NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

At the Trans Alaska Pipeline’s Start, Where 200 Million Barrels of Oil Begin their Journey Each Year

Man in hard hat outside at sign at start of Trans Alaska Pipeline.

NOAA’s Incident Operations Coordinator at milepost 0 of the Trans Alaska Pipeline in Deadhorse, Alaska. (NOAA)

A couple years ago I visited the southern end of the 800-mile-long Trans Alaska Pipeline in Valdez, Alaska. As the northernmost port that remains free of ice, the Valdez Marine Terminal is where crude oil from the North Slope oil fields is loaded on tankers destined for refineries on the west coast of the United States. Last month I got to visit the northern end of the pipeline in Deadhorse, Alaska, where on average 17,001 gallons of oil enter the pipeline each minute and more than 200,000,000 barrels each year [PDF].

I was in Deadhorse to meet with Alaska Clean Seas, the primary Oil Spill Response Organization (OSRO) for all of the oil exploration and production operations in Prudhoe Bay and the other nearby oil fields.

Sign in airport showing acceptable cold weather clothing for passengers.

Everyone traveling to Deadhorse, Alaska, where the Trans Alaska Pipeline begins, must follow strict Arctic fashion guidelines. (NOAA)

The flight from Anchorage was right on time, boarded quickly, and was full of jackets and hats with every industry logo in the oilfield servicing business. Safety is a big concern in a place that is so remote, and the safety policy starts at Anchorage. Nobody is allowed on the plane without appropriate clothing.

The scenery in Deadhorse is difficult to describe. It has a flat, sprawling industrial footprint surrounded by vast tundra, shallow braided rivers, and innumerable shallow ponds and lakes. All of the infrastructure is built on large gravel pads: living quarters, warehouses, huge drilling rigs, and other equipment, with multiple racks of elevated pipelines running every direction. Unheated structures sit on the ground, but heated buildings are constructed on concrete stilts to prevent thawing of the permafrost.

Deadhorse is home to the beginning of the Trans Alaska Pipeline, combining oil from five major feeder pipelines that originate in the different oil fields that comprise the North Slope. Oil takes about 15 days to get to Valdez, moving about five miles per hour. Since its construction in 1977, the Trans Alaska Pipeline System has transported nearly 17 billion barrels of oil.

While in Deadhorse, I also got to see the Beaufort Sea. Although it was close to the summer solstice (the last sunset was about a month ago), the ocean was still mostly frozen. Response boats remained staged on land, waiting for open water.

As you can gather from these descriptions and the pictures that follow, the Arctic is not a place that easily lends itself to the type and speed of oil spill cleanup possible in warmer and more accessible areas. Learn more about NOAA’s ongoing Arctic efforts in a series of reports released in April 2014.


Leave a comment

National Research Council Releases NOAA-Sponsored Report on Arctic Oil Spills

Healy escorts the tanker Renda through the icy Bering Sea.

The Coast Guard Cutter Healy broke ice for the Russian-flagged tanker Renda on their way to Nome, Alaska, in January of 2012 to deliver more than 1.3 million gallons of petroleum products to the city of Nome. (U.S. Coast Guard)

Responding to a potential oil spill in the U.S. Arctic presents unique logistical, environmental, and cultural challenges unparalleled in any other U.S. water body. In our effort to seek solutions to these challenges and enhance our Arctic preparedness and response capabilities, NOAA co-sponsored a report, Responding to Oil Spills in the U.S. Arctic Marine Environment, directed and released by the National Research Council today.

Several recommendations in the report are of interest to NOAA’s Office of Response and Restoration (OR&R), including the need for:

  • Up-to-date high-resolution nautical charts and shoreline maps.
  • A real-time Arctic ocean-ice meteorological forecasting system.
  • A comprehensive, collaborative, long-term Arctic oil spill research program.
  • Regularly scheduled oil spill exercises to test and evaluate the flexible and scalable organizational structures needed for a highly reliable Arctic oil spill response.
  • A decision process such as the Net Environmental Benefit Analysis for selecting appropriate response options.

In addition, the report mentions NOAA’s ongoing Arctic efforts including our Arctic Environmental Response Mapping Application (ERMA), our oil spill trajectory modeling, and our innovative data sharing efforts. Find out more about OR&R’s efforts related to the Arctic region at response.restoration.noaa.gov/arctic.

Download the full National Research Council report.

This report dovetails with NOAA’s 2014 Arctic Action Plan, released on April 21, which provides an integrated overview of NOAA’s diverse Arctic programs and how these missions, products, and services support the goals set forth in the President’s National Strategy for the Arctic Region [PDF].

In addition, the Government Accountability Office (GAO) released a report [PDF] in March of 2014, which examined U.S. actions related to developing and investing in Arctic maritime infrastructure. The report outlines key issues related to commercial activity in the U.S. Arctic over the next decade.

Get a snapshot of the National Research Council report in this four minute video, featuring some of our office’s scientific models and mapping tools:


Leave a comment

NOAA Scientists Offer In-depth Workshops at 2014 International Oil Spill Conference

2014 International Oil Spill Conference banner with sea turtle graphicEvery three years, experts representing organizations ranging from government and industry to academic research and spill response gather at the International Oil Spill Conference. This event serves as a forum for sharing knowledge and addressing challenges in planning for and responding to oil spills. NOAA plays a key role in planning and participating in this conference and is one of the seven permanent sponsors of the event.

This year is no different. In addition to presenting on topics such as subsea applications of dispersants and long-term ecological evaluations, Office of Response and Restoration staff are teaching several half-day workshops giving deeper perspectives, offering practical applications, and even providing hands-on experience.

