivator (a machine typically used to cultivate soil between rows of plants), we will be disking all 200 acres of the restoration site, turning over the soil at a depth of 18 inches.

Once we get a rainstorm, we can expect any artifacts in the soil to be revealed. At that point, it will take a team of 12 people two weeks to walk the site, one person to a row, looking for exposed shards of pottery or other objects. Anything we find will be placed into collection bags and identified with the GPS location.

If we find historical artifacts at the Mad Horse Creek restoration area, we will begin a Phase II archaeological investigation. This likely would involve digging more extensive excavation pits in the immediate area of each find to uncover other potential artifacts.

The people who do this work are known as field archaeologists. They typically have a degree in anthropology or archaeology and receive specialized training in testing and excavating archaeological sites; screening the soil for evidence; washing, bagging, and labeling artifacts; and completing field inventories of their findings.

When Restoration Meets Preservation

No restoration work will begin until we complete this archaeological search. At all times, NOAA makes sure to consult with historic preservationists on each of our sites in accordance with the National Historic Preservation Act.

In the first part of the process we ask for input from state experts like Vincent Maresca. Those experts determine whether we should do an archaeological evaluation of the site based on the likelihood of finding artifacts, as was the case at Mad Horse Creek. If the likelihood is high, we then seek input from the federal agency known as the Advisory Council on Historic Preservation.

I don’t know what we’re going to find at Mad Horse Creek, if anything, but as we near Thanksgiving, I am particularly thankful to be working on a project that is working to restore and preserve both our natural and cultural treasures.


1 Comment

After Opening up a Pennsylvania Creek for Fish, Watching Recovery Follow

This is a guest post by Laura Craig, Ph.D., Associate Director of River Restoration, American Rivers.

Excavator removes a rock dam from a stream.

Restoring Darby Creek, a tributary of the Delaware River, meant tearing down three now-defunct mill dams. Here, the Hoffman Park dam at Lansdowne, Pennsylvania, comes down. (American Rivers)

Early settlement along Pennsylvania’s Darby Creek relied upon dams to turn the water wheels of mills, powering economic growth. However, as time wore on, the dams on this tributary of the Delaware River fell into disrepair and these days no longer serve a function. Instead, they have been blocking the passage of fish along this creek. That is, until now.

In late summer of 2012, American Rivers and our project partners, NOAA’s Damage Assessment, Remediation, and Restoration Program  and the Pennsylvania Fish and Boat Commission, began tearing down some of those now-defunct dams as part of a multi-year effort to restore Darby Creek. Initiated in 2007, the effort involved removing three dams near Philadelphia: Darby Borough Dam, Hoffman Park Dam, and Kent Park Dam. In addition, we took out a set of abandoned railroad piers and realigned an 800 foot section of the creek.

We removed these barriers to improve passage for a range of resident and migratory fish, including American shad, hickory shad, alewife, river herring, American eel, bass, shiners, and suckers. The project also aims to enhance stream habitat, alleviate flooding, benefit public safety, and restore free-flowing conditions along the creek.

Green plants growing along a stream.

Shown in 2014, this portion of Darby Creek now features restored shoreline habitat with stabilizing structures. (American Rivers)

Overall, the Darby Creek Restoration Project connected 2.6 miles of upper stream to the lower 9.7 miles, which link directly to the Delaware River. It was here in 2004 when the Athos I tanker spilled oil that would spread along miles of the Delaware and its tributaries similar to Darby Creek.

This $1.6 million dollar effort to restore Darby Creek was funded primarily by the Natural Resource Damage Assessment settlement from the Athos I oil spill. Additional funding came from the Pennsylvania Department of Environmental Protection’s Growing Greener Program and the National Fish and Wildlife Foundation. All restoration activities were completed in June 2013, but we are still monitoring the restored areas to ensure the area is recovering.

At the former dam locations we are already seeing recovery of shoreline areas planted with a diverse mix of seed, shrubs, and trees. Restoring vegetation along the creek stabilizes exposed soil and reduces erosion in the short term and provides shade, habitat, and food sources over the long term. We are also observing positive changes to stream habitat as a result, including fewer actively eroding banks and less fine sediment clouding the creek’s waters.

