NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


2 Comments

As Oil Sands Production Rises, What Should We Expect at Diluted Bitumen (Dilbit) Spills?

Pipeline dug up for an oil spill cleanup next to a creek.

This area is where the Enbridge pipeline leaked nearly a million gallons of diluted bitumen (dilbit), a tar sands oil product, into wetlands, Talmadge Creek, and roughly 40 miles of Michigan’s Kalamazoo River in 2010. (U.S. Environmental Protection Agency)

I’ve seen a lot of firsts in the past four years.

During that time, I have been investigating the environmental impacts, through the Natural Resource Damage Assessment process, of the Enbridge pipeline spill in Michigan. In late summer of 2010, a break in an underground pipeline spilled approximately 1 million gallons of diluted bitumen into a wetland, a creek, and the Kalamazoo River. Diluted bitumen (“dilbit”) is thick, heavy crude oil from the Alberta tar sands (also known as oil sands), which is mixed with a thinner type of oil (the diluent) to allow it to flow through a pipeline.

A Whole New Experience

This was my first and NOAA’s first major experience with damage assessment for a dilbit spill, and was also a first for nearly everyone working on the cleanup and damage assessment. Dilbit production and shipping is increasing. As a result, NOAA and our colleagues in the field of spill response and damage assessment are interested in learning more about dilbit:

  • How does it behave when spilled into rivers or the ocean?
  • What kinds of effects does it have on animals, plants, and habitats?
  • Is it similar to other types of oil we’re more familiar with, or does it have unique properties?

While it’s just one case study, the Enbridge oil spill can help us answer some of those questions. My NOAA colleague Robert Haddad and I recently presented a scientific paper on this case study at Environment Canada’s Arctic and Marine Oil Spill Program conference.

In addition, the Canadian government and oil pipeline industry researchers Witt O’Brien’s, Polaris, and Western Canada Marine Response Corporation [PDF] and SL Ross [PDF] have been studying dilbit behavior as background research related to several proposed dilbit pipeline projects in the United States and Canada. Those experiments, along with the Enbridge spill case study, currently make up the state of the science on dilbit behavior and ecological impacts.

How Is Diluted Bitumen Different from Other Heavy Oils?

Dilbit is in the range of other dense, heavy oils, with a density of 920 to 940 kg/m3, which is close to the density of freshwater (1,000 kg/m3). (In general when something is denser than water, it will sink. If it is less dense, it will float.) Many experts have analyzed the behavior of heavy oils in the environment and observed that if oil sinks below the surface of the water, it becomes much harder to detect and recover. One example of how difficult this can be comes from a barge spill in the Gulf of Mexico, which left thick oil coating the bottom of the ocean.

What makes dilbit different from many other heavy oils, though, is that it includes diluent. Dilbit is composed of about 70 percent bitumen, consisting of very large, heavy molecules, and 30 percent diluent, consisting of very small, light molecules, which can evaporate much more easily than heavy ones. Other heavy oils typically have almost no light components at all. Therefore, we would expect evaporation to occur differently for dilbit compared to other heavy oils.

Environment Canada confirmed this to be the case. About four to five times as much of the dilbits evaporated compared to intermediate fuel oil (a heavy oil with no diluent), and the evaporation occurred much faster for dilbit than for intermediate fuel oil in their study. Evaporation transports toxic components of the dilbit into the air, creating a short-term exposure hazard for spill responders and assessment scientists at the site of the spill, which was the case at the 2010 Enbridge spill.

Graph of evaporation rates over time of two diluted bitumen oils and another heavy oil.

An Environment Canada study found that two types of diluted bitumen (dilbits), Access Western Blend (AWB) and Cold Lake Blend (CLB), evaporated more quickly and to a greater extent than intermediate fuel oil (IFO). The two dilbits are shown on the left and the conventional heavy oil, IFO, on the right. (Environment Canada)

Since the light molecules evaporate after dilbit spills, the leftover residue is even denser than what was spilled initially. Environment Canada, Witt O’Brien’s/Polaris/WCMRC, and SL Ross measured the increase in dilbit density over time as it weathered, finding dilbit density increased over time and eventually reached approximately the same density as freshwater.