If you’ll be heading to the conference in Savannah, Ga., from May 5–8, 2014, take advantage of the following short courses to pick our brains and expand yours. Or, if you can’t make it, consider applying for our next Science of Oil Spills training this August in Seattle, Wash.

Environmental Trade-offs Focusing on Protected Species

When: Monday, May 5, 2014, 8:00 a.m. to 12:00 p.m. Eastern

Who: Ed Levine (Scientific Support Coordinator), Jim Jeansonne (Scientific Support Coordinator), Gary Shigenaka (Marine Biologist), Paige Doelling (Scientific Support Coordinator)

Level: Introductory

What: Learn the basics about a variety of marine protected species, including whales, dolphins, sea turtles, birds, fish, corals, invertebrates, and plants. This course will cover where they are found, the laws that protect them, and other information necessary to understand how they may be affected by an oil spill. The course will discuss the impacts of specific response operations on marine protected species, and the decision making process for cleaning up the oil while also working in the best interest of the protected species. We will also discuss knowledge gaps and research needs and considerations when information is not available.

A man points out something on a computer screen to another person.Advanced Oil Spill Modeling and Data Sources

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Glen Watabayashi (Oceanographer), Amy MacFadyen (Oceanographer), Chris Barker (Oceanographer)

Level: Intermediate

What: This is a rare opportunity to get hands-on experience with NOAA’s oil spill modeling tools for use in response planning and trajectory forecasting. We will lead participants as they use our General NOAA Operational Modeling Environment (GNOME) model for predicting oil trajectories and the Automated Data Inquiry for Oil Spills (ADIOS) model for predicting oil weathering.

Arctic Drilling Environmental Considerations

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Kate Clark (Acting Chief of Staff), Mary Campbell Baker (Northwest/Great Lakes Damage Assessment Supervisor)

Level: Introductory

What: How are Arctic development decisions being made given environmental, political, and societal uncertainty? How should they be made? Examine how a changing Arctic is intersecting with increased shipping and oil development to alter the profile of human and environmental risks.

Worldwide Practice Approaches to Environmental Liability Assessment

When: Monday, May 5, 2014, 1:00 p.m. to 5:00 p.m. Eastern

Who: Ian Zelo (Oil Spill Coordinator) and Jessica White (Deputy Director, NOAA’s Disaster Response Center)

Level: Intermediate

What: In the United States, Natural Resource Damage Assessment (NRDA) regulations promulgated pursuant to the Oil Pollution Act of 1990 institutionalized the concept of NRDA and the cooperative NRDA. Learn some of the key principles related the NRDA and restoration process in the context of oil spills, as well as suggested best practices and how they may be implemented at various sites in the U.S. and worldwide.


Leave a comment

NOAA and Private Industry Share Data to Improve Our Understanding of the Arctic

This is a post by the Office of Response and Restoration’s Acting Chief of Staff Kate Clark.

The snowy horizon outside Barrow, Alaska, at sunset.

Ongoing and accelerated changes in the Arctic, including the seasonal loss of sea ice and opening up of the Arctic for navigation and commerce, are creating new opportunities for transportation and resource extraction along with a new venue for accidents, spills, and other environmental hazards. Although the Arctic is warming, it will remain a remote and challenging place to work. (NOAA)

Gathering data and information about Arctic air, lands, and waters is critical to NOAA’s missions. We work to protect coastal communities and ensure safe navigation, healthy oceans, effective emergency response, and accurate weather forecasting. But we need to be able to access remote areas of land and ocean to get that information in the first place. The expansive, harsh Arctic environment can make this access risky, expensive, and at times impossible.

The U.S. Arctic is a unique ecosystem that requires unique solutions for solving problems. To continue improving our understanding of the Arctic, NOAA must seek innovative ways to gather essential data about the climate, ocean, and living things in this part of our world.

The Rules of Sharing

We recognize that no single agency or organization has enough resources to do this alone. We have to collaborate our research efforts and share data with others working in the Arctic. An innovative agreement between NOAA and industry [PDF] was signed in August 2011 to help identify and pursue data needs in the Arctic.

This agreement between NOAA, Shell, ConocoPhilips, and Stat Oil sets up a framework for sharing Arctic data in five areas:

  • meteorology.
  • coastal and ocean currents, circulation, and waves.
  • sea ice studies.
  • biological science.
  • hydrographic services and mapping.

Before we incorporate this data into NOAA products and services, we will conduct stringent quality control on all data provided to us under this agreement. Having access to additional high-quality data will improve NOAA’s ability to monitor climate change and provide useful products and services that inform responsible energy exploration activities in the region.

We are committed to openness and transparency in our science.  In addition to reviews to ensure the quality of the data that we receive, NOAA will make the data obtained under this agreement available to the public.

Exactly what data is shared and how it is shared is laid out in a series of annexes to the overarching agreement. NOAA and the three companies have identified the need for at least three annexes. The first [PDF] and second [PDF] are complete. The third, which covers hydrographic services and mapping, is being drafted now.

Why Sharing (Data) Is Caring

This collaboration will leverage NOAA’s scientific expertise and these companies’ significant offshore experience, science initiatives, and expertise. By establishing this data-sharing agreement and the associated annex agreements, NOAA is better equipped to protect the Arctic’s fragile ecosystem. We will be providing the public—including energy companies, mariners, native communities, fishers, and other government agencies—with a stronger scientific foundation, which we believe will better support decision making and safe economic opportunities in this rapidly changing area.

NOAA envisions an Arctic where decisions and actions related to conservation, management, and resource use are based on sound science and support healthy, productive, and resilient communities and ecosystems.

We are working hard, in an era of shrinking budgets, to make sure that we are good stewards of the natural resources found in the Arctic. We will hold our industry partners to our high standards, and make sure that as we learn more, we also prepare for and minimize the risks involved in Arctic oil and gas development and increased maritime transportation.