In terms of fisheries, we are noting a shift since the dams were removed toward a resident community of fish that prefer free-flowing water conditions. While we haven’t yet encountered any migratory fish at the former dam locations, this fall fisheries biologists with the Pennsylvania Fish and Boat Commission came across several pods of very young blueback herring in the tidal portion of the creek, near where it joins the Delaware River at the John Heinz National Wildlife Refuge. This is great news, because it suggests that blueback herring are using the lower part of the tributary as a nursery. In future years we hope to see them advance up the creek to the locations where the dams were removed.

For more information on the Athos I oil spill and the resulting restoration, visit response.restoration.noaa.gov/athos and http://www.darrp.noaa.gov/northeast/athos/restore.html.


Leave a comment

The Earth Is Blue and We’d Like to Keep It That Way

Pod of dolphins swimming.

Spinner dolphins in the lagoon at Midway Atoll National Wildlife Refuge in Papahānaumokuākea Marine National Monument. A pod of over 200 spinner dolphins frequent Midway Atoll’s lagoon. (NOAA/Andy Collins)

Often, you have to leave a place to gain some perspective.

Sometimes, that means going all the way to outer space.

When humans ventured away from this planet for the first time, we came to the stunning realization that Earth is blue. A planet covered in sea-to-shining-sea blue. And increasingly, we began to worry about protecting it. With the creation of the National Marine Sanctuaries system in 1972, a very special form of that protection began to be extended to miles of ocean in the United States. Today, that protection takes the form of 14 marine protected areas encompassing more than 170,000 square miles of marine and Great Lakes waters.

Starting October 23, 2014, NOAA’s Office of National Marine Sanctuaries is celebrating this simple, yet profound realization about our planet—that Earth is Blue—on their social media accounts. You can follow along on Facebook, Twitter, YouTube, and now their brand-new Instagram account @NOAAsanctuaries. Each day, you’ll see an array of striking photos (plus weekly videos) showing off NOAA’s—and more importantly, your—National Marine Sanctuaries, in all of their glory. Share your own photos and videos from the sanctuaries with the hashtag #earthisblue and find regular updates at sanctuaries.noaa.gov/earthisblue.html.

You can kick things off with this video:

Marine sanctuaries are important places which help protect everything from humpback whales and lush kelp forests to deep-sea canyons and World War II shipwrecks. But sometimes the sanctuaries themselves need some extra protection and even restoration. In fact, one of the first marine sanctuaries, the Channel Islands National Marine Sanctuary off of southern California, was created to protect waters once imperiled by a massive oil spill which helped inspire the creation of the sanctuary system in the first place.

Japanese tsunami dock located on beach within Olympic National Park and National Marine Sanctuary.

To minimize damage to the coastline and marine habitat, federal agencies removed the Japanese dock that turned up on the Washington coast in late 2012. In addition to being located within a designated wilderness portion of Olympic National Park, the dock was also within NOAA’s Olympic Coast National Marine Sanctuary and adjacent to the Washington Islands National Wildlife Refuge Complex. (National Park Service)

At times NOAA’s Office of Response and Restoration is called to this role when threats such as an oil spill, grounded ship, or even huge, floating dock endanger the marine sanctuaries and their incredible natural and cultural resources.

Olympic Coast National Marine Sanctuary

In March 2013, we worked with a variety of partners, including others in NOAA, to remove a 185-ton, 65-foot Japanese floating dock from the shores of Washington. This dock was swept out to sea from Misawa, Japan, during the 2011 tsunami and once it was sighted off the Washington coast in December 2012, our oceanographers helped model where it would wash up.

Built out of plastic foam, concrete, and steel, this structure was pretty beat up by the time it ended up inside NOAA’s Olympic Coast National Marine Sanctuary and a designated wilderness portion of Olympic National Park. A threat to the environment, visitors, and wildlife before we removed it, its foam was starting to escape to the surrounding beach and waters, where it could have been eaten by the marine sanctuary’s whales, seals, birds, and fish.