These studies also found most of the increase in density takes place in the first day or two. What this tells us is that the early hours and days of a dilbit spill are extremely important, and there is only a short window of time before the oil becomes heavier and may become harder to clean up as it sinks below the water surface.

Unfortunately, there can be substantial confusion in the early hours and days of a spill. Was the spilled material dilbit or conventional heavy crude oil? Universal definitions do not exist for these oil product categories. Different entities sometimes categorize the same products differently. Because of these discrepancies, spill responders and scientists evaluating environmental impacts may get conflicting or hard-to-interpret information in the first few days following a spill.

Lessons from the Enbridge Oil Spill

Initially at the Enbridge oil spill, responders used traditional methods to clean up oil floating on the river’s surface, such as booms, skimmers, and vacuum equipment (see statistics on recovered oil in EPA’s Situation Reports [PDF]).

After responders discovered the dilbit had sunk to the sediment at the river’s bottom, they developed a variety of tactics to collect the oil: spraying the sediments with water, dragging chains through the sediments, agitating sediments by hand with a rake, and driving back and forth with a tracked vehicle to stir up the sediments and release oil trapped in the mud.

These tactics resulted in submerged oil working its way back up to the water surface, where it could then be collected using sorbent materials to mop up the oily sheen.

While these tactics removed some oil from the environment, they might also cause collateral damage, so the Natural Resource Damage Assessment trustees assessed impacts from the cleanup tactics as well as from the oil itself. This case is still ongoing, and trustees’ assessment of those impacts will be described in a Damage Assessment and Restoration Plan after the assessment is complete.

A hand holds a crushed mussel.

A freshwater mussel found crushed in an area of the Kalamazoo River with heavy cleanup traffic following the 2010 Enbridge oil spill. (Enbridge Natural Resource Damage Assessment Trustee Council)

For now, we can learn from the Enbridge spill and help predict some potential environmental impacts of future dilbit spills. We can predict that dilbit will weather (undergo physical and chemical changes) rapidly, becoming very dense and possibly sinking in a matter of days. If the dilbit reaches the sediment bed, it can be very difficult to get it out, and bringing in responders and heavy equipment to recover the oil from the sediments can injure the plants and animals living there.

To plan the cleanup and response and predict the impacts of future dilbit spills, we need more information on dilbit toxicity and on how quickly plants and animals can recover from disturbance. Knowing this information will help us balance the potential impacts of cleanup with the short- and long-term effects of leaving the sunken dilbit in place.


Leave a comment

Follow Along with the State Department’s Our Ocean 2014 Conference

Jellyfish swiming near a harbor bottom.

A brown sea nettle (Chrysaora fuscescens) drifting through Monterey Harbor in California. (NOAA)

You already know how much the ocean does for you and how important it is to both celebrate and protect it. The U.S. Department of State also realizes this importance and, as a result, is hosting the Our Ocean Conference in Washington, DC from June 16–17, 2014. According to ourocean2014.state.gov:

We will bring together individuals, experts, practitioners, advocates, lawmakers, and the international ocean and foreign policy communities to gather lessons learned, share the best science, offer unique perspectives, and demonstrate effective actions. We aim to chart a way forward, working individually and together, to protect “Our Ocean.”

Watch a message about the conference and find out how you can help from Secretary of State John Kerry:

Marine pollution, a topic NOAA’s Office of Response and Restoration is very concerned about, is one of three core areas the conference aims to address, along with ocean acidification and sustainable fisheries. When a plastic bag or cigarette butt blows into a river, it can end up flowing to the ocean, where it endangers marine life. The problem is global, but mitigation is local. It’s in our hands to reduce marine debris—our trash in our ocean—at its source. Learn more about the debris filling our seas by reading about the challenges and solutions in this Our Ocean conference document [PDF], by visiting marinedebris.noaa.gov, and by watching the video below:

On the Our Ocean 2014 website, you also can submit your own pledge to protect the ocean, whether that means volunteering to clean up a beach or tracing the sustainability of the seafood you eat. Plus, you can show your support for the ocean by sharing a photo that inspires your dedication to our ocean. (If you’re looking for inspiration, try the images in our Flickr stream.) The State Department says all you have to do to participate is:

Post your photo to your favorite social media platform using the hashtag #OurOcean2014 or add it to the OurOcean2014 group on Flickr.  We will be keeping an eye out for photos using the hashtag and will choose some of the photos to be featured at the Our Ocean conference in Washington on June 16-17.