We look forward to working with these industry partners to implement this data-sharing agreement.  This agreement is the type of innovative partnership we’d like to build with other entities willing to share data and work with us—leveraging the best of what we each can bring to the table.

Learn more about the work NOAA’s Office of Response and Restoration is doing in the Arctic.

Kate Clark is the Acting Chief of Staff for NOAA’s Office of Response and Restoration. For nearly 12 years she has responded to and conducted damage assessment for numerous environmental pollution events for NOAA’s Office of Response and Restoration. She has also managed NOAA’s Arctic policy portfolio and served as a senior analyst to the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling.


Leave a comment

Alaska ShoreZone: Mapping over 46,000 Miles of Coastal Habitat

This is a post by the Office of Response and Restoration’s Zach Winters-Staszak.

A survey of St. Lawrence Island, Alaska, from July 2013 reveals the island's dramatic coastal cliffs.

A survey of St. Lawrence Island, Alaska, from July 2013 reveals the island’s dramatic coastal cliffs. (ShoreZone.org)

I learned a few things while I was at a meeting in Anchorage, Alaska, last month. Most importantly (and perhaps a surprise to those from Texas), I learned everything is bigger in Alaska, namely its shoreline. Alaska’s shoreline measures over 46,600 miles (75,000 km), longer than the shorelines of all the lower 48 states combined.

Now imagine for a minute the work involved in flying helicopters low along that entire shoreline, collecting high-resolution imagery and detailed classifications of the coast’s geologic features and intertidal biological communities. No small endeavor, but that’s exactly what the Alaska ShoreZone Coastal Inventory and Mapping Project, a unique partnership between government agencies, NGOs, and private industry, has been doing each summer since 2001.

Since then, ShoreZone has surveyed Alaskan coasts at extreme low tide, collecting aerial imagery and environmental data for roughly 80% of Alaska’s coastal habitats and continues to move towards full coverage each year. Collecting the vast amounts of imagery and data is a great accomplishment in and of itself, but ShoreZone, with help from NOAA’s National Marine Fisheries Service, has done an equally incredible job at making their entire inventory accessible to the public.

Just think how this valuable and descriptive information could be used. Planning for an Alaskan kayak trip next summer? ShoreZone can help you prioritize which beaches will save your hull from unwanted scratches. Trying to identify areas of critical habitat for endangered fishes? ShoreZone can help you in your research. Indeed, ShoreZone has many applications. For the Office of Response and Restoration, ShoreZone is an invaluable tool that serves alongside NOAA’s Environmental Sensitivity Index (ESI) maps and data as a baseline for the coastal habitats of Alaska and is currently being used for environmental planning, preparedness, and Natural Resource Damage Assessment planning in Alaska.

One of the many ways to access ShoreZone imagery and data is through Arctic ERMA, NOAA’s online mapping tool for environmental response. There are several advantages to this. For example, the National Marine Fisheries Service used ShoreZone imagery and data to designate critical habitat areas for endangered rockfish in Washington’s Puget Sound, a process that could also be applied to Alaska if necessary. That information could quickly be integrated into ERMA and displayed on a map allowing you to view the data used to determine those locations as well.

Screenshot of Alaska through Arctic ERMA and showing ShoreZone data layers.

To find ShoreZone photos in ERMA, type “Alaska ShoreZone” in the find bar at the top, then click on the result to turn on the layer in the map. Next, to view ShoreZone photos in ERMA, first click on the Identify tool icon (i) and then click on a desired point in the map. A table will appear in a pop-up with the hyperlink to the desired photo. Or, click on this image to view ShoreZone data in Arctic ERMA. (NOAA)

As updates and additions to the imagery database become available they will also be available in Arctic ERMA. The Bureau of Safety and Environmental Enforcement (BSEE) has provided funding to complete the imagery processing and habitat mapping for the North Slope of Alaska. BSEE also provided funding to finish Arctic ERMA and to develop the internet-independent Stand-alone ERMA. The efforts are complementary and strategic given the increased activity in the Arctic.

To prepare for this increase in activity, the ShoreZone and ERMA teams are working to incorporate ShoreZone data into Stand-alone ERMA for use when Internet connectivity is unreliable. The beauty of the photos included here is deceptive. A majority of Alaska’s shoreline is rugged, unforgiving, and remote. Having access to high-resolution imagery along with environmental and response-focused data in the kind of Internet-independent package that ShoreZone and ERMA provide would be an indispensable tool during a hazardous incident like a ship collision, oil spill, or search and rescue mission. This is just one way NOAA and ShoreZone are working together to strengthen our commitment to the coastal environments and communities of Alaska.

Zach Winters-StaszakZach Winters-Staszak is a GIS Specialist with OR&R’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


Leave a comment

Above, Under, and Through the Ice: Demonstrating Technologies for Oil Spill Response in the Arctic

This is the third in a series of posts about Arctic Shield 2013 by the Office of Response and Restoration’s Zach Winters-Staszak. Read his first post, “Arctic-bound” and his second post, “Breaking Ice.”

76° N, 158° W marks the spot. The wind chill has dropped the mercury below zero as the U.S. Coast Guard Cutter Healy, an icebreaker, sits idly, anchored by the sea ice that dominates the landscape. All eyes are fixed on the brilliant orange of the Coast Guard zodiac, the small boat’s color contrasted against the cobalt blue water off the icebreaker’s port side. A faint hum of a motor gets louder and louder overhead as the “Puma” comes into view. Then, just as the miniature, remote-controlled aircraft is positioned exactly over a nearby patch of open water, the operator kills the motor and the Puma splashes down safely.