Florida Keys National Marine Sanctuary

In an effort to protect the vibrant marine life of the Florida Keys National Marine Sanctuary, NOAA’s Restoration Center began clearing away illegal lobster fishing devices known as “casitas” in June 2014. The project is funded by a criminal case against a commercial diver who for years used casitas to poach spiny lobsters from the sanctuary’s seafloor. Constructed from materials such as metal sheets, cinder blocks, and lumber, these unstable structures not only allow poachers to illegally harvest huge numbers of spiny lobsters but they also damage the seafloor when shifted around during storms.

A spiny lobster in a casita on the seafloor.

A spiny lobster in a casita in the Florida Keys National Marine Sanctuary. NOAA is removing these illegal lobster fishing devices which damage seafloor habitat. (NOAA)

Also in the Florida Keys National Marine Sanctuary, our office and several partners ran through what it would be like to respond to an oil spill in the sanctuary waters. In April 2005, we participated in Safe Sanctuaries 2005, an oil spill training exercise that tested the capabilities of several NOAA programs, as well as the U.S. Coast Guard. The drill scenario involved a hypothetical grounding at Elbow Reef, off Key Largo, of an 800-foot cargo vessel carrying 270,000 gallons of fuel. In the scenario, the grounding injured coral reef habitat and submerged historical artifacts, and an oil spill threatened other resources. Watch a video of the activities conducted during the drill.

Papahānaumokuākea Marine National Monument

Even hundreds of miles from the main cluster of Hawaiian islands, the Papahānaumokuākea Marine National Monument does not escape the reach of humans. Each year roughly 50 tons of old fishing nets, plastics, and other marine debris wash up on the sensitive coral reefs of the marine monument. Each year for nearly 20 years, NOAA divers and scientists venture out there to remove the debris.

This year, the NOAA Marine Debris Program’s Dianna Parker and Kyle Koyanagi are documenting the effort aboard the NOAA Ship Oscar Elton Sette. You can learn more about and keep up with this expedition on the NOAA Marine Debris Program website.


1 Comment

An Oiled River Restored: Salmon Return to Alaskan Stream to Spawn

Last summer NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) traveled to the remote Adak Island in Alaska to help salmon return to their historical home by removing barriers from Helmet Creek. We headed back out this September to see how things were going. As you can see from our photos, the salmon seem to be big fans of our 2013 restoration work.

Our mission this September was to monitor the success of these habitat restoration efforts and make sure no new problems have occurred since then. A survey of the creek quickly showed that salmon are now pushing as far upstream as naturally possibly, allowing them to enter formerly impassable areas with ease. Now the only thing preventing salmon from continuing further upstream is a natural waterfall.

During this visit, Helmet Creek was teaming with Pink and Chum salmon. One walk of the roughly two kilometer (one and a quarter mile) portion of stream resulted in our counting more than 600 adult salmon, over half of which were beyond the areas where we had removed fish passage barriers.

Salmon swimming underwater in a creek.

Salmon make their way upstream in Helmet Creek, further than they have been able to access in years thanks to our restoration work. (NOAA)

Before we stepped in to restore Helmet Creek, salmon were hitting a number of man-made obstacles preventing them from getting to the natural areas where they reproduce, known as their spawning grounds. In 2013 we removed these fish barriers, pulling out a number of 55-gallon drums and grates, all of which were impeding the salmon’s ability to swim upstream and covering their spawning grounds.

While seeing all these active fish is exciting, we are also looking forward to the ways these fish will continue helping the environment after they die. As salmon are now able to travel further upstream, they will take valuable nutrients with them too. After spawning, these pink and chum salmon will die and their decaying carcasses will return extremely valuable nutrients to the stream habitat and surrounding area. These nutrients will provide benefits to resident trout, vegetation, and birds nearby.

Restoration of Helmet Creek resulted from our work to restore the environment after a 2010 oil spill on the remote Adak Island, part of Alaska’s Aleutian Island chain. Through DARRP, we worked with our partners to determine how the environment was injured and how best to restore habitat. You can read more about our efforts in—and the unusual challenges of—assessing these environmental impacts to salmon and Helmet Creek.