Check out the program schedule and watch the conference streaming live starting at 9:30 a.m. Eastern on Monday and Tuesday at state.gov/ourocean.


Leave a comment

See Restoration in Action for California’s Kelp Forests

Healthy kelp forest in southern California.

Healthy kelp forest in southern California. (NOAA)

In July of 2013, a large-scale project to restore kelp forests began off the Palos Verdes peninsula of California. The Bay Foundation, with funding and technical assistance from NOAA’s Montrose Settlements Restoration Program, coordinated the effort to remove overpopulated and undernourished sea urchins from urchin barrens. The large numbers of sea urchins in these areas decimate kelp forests by eating every newly settled kelp plant before they have a chance to grow.

The good news is that these restoration efforts are working. Thanks to volunteer divers, commercial urchin divers, researchers, and local nonprofit groups, southern California’s kelp forests are on the road to recovery. Check out the before and after photos to see the radical difference this project is making. In just weeks after divers clear urchins, newly settled kelp and algae can be seen growing.

In the before photo, you can see what the area’s nearly 100 acres of urchin barrens look like—rocky reef covered in dense clusters of spiny purple urchins. In the after photo, taken several months after restoration began, long strands of giant kelp reach from the seafloor up toward the water’s surface. At some of the restoration sites, kelp have already grown more than 25 feet in length, creating better habitat for fish and other marine life.

Left, purple sea urchins on a rocky reef. Right, young kelp growing tall.

On the left is an urchin barren before divers cleared it of excess purple sea urchins and on the right is newly settled kelp already growing tall several months after restoration. (NOAA)

To date, volunteers have cleared roughly eight acres of reef habitat at four restoration sites, which are in various states of recovery, but we still have plenty more work ahead. In the next two to three years, we hope to reestablish between 75 and 80 acres of kelp forest on the Palos Verdes shelf.

For more information, check out:


Leave a comment

Celebrate and Protect the Ocean with us on World Ocean Day

Family exploring tidepools in Santa Cruz.

Learn about, explore, and protect your ocean — our ocean. (NOAA)

At NOAA’s National Ocean Service, we’re honoring all things ocean the entire month of June, but if you have only one day to spare, make it this weekend. Sunday, June 8 is World Ocean Day. As we commemorate this interconnected body of water which sustains our planet, consider how each of us can be involved in both celebrating and protecting the ocean.

To celebrate it, we suggest you learn something new about the ocean and share it with at least one friend (perhaps by sharing this blog post). Then, tell us which actions you’re taking to protect the ocean. We have a few examples to get you ready for both.

Learn to Love the Ocean

Did you know that …

You can learn even more about the ocean and coastal areas by visiting a National Marine Sanctuary or National Estuarine Research Reserve and getting a hands-on education.

Act to Protect the Ocean

Plastic water bottle floating in the ocean.

Don’t let this be your vision of World Ocean Day. Be part of the solution. (NOAA)

Now that you’re hopefully feeling inspired by our amazing ocean, you’re ready to do something to protect it from its many threats, such as ocean acidification (global warming’s oceanic counterpart), pollution, and habitat degradation. Here are some ways you can help:

The more we all know and care about the ocean, the more we will do to take care of it. Do your part this World Ocean Day and every day.


Leave a comment

Wishing You a Happy Donut Day (Free of Frying Oil Spills)

A mug, ruler, and NOAA chart with a stack of donuts, one decorated with the NOAA logo.

Happy Donut Day from NOAA!

Tomorrow we celebrate National Donut Day.

As scientists who work in oil spill response, and who also love these oil-fried creations, we know that donut oil can harm the environment almost as severely as the oils that are typically spilled on our coastlines and rivers.