The Puma operator  aboard the Coast Guard zodiak recovers the small unmanned aircraft after demonstrating its capabilities for detecting oil from the air. (NOAA)

The Puma operator aboard the U.S. Coast Guard zodiak recovers the small unmanned aircraft after demonstrating its capabilities for detecting oil from the air during Arctic Shield 2013. (NOAA)

During the exercise Arctic Shield 2013, the U.S. Coast Guard Research and Development Center (RDC) brought a group of scientists and specialists together to demonstrate technologies that potentially could be used for oil spill response in the Arctic Ocean’s severe conditions. This is my third and final post detailing my experiences and involvement in the mission aboard the Healy; you can read the previous posts, “Arctic-bound” and “Breaking Ice.”

Existing Technology, New Applications

The Arctic Ocean remains a difficult to access and often dangerous environment.

The Arctic Ocean remains a difficult to access and often dangerous environment. (NOAA)

Increased marine transportation and oil exploration in the Arctic increases the likelihood of, along with the responsibility to be prepared for, potential oil spills. Operating in an area as remote and ice-filled as the Arctic poses new logistical and tactical challenges for safe ship transit, search and rescue efforts, resource extraction, and oil spill response. For those of us working in oil spill response, this means developing new methods and technologies for surveying, assessing, and responding in these settings.

The RDC, coordinating efforts by the Unmanned Aircraft Systems (UAS) programs at the National Oceanic and Atmospheric Administration (NOAA) and the University of Alaska Fairbanks, demonstrated the Puma as one method to survey, identify, and monitor oil on and around the ice floes from above. The Puma is a battery-powered, aerial survey technology with military roots that is now being used for a variety of environmental applications.

The Puma’s advantages for oil spill response in the Arctic are many. With its capacity for high resolution and infrared imagery, the Puma could help identify and monitor oiled environments and wildlife during response efforts, while simultaneously creating a visual record of environmental injury that could be used during a Natural Resource Damage Assessment.

The NOAA Office of Response and Restoration’s Emergency Response Division has a long history of recording aerial imagery of oil spills by using trained observers aboard helicopters or airplanes to find and photograph oil on the water’s surface. Using a UAS like the Puma removes the risk to human safety, requires batteries and not fuel, and has been shown to have little-to-no influence on the behavior of wildlife. In fact, NOAA has already used Pumas to great effect during marine mammal and sea bird surveys.

This last point is especially important when you consider an animal like the Pacific walrus. With recent, dramatic summer losses in sea ice, Pacific walruses have been seen congregating en masse on the shoreline of Alaska, a behavior happening earlier and earlier in the year. Disturbance of these large groups of walruses, which could be caused by noisy surveying techniques, creates panic in the animals, causing a stampede that could end up trampling and killing young walruses.

Pumas Fly but Jaguars Swim

While the Pumas were busy scanning the ice and sea from the sky, scientists from Woods Hole Oceanographic Institute were fast at work deploying their “Jaguar” beneath the water. The Jaguar is an Autonomous Underwater Vehicle (AUV) designed to map the Arctic sea floor, but during Arctic Shield 2013, the science team instead used it to map the curves and channels on the underside of the sea ice.

For example, if an oil spill occurred near an ice floe, responders would need to know where oil could pool up or be funneled in the curves or channels beneath the sea ice. The Jaguar uses acoustic technology to map the differences in sea ice thickness or “draft” as it travels along its programmed path under the ice. A suite of oceanographic sensors are also installed that measure water temperature, conductivity, pressure, and salinity along the way. In addition, scientists can install an optical back-scatter sensor that can detect oil in the water column.

To top things off, the Jaguar’s footprint is relatively low. The entire system is easily shipped, only requires a three-person team to operate, and doesn’t need a large vessel like the Healy to be deployed. Having a highly functional, low-impact tool is a major advantage out on the Arctic Ocean.

A Mapping Tool Made for the Arctic

It was with remote environments like the Arctic in mind that the Office of Response and Restoration developed Stand-alone ERMA, an internet-independent version of our Arctic ERMA online mapping tool used in response efforts for oil spills, hazardous waste spills, and ship groundings. My role in Arctic Shield was to integrate and display the data collected by the technologies I just described into Stand-alone ERMA. ERMA integrates multiple data sources and displays them in a single interactive map. With the resulting data-rich map, I could demonstrate the advantage of establishing a common operational picture during an oil spill response scenario—all without an internet connection.

A view from Arctic ERMA, NOAA's online mapping tool for environmental disasters. You can see the path of the icebreaker Healy, the Puma's flight, and the photos and their location taken by the Puma.

A view from Arctic ERMA, NOAA’s online mapping tool for environmental disasters. You can see the path of the icebreaker Healy, the Puma’s flight, and the photos and their location taken by the Puma. (NOAA)

During Arctic Shield 2013, Stand-alone ERMA was integrated into the ship’s local network, and as new data were recorded and displayed, everyone on the ship, from the bridge to the science decks, could view the same results on their computer screens.

In a typical oil spill response, you can have decision makers from federal, state, and local governments; private industry; and a multitude of scientists and technicians all working together. Everyone needs access to the same information, especially when it is constantly changing, in order to make the most informed decisions. But if internet availability is sporadic or nonexistent (not unusual in the Alaskan Arctic), most common operational pictures are rendered inoperable. Stand-alone ERMA bridges that gap, while providing the same experience and tools found with the online version. Demonstrating the utility of Stand-alone ERMA aboard the Healy made the advantages of a flexible common operational picture very clear.