Leave a comment

For a Salt Marsh on San Francisco Bay’s Eastern Shore, Restoration Means a Return to the Tides

Degraded marsh area on edge of bay.

This area along the eastern shore of San Francisco Bay will be enhanced and expanded as part of the restoration of Breuner Marsh. (NOAA)

For more than half a century, a large portion of Breuner Marsh has been walled off from California’s San Francisco Bay, depriving it of a daily infusion of saltwater. The tide’s flooding and drying cycle is a key component of healthy salt marshes. But for decades, a succession of landowners drew up plans for developing the property and therefore were happy to keep the levee up and the bay’s waters out of it.

Today, however, ownership has changed and things look different at Breuner Marsh. The landing strip built for model airplanes is gone, and soon, parts of the levee will be as well. For the first time in years, this land which was once a salt marsh will be reconnected to the bay, allowing it to return to its natural state.

Before the Floodgates Open

A major milepost on the road to restoration for Breuner Marsh originated about five miles down the coast at Castro Cove. From the early 1900s until 1987, this tidal inlet on the eastern shore of San Francisco Bay had a discharge pipe pumping wastewater from the nearby Chevron Richmond Refinery into the cove. As a result, mercury and a toxic component of oil known as polycyclic aromatic hydrocarbons permeated the sediments beneath the cove’s waters.

Aerial view of Castro Cove next to Chevron refinery.

Southern Castro Cove and Chevron Richmond Refinery. Wildcat Creek entering Castro Cove in the background. Photo courtesy of Steve Hampton, California Department of Fish and Game. October 2005

The State of California had pinpointed this area as a toxic hotspot, and by the early 2000s, Chevron was ready to begin cleanup and restoration. Along with the state, NOAA and the U.S. Fish and Wildlife Service assessed the environmental impacts of historical pollution from the refinery and the amount of restoration needed to offset them. Through this Natural Resource Damage Assessment process, NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) and our partners settled with Chevron on the funding the company would provide to implement that restoration: $2.65 million.

Because the impacts to Castro Cove’s salt marshes occurred over such a long time, even after Chevron cleaned up the roughly 20 worst-affected acres of the cove, there simply was not enough habitat in the immediate area to adequately make up for the backlog of impacts. The 2010 settlement called for Chevron to restore about 200 acres of marsh. This took us up the road to Breuner Marsh, part of a degraded coastal wetland that was ripe for restoration and which became one of two projects Chevron would fund through this settlement.

A Vision of Restoration

The vision for Breuner Marsh turned out to be a lot bigger than the $1 million originally set aside from Chevron’s settlement. A lot of this drive came from the Richmond, California, neighborhood of Parchester Village, a community across the railroad tracks from Breuner Marsh which was advocating the property’s habitat be restored and opened to recreation. Eventually, the East Bay Regional Park District was able to purchase the 218-acre-site and is managing the $8.5 million restoration of Breuner Marsh. Additional funding came from the park district and nine other grants.

Aerial view of marsh construction site, with berm separating the bay from the future marsh.

A view of the Breuner Marsh restoration site, where portions of the area have been graded and are waiting the take down of the berm. (Screen shot from video courtesy of Questa Engineering Corporation/East Bay Regional Park District)

Construction began in 2013 and the project, which also includes building trails, picnic areas, and fishing spots, is expected to wrap up in 2015. While at least 30 acres of Breuner Marsh will be transformed into wetlands fed by the tide, some areas will never be flooded because they sit at higher elevation.

Instead, they will become a patchwork of seasonal wetlands and prairie. Yet this diversity of habitats actually makes the salt marsh even more valuable, because this patchwork creates welcoming buffer zones for various birds, fish, and wildlife as they feed, rest, and reproduce.

But first, those levees need to be breached and the tide needs to reach deep into Breuner Marsh, creating conditions just right for the plants and animals of a salt marsh to take hold once more. Conditions the project managers have been working hard to prepare.

Follow

Get every new post delivered to your Inbox.

Join 467 other followers