NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


2 Comments

What Have We Done for Endangered Species Lately?

Floating brown pelican.

The brown pelican, a successfully recovered species, was removed from the Endangered Species List in 2009. (U.S. Fish and Wildlife Service)

Endangered species have a tough time of it. These plants and animals have been trampled, hunted, contaminated, and pushed out of their homes by humans to the point that their very existence on this planet becomes dangerously uncertain. In the United States, this is when the federal government steps in to list a species as threatened or endangered under the 1973 Endangered Species Act.

Over 40 years later, this critical piece of legislation has had many successes in protecting native animals and plants and the natural areas where they live—perhaps most notably bringing back the national symbol, the bald eagle, from the brink of extinction. Yet with more than 1,500 types of animals and plants remaining threatened or endangered in the United States, we still have more work to do.

On May 16, 2014, we’re going to take the time to recognize this very important national conservation effort by celebrating Endangered Species Day and the many ways, big and small, each of us can help save our nation’s incredible array of plants and animals from extinction—like the now-recovered brown pelican!

Tools for Protecting Species During Oil Spills

So, what has NOAA been doing for endangered species? One example is the Office of Response and Restoration’s special data mapping tools that come into play during oil spills.

When an oil spill occurs along the coast, one priority for our office is identifying whether any threatened or endangered species live in the area near the spill. The responders dealing with the spill have to take into account factors such as what time of year these protected species are breeding or how they might come into contact with spilled oil or the response. This means knowing whether young Chinook salmon may be migrating out to sea through an estuary where a ship may have accidentally discharged fuel. Or knowing if the beaches where spill responders need to clean up oil are also important nesting grounds for a shorebird such as the piping plover.

Our biologists and ecologists help provide this kind of information during an oil spill response, but our office also produces tools to organize and display all of this information for both NOAA and oil spill planners and responders outside our agency. One of these tools is NOAA’s Environmental Sensitivity Index (ESI) maps. These maps characterize coastal environments and wildlife based on their sensitivity to spilled oil. The main components of these maps are sensitive wildlife, shoreline habitats, and the resources people use there, such as a fishery or recreational beach.

A related Geographic Information Systems (GIS) tool, the Threatened and Endangered Species Geodatabases, make up a subset of the original ESI data from our maps. These data focus on the coastal species and habitats that are federally and/or state listed as endangered, threatened, protected, or as a species of concern. These databases offer a more user-friendly option to access some of the most critical biological information for a region.

In the example below, you see a map of Great South Bay from the Long Island ESI atlas. The colored shapes (red, blue, green, and maroon) indicate where the piping plover, shortnose sturgeon, eastern mud turtle, and seabeach amaranth occur in June.

Screen capture of Environmental Sensitivity Map showing habitat of some threatened and endangered species, indicated by the blue, red, maroon, and green coloration, found in the Great South Bay of Long Island Sound, New York.

Habitat of some threatened and endangered species, indicated by the blue, red, maroon, and green coloration, found in the Great South Bay of Long Island Sound, New York. (NOAA)

Using the Threatened and Endangered Species Geodatabases allows oil spill planners and responders to easily gather complex information for a region, such as groupings of species with similar habitat preferences and feeding styles, threatened and endangered status, concentration, and life history summaries. This tool also features the ability to search for presence of a species in a particular month or season. You can take a look at these data, pulled from our many state and federal partners, for anywhere in the United States using this online map application.

What You Can Do

If you’re not an oil spill planner or responder, how can you help protect endangered species? Learn what you can do, such as protecting habitat by planting native rather than invasive plants in your yard, in this podcast from the U.S. Fish and Wildlife Service. Or find an Endangered Species Day event this weekend near you.


1 Comment

Who Is Biking to Work in America? NOAA Is!

May is National Bike to Work Month. As usual, those of us at the National Oceanic and Atmospheric Administration (NOAA) have been donning our two-wheelers and helmets to join in the fun that often starts this month but in Seattle can go year-round. In addition, this year the U.S. Census Bureau has released its first-ever report on biking and walking to work. It holds some interesting insights into the shifts occurring in how people get around town:

Although changes in rates of bicycle commuting vary across U.S. communities, many cities have experienced relatively large increases in bicycle commuting in recent years. The total number of bike commuters in the U.S. increased from about 488,000 in 2000 to about 786,000 during the period from 2008 to 2012, a larger percentage increase than that of any other commuting mode.

Take a look at the top 15 big cities for people biking to work:

Top 15 large cities with the highest percentage of people biking to work.

Top 15 large U.S. cities with the highest percentage of people biking to work.