Mind the Gaps (and Bridge Them)

The purpose of these demonstrations during Arctic Shield 2013 was to identify technologies that could improve oil spill response capabilities in the Arctic environment. Not all of the technologies being demonstrated were recently developed or even developed specifically for oil spill response. The Coast Guard Research and Development Center, which organized the demonstration, has taken a critical look at the difficulties and challenges associated with operating in an icy ocean environment. As a result they have identified a wide variety of technologies—some of which we demonstrated on this trip—that could potentially improve response during an actual oil spill. Still, a great deal of work remains as we work to better understand Arctic ecosystems and overcome the challenges of stewardship in a new and uncertain period in our history.

The only trace of a polar bear were these tracks in the snow and ice as the Healy plowed past.

The only trace of a polar bear were these tracks in the snow and ice as the Healy plowed past. (NOAA)

Looking over the bow of the Healy as the ship fractured the ice beneath, I caught a brief glimpse of polar bear tracks in the snow. The animal itself was nowhere to be seen, but as I watched the tracks fade into the distance, I was reminded of why I was there. When you’re out on the ice, breathing in the frigid air, knowing that polar bears are out there hunting and raising cubs, you realize what is right in front of you is the only place like it in the world. Being a part of Arctic Shield 2013 was an incredibly rewarding and humbling experience, one that is helping me figure out what data we still need and develop the tools to strengthen our ability to respond to an oil spill.

Zach Winters-StaszakZach Winters-Staszak is a GIS Specialist with OR&R’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


Leave a comment

Breaking Ice: A Personal Journey amid Preparations for Arctic Oil Spills

Editor’s Note: September is National Preparedness Month. It is a time to prepare yourself and those in your care for emergencies and disasters of all kinds. The following story follows one way NOAA’s Office of Response and Restoration is preparing for a potential oil spill emergency in the Arctic. To learn more about how you can be prepared for other types of emergencies, visit http://www.ready.gov.

This is the second in a series of posts about Arctic Shield 2013 by the Office of Response and Restoration’s Zach Winters-Staszak. Read his first post, “Arctic-bound.”

Fog and snow obscure the tundra below as the plane descends. The seat belt sign goes off and a man reaches for his bag in the overhead bin, the quote on the back of his shirt spelling out just how far I now am from Seattle: “Vegetarian. An ancient tribal slang for the village idiot who can’t hunt, fish or ride.” I’ve returned to Barrow, Alaska, top of the world for now, but I have higher latitudes in my future.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed me to the Arctic.

Bowhead whale bones and a sign announcing Barrow as the northernmost city in America welcomed me to the Arctic. (NOAA)

On previous trips to Barrow, the village was blanketed by snow, chilled by negative air temperatures, and surrounded by coastal sea ice. As I step out from the baggage claim, the air is balmy and the landscape is thawed, leaving only mud and gravel for me to drag the now-useless wheels of my luggage and heavy equipment case across. When I arrive at the hotel lobby, I hear familiar voices from conference calls over the last few months as we prepared for this logistically complex undertaking, and I quickly begin to put faces to names and voices.

Top of the World

In a previous blog post, I gave a brief overview of my involvement in the oil spill training exercise Arctic Shield 2013. I was joining scientists, analysts, the United States Coast Guard (USCG), and the crew aboard the USCG Cutter Healy to demonstrate the capabilities of oil spill response technologies in the remote and challenging environment of the Arctic Ocean.

At the Iñupiat Heritage Center in Barrow, Alaska, you can see local artists carve traditional icons into the jawbone of a bowhead whale.

At the Iñupiat Heritage Center in Barrow, Alaska, you can see local artists carve traditional icons into the jawbone of a bowhead whale. (NOAA)

But before I dive into those details, I first wanted to share my behind-the-scenes story of life aboard this Coast Guard icebreaker—because this was no ordinary “office” for our work. We would travel north up and over the broken sheets of Arctic sea ice before turning south through the Bering Sea, east to the Gulf of Alaska and finally dock in Seward, Alaska.

Even though I’ve been here before, Barrow still retains an uncompromising allure. Bowhead whale bones, baleen, umiaqs (seal-skin hulled canoes used for spring whaling), and caribou pelts can be seen at every turn, affirming the traditional ways synonymous with Arctic communities—as well as what’s at stake if a major oil spill occurred here.

Each time I come to Barrow, I make it a point to visit the Iñupiat Heritage Center. Local subsistence hunters and community elders can be found there, continuing to create the traditional tools and artwork they have for centuries. As I listen to stories of generations of hardship and perseverance on the ice, I’m quickly reminded of what’s at stake and why it’s imperative to be ready to protect the natural resources they rely on.

Cultural tourism has become a major draw to Barrow but is perhaps overshadowed by the destination itself. From a geographical and strategic standpoint, Barrow is a major checkpoint for international travel by sea.

U.S. and circumpolar shipping routes through the Arctic, as viewed in NOAA's online mapping tool, Arctic ERMA.

U.S. and circumpolar shipping routes through the Arctic, as viewed in NOAA’s online mapping tool, Arctic ERMA. Click to enlarge. (NOAA)

During my time in the village, there was a German cruise boat traveling through from the Northwest Passage and Greenland that anchored just offshore and was busy unloading European tourists by Zodiac. This alone highlights the importance of field demonstrations like Arctic Shield. Transportation activities for tourism and commerce are increasing in the region, escalating the risk of oil spills and accidents. Ironically, the Healy is anchored just offshore as well, giving our team a spectacular view into our next couple weeks.

The U.S. Coast Guard icebreaker, Healy, sits just offshore of Barrow, shortly before we set sail.