When we talk about “oil” spills, we are generally referring to petroleum-based oils—the naturally occurring products, such as crude oil, found in geologic formations. But the oil and fats that we use to fry our food come from animals (e.g., lard/tallow, butter/ghee, fish oil) or from seeds and plants (e.g., palm, castor, olive, soya bean, sunflower, rape-seed). Like petroleum products, these oils can spill when they are stored or transported. When an accident occurs, large quantities of oil can spill into rivers, lakes, and harbors.

Although vegetable oils and animal fats are not as acutely toxic as many petroleum products, spills of these products can still result in significant environmental damage. Like petroleum oils, vegetable oils and animal fats and their components can have both immediate and long-term negative effects on wildlife and the environment when they:

  • Coat the fur or feathers of wildlife, and even smother embryos if oil comes in contact with bird eggs.
  • Suffocate marine life by depleting the oxygen in the water.
  • Destroy future and existing food supplies, breeding animals, and habitats.
  • Produce rancid odors.
  • Foul shorelines, clog water treatment plants, and catch fire when ignition sources are present.
  • Form products that linger in the environment for many years.

Many non-petroleum oils share similar physical properties with petroleum-based oils; for example, they don’t readily dissolve in water, they both create slicks on the surface of water, and they both form water-oil mixtures known as emulsions, or “mousse.” In addition, non-petroleum oils tend to be persistent, remaining in the environment for long periods of time.

Firefighters in Madison County, Wisc., had to deal with 16 million pounds of butter melting and flowing out of the burning refrigerated warehouse. The butter is visible here in the dug-out channels.

In the Great Butter Fire of May 3, 1991, firefighters in Madison County, Wisc., had to deal with 16 million pounds of butter melting and flowing out of a burning refrigerated warehouse. The butter, which threatened a nearby creek and recently restored lake, is visible here in the dug-out channels. (Wisconsin Department of Natural Resources)

In our earlier blog post, Recipes for Disaster, we describe spills of coconut oil, palm kernel oil, and even butter, which emergency responders across the United States have had to address. In addition to the oil spill response tools and resources we use to mitigate spills of all types, EPA’s explanation of the rules that apply to animal fats and vegetable oil spill planning and response, and response techniques suggested by ITOPF and CEDRE, researchers are finding new ways to clean up spills of vegetable oils.

For example, at Washington University in St. Louis, researchers have found that adding dry clay to spilled oil results in formation of oil-mineral combinations that sink to the bottom of the water. The process works best under conditions of relatively low mixing in the water, and is acceptable only if the oil can be broken down naturally in the sediment.

Back to National Donut Day and things that can be broken down naturally in your stomach. Enjoy your glazed, jelly-filled, or frosted-with-sprinkles delight however it is prepared—with vegetable oil, shortening, or maybe coconut oil. And if you’re thinking of enjoying your donut with a glass of milk, start thinking about what might happen when milk spills into our waters.


1 Comment

How to Restore a Damaged Coral Reef: Undersea Vacuums, Power Washers, and Winter Storms

NOAA Fisheries Biologist Matt Parry contributed to this story and this restoration work.

After a ship runs aground on a coral reef, the ocean bottom becomes a messy place: thickly carpeted with a layer of pulverized coral several feet deep. This was the scene underwater off the Hawaiian island of Oahu in February of 2010. On February 5, the cargo ship M/T VogeTrader ran aground and was later removed from a coral reef in the brilliant blue waters of Kalaeloa/Barber’s Point Harbor.

NOAA and our partners suited up in dive gear and got to work restoring this damaged reef, beginning work in October 2013 and wrapping up in April 2014. While a few young corals have begun to repopulate this area in the time since the grounding, even fast-growing corals grow less than half an inch per year. The ones there now are mostly smaller than a golf ball and the seafloor was still covered in crushed and dislodged corals. These broken corals could be swept up and knocked around by strong currents or waves, potentially causing further injury to the recovering reef. This risk was why we pursued emergency restoration [PDF] activities for the reef.

What we didn’t expect was how a strong winter storm would actually help our restoration work in a way that perhaps has never before been done.

How Do You Start Fixing a Damaged Reef?

First, we had to get the lay of the (underwater) land, using acoustic technology to map exactly where the coral rubble was located and determine the size of the affected area. Next, our team of trained scuba divers gathered any live corals and coral fragments and transported them a short distance away from where they would be removing the rubble.