As you can see, Seattle, Washington, is in the top five, and NOAA’s Seattle contingent is doing its part to help get there. In 2012, NOAA had 132 people riding bikes in the Northwest Federal Bike-to-Work Challenge, landing us the prestigious “Pink Jersey” award—referring to Italy’s Giro d’Italia bike race in May where the leader wears a pink jersey—for our overall participation among federal agencies in the region.

This year, about half-way into Bike Month, it looks like NOAA has roughly 139 people on 12 teams who have been biking to work already. We’ve logged more than 600 trips to and from work and ridden nearly 9,000 miles. That’s a lot of miles not driven in cars, pounds of pollution not emitted, and gallons of petroleum not burned. Let’s not forget the health benefits of integrating bicycling into an active lifestyle too. Many people who bike commute also enjoy being outside, hearing the birds, seeing the change of seasons, having more energy during the work day, and slowing down and unplugging after work.

Six people wearing bike helmets and standing next to bikes.

My Bike to Work Month team stopped for breakfast burritos and then rode in the rest of the way to work together on a brisk May morning in 2013.

Personally, I bought my bicycle about two weeks into my first Bike to Work Month in 2011 (better late than never!). I was a little nervous but more excited. Growing up in the car-friendly suburbs of the Midwest didn’t prepare me at all for biking in a city like Seattle. Fortunately, I had a friend to help ease me into biking, showing me how fun and easy it could be, along with introducing me to some simple biking protocols for staying safe. It also helped to live in Washington, which has been ranked the #1 most bike-friendly state seven years in a row.

That first month of biking to NOAA back in 2011, I was hoping to commute once or even twice a week if I could, but this year, I’m going for three, maybe even four times a week. While my commute isn’t super short—nearly 8 miles each way— I’m lucky enough that I can ride almost the entire way on the Burk-Gilman Trail, a dedicated bike path that “carries as many people during peak hours as a high-performing lane of a major freeway.”

A white bicycle and helmet.

My bike, when it was shiny and new. It’s still pretty shiny, but less new, and with more bike racks and fenders.

It was not so long ago that I thought, “Biking around town? Me? I’ll stick to the bus, thanks.” Now, thanks to a lot of support, I know it’s not a huge deal. The more people there are biking, the safer it becomes for everyone on the road [PDF]. I know I can ride my bike to work (and elsewhere) and I can even do it while wearing a dress and a smile.

Do you bike to work? What do you enjoy about it? Would you bike to work if you could?

Get even more data on biking to work from this video discussion between the U.S. Census Bureau and the League of American Bicyclists.


Leave a comment

How Will You Celebrate World Ocean Day?

Red-footed booby landing near edge of ocean atoll.

Red-footed booby at the Three Sisters at Pearl and Hermes Atoll in the Papahanaumokuakea Marine National Monument. (NOAA)

World Ocean Day is June 8, and we’re only a month away. What will you do to celebrate and protect that big blue body of water that sustains our planet?

We have a few ideas to get you ready:

Look for even more ways to keep the ocean healthy and free of pollution, a small way of saying thanks for everything the ocean does for us.


Leave a comment

A Bird’s Eye View: Looking for Oil Spills from the Sky

This is a post by LTJG Alice Drury of the Office of Response and Restoration’s Emergency Response Division, with input from David Wesley and Meg Imholt.

View over a pilot's shoulder out of a plane to ocean and islands.

View over the pilot’s shoulder on the first visit to the Chandeleur Islands in the Gulf of Mexico after Hurricane Katrina to see how much the shoreline had been altered. (NOAA)

During an oil spill, responders need to answer a number of questions in order to protect coastal resources: What happened? Where is the oil going? What will it hit? How will it cause harm?

Not all of these questions can be answered adequately from the ground or even from a boat. Often, experts take to the skies to answer these questions.

Aerial overflights are surveys from airplanes or helicopters which help responders find oil slicks as they move and break up across a potentially wide expanse of water. Our oceanographers make predictions about where a spill might go, but each spill presents a unique combination of weather conditions, ocean currents, and even oil chemistry that adds uncertainty due to natural variability. Overflights give snapshots of where the oil is located and how it is behaving at a specific date and time, which we use to compare to our oceanographic models. By visually confirming an oil slick’s location, we can provide even more accurate forecasts of where the oil is expected to go, which is a key component of response operations.

Trained aerial overflight experts serve as the “eyes” for the command post of spill responders. They report critical information like location, size, shape, color, and orientation of an oil slick. They can also make wildlife observations, monitor cleanup operations, and spot oceanographic features like convergence zones and eddies, which impact where oil might go. All of these details help inform decisions for appropriate cleanup strategies.

Easier Said Than Done

Finding and identifying oil from the air is tricky. Oil slicks move, which can make them hard to pin down. In addition, they may be difficult to classify from visual observation because different oils vary in appearance, and oil slick appearance is affected by weather conditions and how long the oil has been out on the water.