The U.S. Coast Guard icebreaker, Healy, sits just offshore of Barrow, shortly before we set sail. (NOAA)

Working Aboard an Icebreaker

When you’re on a ship, you have no choice but to eat whatever the galley serves up, three times a day. The Coast Guard puts Sriracha hot sauce on everything: eggs (makes sense), grilled cheese (OK), the hardly identifiable steamed broccoli (understandable), and chicken marsala (not so sure). As I get to know both the crew and the science team after one such meal, questions about the Healy itself come up. The galley chief quickly proclaims, “Have you seen the engine room? We call it PFM or Pure Freaking Magic. The Healy generates more power than the whole village of Barrow.” To put that in perspective, Barrow is the largest village on Alaska’s North Slope, with a population over 4,100 people.

Essentially, the ship itself is a floating village. The Healy has amenities to support over 100 people, makes ample (and screaming hot) fresh water on site, and houses multiple scientific laboratories with a combined area of 4,200 ft².  Designed to operate in temperatures down to -50°F, the Healy can break 4.5-foot-thick ice continuously and has the capacity of backing and ramming 8-foot-thick ice. Indeed, watching chunks of ice the size of minivans come rolling up from under the bow of the ship is impressive.

The sound of breaking ice from below deck is at first nerve-racking, but eventually it actually begins to lull you to sleep at night. Then, just as soon as the landscape of fragmented sea ice and frigid temperatures becomes familiar, it vanishes. The morning after completing the response technology demonstrations, I wake up and the ship has turned south. We have escaped the ice floe and are once again surrounded by open ocean. Walruses and whales swim by, understandably in a hurry considering a 420-foot red island is steaming in their direction at 14 knots.

As we pass through the Bering Strait, Russia comes into view. And as we travel through Unimak Pass, the Aleutian Islands, and on to Seward, I take in the unforgettable landscapes that I hope our preparations during Arctic Shield will help protect.

Stay tuned for my next post, when I’ll give an in-depth look at the critical response technologies we demonstrated on the Healy, some humbling insights for me to consider as an oil spill responder, and an update on whether my personal goal to see a polar bear remained elusive.

Zach Winters-StaszakZach Winters-Staszak is a GIS Specialist with OR&R’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


1 Comment

Arctic-bound: Testing Oil Spill Response Technologies Aboard an Icebreaker

Editor’s Note: September is National Preparedness Month. It is a time to prepare yourself and those in your care for emergencies and disasters of all kinds. The following story shows one way NOAA’s Office of Response and Restoration is preparing for a potential oil spill emergency in the Arctic. To learn more about how you can be prepared for other types of emergencies, visit www.ready.gov.

This is a post by the Office of Response and Restoration’s Zach Winters-Staszak.

Polar bear tracks crisscrossed by artic fox on sea ice, Barrow, Alaska.

Polar bear tracks crisscrossed by artic fox on sea ice, Barrow, Alaska. (NOAA/Zach Winters-Staszak)

What’s the first thing that comes to mind when someone mentions “the Arctic”? For me, it’s the polar bear.

As a mapping specialist for OR&R’s Arctic ERMA project, I’ve had the opportunity to visit the Arctic communities of Barrow, Wainwright, and Kotzebue, Alaska. On those trips, I’ve been lucky enough to witness a snowy owl (Barrow’s namesake), arctic hare, and caribou. Once, I even hired a local expert to take me on an “Arctic safari” to see a polar bear; the tracks we found were less than 12 hours old, but the polar bear itself continues to elude me.

On my upcoming trip to the Arctic, however, my chances are greatly improved; this time I’m headed out to sea.

An Arctic Expedition

This week, I’m returning to Barrow to join the U.S. Coast Guard and a team of scientists for two weeks aboard the Coast Guard Cutter Healy where we’ll take part in Arctic Shield 2013. Once we are aboard the icebreaker, the team will travel to the edge of the sea ice and begin a drill scenario to test oil spill response technologies in the remote and challenging environment of the Arctic Ocean.

The technologies being tested range from unmanned aircraft systems gathering data from above to remotely operated vehicles searching under the ice to skimmers that are designed to collect oil on the ocean’s surface. The purpose of this hands-on drill is to gain a better understanding of the challenges involved in responding to a theoretical Arctic oil spill at sea and then define the advantages and any constraints of existing technologies to improve our ability to respond to an actual spill.

Connecting the Dots of Data

As the seasonal extent of Arctic sea ice continues to contract and thin, energy exploration and transportation activities will likely continue to increase in the region, escalating the risk of oil spills and accidents. In anticipation, NOAA and interagency partners are actively preparing for these possible emergencies, and Arctic Shield is a great example of this.

This view of the online mapping program Arctic ERMA shows the approximate path of the Coast Guard Cutter Healy from Barrow, Alaska, to the edge of the sea ice, indicated on the map in yellow. Red shows higher concentrations of sea ice.

This view of the online mapping program Arctic ERMA shows the approximate path of the Coast Guard Cutter Healy from Barrow, Alaska, to the edge of the sea ice, indicated on the map in yellow. Red shows higher concentrations of sea ice. (NOAA)

My role will be to connect the various streams of data the science teams will be collecting and incorporate them into a new version of ERMA, our online mapping tool for environmental response. This latest “stand-alone” version of the tool functions like previous versions of ERMA, except it doesn’t need an internet connection. It is common for communities in the Arctic region and for many coastal areas of Alaska to have spotty internet coverage, if coverage is available at all. Stand-alone ERMA is able to map and organize information in a centralized, easy-to-use format for environmental responders and decision-makers when internet connectivity is unreliable.

As you read this post, I’ll be on a plane traveling north. I expect the first week on the ship will be packed full of activity, but I hope the following week will allow me to write more about my experiences during the cruise. If there is enough internet bandwidth, I’ll be posting developments from the Healy. I hope to include information about the technologies being tested, life on the ship, and photos of wildlife. And if I haven’t jinxed myself by now, maybe one of those photos will include a polar bear.

Zach Winters-StaszakZach Winters-Staszak is a GIS Specialist with OR&R’s Spatial Data Branch. His main focus is to visualize environmental data from various sources for oil spill planning, preparedness, and response. In his free time, Zach can often be found backpacking and fly fishing in the mountains.


Leave a comment

What Is the Current State of Arctic Sea Ice and What’s in Store?

This is a post by Samantha Guidon, Constituent and Legislative Affairs Intern with NOAA’s Office of Response and Restoration.

Arctic sea ice near Barrow, Alaska.

Patches of newly formed ice are visible in the open water of the Chukchi sea, offshore of “landfast ice.” Landfast ice, which is frozen to the shoreline, is an essential platform for local Inupiat people’s winter and spring hunting. This photo was taken during a flight between Barrow and Wainwright, Alaska, in early 2013. (NOAA)

A look at the Arctic region uncovers many hot-button issues: climate change, energy extraction, and cultural impacts, just to name a few—all in a remote area with a harsh environment. Recently, I received a crash course and status update on the Arctic’s disappearing sea ice at the 5th Symposium on the Impacts of an Ice-Diminishing Arctic on Naval and Maritime Operations. Co-hosted by the United States National/Naval Ice Center and the U.S. Arctic Research Commission, the conference brought together key stakeholders for information sharing and discussion.

Two facts were apparent over the course of the three-day conference: (1) sea ice in the Arctic is shrinking—more rapidly than scientists originally predicted, and (2) “ships” will be essential to the future of the Arctic.

NOAA Research Oceanographer Dr. Jim Overland predicted that the Arctic will most likely be functionally ice free in the summer by 2050, at the latest; however, he agreed with others that it may happen even sooner. Rear Admiral Jonathan W. White, Navy Oceanographer and Navigator and Director of the Task Force on Climate Change, set his prediction at 2022, which may be plausible given that all of the older ice in the region has already melted. And, currently, the oldest ice in the Arctic is a mere three years old, according to Dr. Ignatius Rigor of the International Arctic Buoy Program.

Regardless of when it happens, the Arctic will be ice-free at some point within our lifetimes, a reality that comes with the potential to alter significantly business and life in the region and across the globe. It is because of these implications that three kinds of “ships” will play a key role in the region’s future: icebreaking or ice-capable ships, partnerships, and chairmanship.

The Coast Guard Cutter Healy breaks ice in the Bering Sea to assist the tanker Renda on its way to deliver winter fuel supplies to Nome, Alaska.

The Coast Guard Cutter Healy, the U.S.’s only operational polar icebreaker, breaks ice in the Bering Sea to assist the tanker Renda on its way to deliver winter fuel supplies to Nome, Alaska, on Jan. 8, 2012. (U.S. Coast Guard)

Wanted: Ships

The United States currently has only one icebreaker, the U.S. Coast Guard Cutter Healy, which is mission-ready for the Arctic. Yet transit—via maritime commerce, tourism, and energy exploration—within and through the Arctic will increase, whether or not there are enough ice-capable ships able to assist them in an emergency. This fact raised questions about U.S. ship capabilities, especially because icebergs will still be around and posing risks even without historical sea ice levels. While the U.S. does have a strong Arctic maritime presence, there is plenty of room to increase that presence in the future.

As part of the U.S. Coast Guard’s “Arctic Shield” drill this September, NOAA’s Office of Response and Restoration (OR&R) will be participating in an oil spill training exercise on the icebreaker Healy in Alaska. During the exercise, they will test possible spill response techniques and tools, including a new version of NOAA’s Arctic ERMA, an online mapping tool that brings together, visualizes, and shares key data from NOAA and its partners in a centralized, easy-to-use format during an environmental response scenario. Developed by OR&R through its partnership with the Bureau of Safety and Environmental Enforcement, this new “Stand-alone ERMA” has been adapted for use by responders in a remote command post, vessel, or other areas with limited or no internet connection.

In addition, the Coast Guard is preparing a second icebreaker, Polar Star, which should be ready for work in November and would give the United States two functioning icebreakers.

Partnerships Are Key

The need for partnerships (interagency, national, indigenous, and international), especially in an area so vast during a time with limited resources, was another key theme. One successful partnership brought up was the Memorandum of Understanding between NOAA and Shell to share data in the Arctic, demonstrating how government and industry can work together effectively. An area where there could be strengthened partnerships and better forms of communication is in working more closely with indigenous peoples to incorporate and use traditional knowledge in Arctic emergency planning, which OR&R’s Dr. Amy Merten mentioned in her talk on Arctic ERMA.

Chairmanship of the Arctic Council

Chairmanship of the Arctic Council was also on everyone’s mind. Canada just assumed chairmanship in 2013 and the United States is on deck for 2015, which will result in four years of North American chairmanship. Julia Gourley, U.S. Senior Arctic Official at the Department of State, discussed the desire to communicate and work with Canada in order to accomplish both of the countries’ goals and manage the Arctic to the best of their abilities.

However, several questions arose out of the Arctic Council discussion, including: When chairmanship moves away from North America, will the priorities shift? The Arctic Council does not have any authority for governance; will this be a problem in the future? Agreements between Arctic Council nations on oil spill response and search and rescue are great ideas in theory, but how will they be implemented during an actual emergency? This may be a compelling reason for supporting the United Nations Convention on the Law of the Sea, which, according to the U.N., extends “international law to the vast, shared water resources of our planet,” and under whose provisions the U.S. Navy and Coast Guard already operate, though the U.S. has not yet ratified it.

How Will the U.S. Move Ahead?