False positives add even another challenge. When viewed from the air, algal blooms, boat wakes, seagrass, and many other things can look like oil. Important clues, such as if heavy pollen or algal blooms are common in the area, help aerial observers make the determination between false positives and the real deal. If the determination cannot be made from air, however, it is worth investigating further.

During an overflight, it takes concentration to capture the right information. Many things can distract the observer from the main mission of spotting oil, including taking notes in a notebook, technology, and other people. Even an item meant to help, such as a camera or GPS, can lose value if more time is spent fiddling with it rather than taking observations. The important thing is to look out the window!

Safety is paramount on an overflight. An observer must always pay close attention to the pilot’s instructions for getting on and off the aircraft, and not speak over the pilot if they are talking on the radio. While it’s not a problem to ask, a pilot may not be able to do certain maneuvers an observer requests due to safety concerns.

The Experts—And Becoming One Yourself

The Emergency Response Division of NOAA’s Office of Response and Restoration (OR&R) has overflight specialists ready for quick deployment to do this job. These specialists have extensive training and expertise in aerial overflights.

View of airplane wing, clouds, and water.

Looking out of an observer window on a Coast Guard C-130 airplane during the Hurricane Katrina pollution response. (NOAA)

When I joined OR&R in 2011, I learned from the best before doing real-life observations myself. One of the first things I did was take a Helicopter Emergency Egress course to make sure I could safely exit an aircraft that had made an emergency landing over water. Then I took the Science of Oil Spills course, where I learned more about observing oil from the air. In preparation for my first overflight I also had one-on-one conversations with our trained aerial observers. Since then, I have done aerial observations for oil spills including a sunken vessel in Washington’s Penn Cove, the Post-Tropical Cyclone Sandy pollution response, and the Texas City “Y” oil spill in Galveston Bay.

OR&R provides training opportunities for others who may need to do an overflight during a response. Throughout the year, OR&R offers Science of Oil Spill classes across the country. In March 2014, more than 50 oil spill responders learned about aerial observing, and many other spill response skills, at OR&R’s Science of Oil Spills class at NOAA’s Disaster Response Center in the Gulf of Mexico. For those interested in becoming an overflight specialist themselves, OR&R even offers a one-day, in-person course on the topic throughout the country a few times per year.

OR&R has also created the online module, “Introduction to Observing oil from Helicopters and Planes,” to make training even more accessible. We even have a job aid for aerial observation of oil, a reference booklet conveniently sized to take on an overflight!

Alice Drury.

LTJG Alice Drury.

LTJG Alice Drury graduated from the University of Washington with a degree in Environmental Studies in 2008 and shortly thereafter joined the NOAA Corps. After Basic Officer Training Class at the U.S. Merchant Marine Academy in Kings Point, N.Y., LTJG Drury was assigned to NOAA Ship McArthur II for two years. LTJG Drury is now assigned as the Regional Response Officer in OR&R’s Emergency Response Division. In that assignment she acts as assistant to the West Coast, Alaska, and Oceania Scientific Support Coordinators.


Leave a comment

Sign up for 2014 NOAA Science Camp in Seattle

Registration for this summer’s NOAA Science Camp at our Seattle campus is now open. Each year, this week-long, hands-on camp for 7th and 8th graders immerses kids in the wide range of scientific activities going on at NOAA. For example, campers get the chance to solve an environmental mystery with our toxicologists and observe the impacts of oil on (simulated) beaches and wildlife with our oceanographers and biologists. And that’s only the beginning:

Get the details:

  • Who: Youths entering 7th and 8th grades in the fall of 2014.
  • Where: NOAA’s Sand Point Facility on Lake Washington—7600 Sand Point Way NE, Seattle, Washington.
  • When: Two camp sessions (both weeks have the same content focus)—July 7 – 11 and July 14 – 18, 2014. The Junior Leadership Program is two weeks long, and will run July 7-18.
  • Cost: $250. Camper scholarships to cover half of the registration fee are available.
  • Too old for NOAA Science Camp? Check out the Junior Leadership Program for teens entering 9th-12th grades in the fall of 2014.

Learn more and register on the NOAA Science Camp Web page.


Leave a comment

Booms, Beams, and Baums: The History Behind the Long Floating Barriers to Oil Spills

Oiled boom on Louisiana beach.

Oiled boom is cleaned so that it can be used to contain oil over and over again. (NOAA)

One of the iconic images of spill preparedness and response is oil boom. You’ve probably seen these long ribbons of orange, yellow, or white material stockpiled on a pier, strung around a leaking vessel, or stretched across a channel to protect sensitive areas threatened by an advancing oil slick. Made of plastic, metal, or other materials, booms are floating, physical barriers to oil, meant to slow the spread of oil and keep it contained.

As we describe on our website, there are three main types of boom:

Hard boom is like a floating piece of plastic that has a cylindrical float at the top and is weighted at the bottom so that it has a “skirt” under the water. If the currents or winds are not too strong, booms can also be used to make the oil go in a different direction (this is called “deflection booming”).

Sorbent boom looks like a long sausage made out of a material that absorbs oil. If you were to take the inside of a disposable diaper out and roll it into strips, it would act much like a sorbent boom. Sorbent booms don’t have the “skirt” that hard booms have, so they can’t contain oil for very long.

Fire boom is not used very much. It looks like metal plates with a floating metal cylinder at the top and thin metal plates that make the “skirt” in the water. This type of boom is made to contain oil long enough that it can be lit on fire and burned up.

But why is it called “boom”? Does it make a sound? Every industry has jargon, and the spill response community, at the intersection of the maritime and oil industry, has more than its fair share. There are whole dictionaries devoted to maritime terms, and others devoted to the oil industry. (Remember “top kill” and “junk shot”—industry terms used to describe attempts to stop the flow of oil from a damaged wellhead?) But when I looked for the origins of the word “boom,” I had to do some digging. I guess boom is such a common term in the response business, nobody thinks much about its derivation. Kind of like asking a chef why spoons are called spoons.

The word “boom” is the Dutch word for tree. German is similar: “baum.” Remember “O Tannenbaum,” a Christmas carol of German origin? From these roots, we get the word “beam” as in a long wooden timber, and of course, a part of a sailboat, the “boom,” that holds the foot of the sail and was traditionally made of wood. Around the Northwest it is pretty common to see a tug boat pulling a big raft of logs to a mill—a log boom.

But what do trees have to do with oil boom? Back to the Dutch. In the Middle Ages, logs were chained together and used as a floating barrier across a waterway to protect a harbor from attack or to force passing ships to stop and pay a toll. During the American Revolution, for example, the Hudson River was boomed with logs to prevent the British from sailing upriver. Similar fortifications were used during the Civil War, and even in World War II to protect U.S. West Coast ports from foreign submarines.

How log booms evolved into oil containment booms is unclear, but we know that every major spill has resulted in a flurry of inventions and improvements, often on the fly as responders adapted available resources to combat the spill. As concern over oil pollution increased over the past century, some of these were patented and form the basis for today’s technologies, but unfortunately there is still no silver bullet; once oil is spilled in the sea, it is a challenge to control and clean up. Learn more about how responders use boom during oil spills [PDF], including the ways to use boom effectively.


Leave a comment

National Research Council Releases NOAA-Sponsored Report on Arctic Oil Spills

Healy escorts the tanker Renda through the icy Bering Sea.

The Coast Guard Cutter Healy broke ice for the Russian-flagged tanker Renda on their way to Nome, Alaska, in January of 2012 to deliver more than 1.3 million gallons of petroleum products to the city of Nome. (U.S. Coast Guard)

Responding to a potential oil spill in the U.S. Arctic presents unique logistical, environmental, and cultural challenges unparalleled in any other U.S. water body. In our effort to seek solutions to these challenges and enhance our Arctic preparedness and response capabilities, NOAA co-sponsored a report, Responding to Oil Spills in the U.S. Arctic Marine Environment, directed and released by the National Research Council today.

Several recommendations in the report are of interest to NOAA’s Office of Response and Restoration (OR&R), including the need for:

  • Up-to-date high-resolution nautical charts and shoreline maps.
  • A real-time Arctic ocean-ice meteorological forecasting system.
  • A comprehensive, collaborative, long-term Arctic oil spill research program.
  • Regularly scheduled oil spill exercises to test and evaluate the flexible and scalable organizational structures needed for a highly reliable Arctic oil spill response.
  • A decision process such as the Net Environmental Benefit Analysis for selecting appropriate response options.

In addition, the report mentions NOAA’s ongoing Arctic efforts including our Arctic Environmental Response Mapping Application (ERMA), our oil spill trajectory modeling, and our innovative data sharing efforts. Find out more about OR&R’s efforts related to the Arctic region at response.restoration.noaa.gov/arctic.

Download the full NRC report.

This report dovetails with NOAA’s 2014 Arctic Action Plan, released on April 21, which provides an integrated overview of NOAA’s diverse Arctic programs and how these missions, products, and services support the goals set forth in the President’s National Strategy for the Arctic Region [PDF].

In addition, the Government Accountability Office (GAO) released a report [PDF] in March of 2014, which examined U.S. actions related to developing and investing in Arctic maritime infrastructure. The report outlines key issues related to commercial activity in the U.S. Arctic over the next decade.

Get a snapshot of the National Research Council report in this four minute video, featuring some of our office’s scientific models and mapping tools:

Follow

Get every new post delivered to your Inbox.

Join 370 other followers