Some concerns about the U.S. status in the Arctic stem from having only one functioning ice breaker, the USCG Cutter Healy. However, Rear Admiral White referenced the fact that our country is still in transition from a nation with an Arctic state to an Arctic nation. Other Arctic nations have needed additional resources for quite some time because they have always relied on the area for trade. However, within the United States, attention on the Arctic is still a relatively new phenomenon to non-Alaskans, so it may take more time to gain the status of some of the other Arctic nations.

President Barack Obama released his National Strategy for the Arctic Region in May 2013, which outlines an overall plan for the Arctic region, focusing on security, stewardship, and partnerships. There are at least 10 other reports from federal agencies, including the Coast Guard, NOAA, U.S. Arctic Research Commission, and the Interagency Arctic Research Policy Committee, also outlining their own Arctic strategies and policy recommendations, making it difficult to identify a common direction when moving forward in the Arctic region.

Because of this, I am composing a report for NOAA’s Office of Response and Restoration that will examine all of these plans and policy recommendations and identify a key policy that is common among the reports in order to suggest a priority for implementation.

Learn more about our work in the Arctic, from oil spill response support to marine debris removal.

Samantha Guidon is currently a graduate student at University of Pennsylvania studying Environmental Policy and OR&R’s Constituent and Legislative Affairs Intern for the summer. Prior to UPenn, Sam graduated from Union College in Schenectady, New York, in the spring of 2012 with a BA in Environmental Policy. Sam is originally from Cranford, New Jersey, and loves to vacation to the Jersey Shore.


Leave a comment

Behind the Budget: A Look Ahead for NOAA’s Office of Response and Restoration

Here, we take a peek into the world of science policy (and the budgets that make it possible) as we hear from Dave Westerholm, director of NOAA’s Office of Response and Restoration, about what we can expect as a starting point for this office in the next fiscal year.

Wetland grasses replanted in Texas after a successful damage assessment and restoration process. (NOAA/National Marine Fisheries Service/Jamie Schubert)

Wetland grasses replanted in Texas after a successful damage assessment and restoration process. (NOAA/National Marine Fisheries Service/Jamie Schubert)

The White House recently released the President’s Budget for Fiscal Year 2014. This budget offers several exciting opportunities for research, development, and growth in response and restoration activities at NOAA. The budget contains close to $4 million in increases for the Office of Response and Restoration (OR&R).

I am very proud of the work we do every day at OR&R and am very grateful for all the support that enables this work. In the last year we responded to 139 environmental incidents, including Hurricane Sandy, generated over $800,000 for restoration through the natural resource damage assessment process, opened NOAA’s new Gulf of Mexico Disaster Response Center, and saw passage of the Marine Debris Act Amendments of 2012 (which expanded the scope of our office to deal specifically with large amounts of natural disaster debris).

While meeting the needs of those critical issues, we have continued to support the ongoing response and damage assessment for the Deepwater Horizon/BP oil spill, looked forward to address emerging challenges in the U.S. Arctic by launching an Environmental Response Management Application (ERMA) online mapping tool for the Arctic region and contributed our expertise to interagency planning and preparedness in support of ongoing energy exploration in the Arctic.

I am eager to show you what OR&R can do with the latest budget from the President that will build upon our recent achievements:

The fiscal year 2014 budget proposes a $2 million increase for Natural Resource Damage Assessment to increase technical, strategic, and legal support so we can more quickly move more oil spill and hazardous waste site cases toward settlement and support the restoration process. We anticipate that this increase will more than pay for itself in settlement funds recovered from responsible parties and deliver significant return on investment for the American public.

There is an increase of $1 million for the NOAA Marine Debris Program to fund a variety of programs and efforts to reduce and prevent the impacts of marine debris. This includes funding for:

  • research programs and academic institutions with demonstrated expertise in the economic impacts of marine debris.
  • alternatives to fishing gear that pose potential marine threats.
  • enhanced tracking, recovery, and identification of lost and discarded fishing gear.
  • efforts to reduce the amount of baseline debris from ocean and non-ocean based sources.

Additionally, the Marine Debris Program’s regional marine debris coordination program will receive a funding increase to enhance regional efforts and develop response plans for states in the Northeast, Southeast, and Gulf of Mexico as described under the Marine Debris Act. These plans will help federal, state, and local authorities plan and prepare for the next major marine debris cleanup event, for example, a hurricane.

This budget also proposes funding increases for emergency response preparedness in the Arctic and Gulf of Mexico and for our innovative ERMA tool to transition to a cloud computing platform.  These funds will allow OR&R to improve our services through participation in more regional response exercises with governmental and private partners and enhance scientific support for the Arctic through increased direct engagement with Arctic communities.

I invite you to review the NOAA Fiscal Year 2014 Budget Summary [PDF] for more detailed information on all of NOAA’s proposed activities in the President’s budget.

Each budgetary increase provides a significant opportunity to build NOAA’s capacity to assess future oil and chemical spill impacts, plan for increased maritime activity in the Arctic, and expand our scientific and tactical capabilities using state-of-the-art information management. The budget also will help NOAA to develop capabilities that will lead to more effective strategies to prevent and mitigate the effects of marine debris. I hope to work with our office’s many partners and supporters in the coming months to ensure OR&R’s capacity will continue to meet the rising tide of ocean and coastal challenges to protect lives, property, and the environment and to keep commerce moving.

Dave Westerholm

Dave Westerholm

Dave Westerholm currently serves as the Director of NOAA’s Office of Response and Restoration. Prior to NOAA, he had several years of corporate experience as both Senior Operations Director and Vice President for Maritime Security, Policy and Communications for Anteon Corporation and then General Dynamics. He is a retired Coast Guard Captain with over 27 years of experience in a variety of fields including maritime safety, port security, and environmental protection.

Follow

Get every new post delivered to your Inbox.

Join 371 other followers