Then, we were ready to clean up the mess from the grounding and response activity and create a place on the seafloor where corals could thrive. Divers set up an undersea vacuum on the bottom of the ocean, which looks like a giant hose reaching 35 feet down from a boat to the seafloor. It gently lifted rubble up through the hose—gently, because we wanted to avoid ripping everything off of the seafloor. Eventually, our team would remove nearly 800 tons (more than 700 metric tons) of debris from the area hit by the ship.

Unexpected Gifts from a Powerful Storm

In the middle of this work, the area experienced a powerful winter storm, yielding 10-year high winter swells that reduced visibility underwater and temporarily halted the restoration work. When the divers returned after the storm subsided, they were greeted by a disappointing discovery: the cache of small coral remnants they had stockpiled to reattach to the sea bottom was gone. The swells had scoured the seafloor and scattered what they had gathered.

But looking around, the divers realized that the energetic storm had broken off and dislodged a number of large corals nearby. Corals that were bigger than those they lost and which otherwise would have died as a result of the storm. With permission from the State of Hawaii, they picked up some of these large, naturally detached corals, which were in good condition, and used them as donor corals to finish the restoration project.

Finding suitable donor corals is one of the most difficult aspects of coral restoration. This may have been the first time people have been able to take advantage of a naturally destructive event to restore corals damaged by a ship grounding.

A Reef Restored

Once our team transported the donor corals to the restoration site a few hundred yards away, they scraped the seafloor, at first by hand and then with a power washer, to prepare it for reattaching the corals. Using a cement mixer on a 70-foot-long boat, they mixed enough cement to secure 643 corals to the seafloor.

While originally planning to reattach 1,200 coral colonies, the storm-blown corals were so large (and therefore so much more valuable to the recovering habitat) that the divers ran out of space to reattach the corals. In the end, they didn’t replace these colonies in the exact same area that they removed the coral rubble. When the ship hit the reef, it displaced about three feet of reef, exposing a fragmented, crumbly surface below. They left this area open for young corals to repopulate but traveled a little higher up on the reef shelf to reattach the larger corals on a more secure surface, one only lightly scraped by the ship.

The results so far are encouraging. Very few corals were lost during the moving and cementing process, and the diversity of coral species in the reattachment area closely reflects what is seen in unaffected reefs nearby. These include the common coral species of the genus Montipora (rice coral), Porites lobata (lobe coral), and Pocillopora meandrina (cauliflower coral). As soon as the divers finished cleaning and cementing the corals to the ocean floor, reef fish started moving in, apparently pleased with the state of their new home.

But our work isn’t done yet. We’ll be keeping an eye on these corals as they recover, with plans to return for monitoring dives in six months and one year. In addition, we’ll be working with our partners to develop even more projects to help restore these beautiful and important parts of Hawaii’s undersea environment.


Leave a comment

April Showers Bring … Marine Debris to Pacific Northwest Beaches?

This is a post by Amy MacFadyen, oceanographer and modeler in the Office of Response and Restoration’s Emergency Response Division.

Over the last few weeks, emergency managers in coastal Washington and Oregon have noted an increase in the marine debris arriving on our beaches. Of particular note, numerous skiffs potentially originating from the Japan tsunami in March 2011 have washed up. Four of these boats arrived in Washington over the Memorial Day weekend alone.

This seasonal arrival of marine debris—ranging from small boats and fishing floats to household cleaner bottles and sports balls—on West Coast shores seems to be lasting longer into the spring than last year. As a result, coastal managers dealing with the large volume of debris on their beaches are wondering if the end is in sight.

As an oceanographer at NOAA, I have been trying to answer this question by examining how patterns of wind and currents in the North Pacific Ocean change with the seasons and what that means for marine debris showing up on Pacific Northwest beaches.

What Does the Weather Have to Do with It?

Beachcombers know the best time to find treasure on the Pacific Northwest coast is often after winter storms. Winter in this region is characterized by frequent rainfall (hence, Seattle’s rainy reputation) and winds blowing up the coast from the south or southwest. These winds push water onshore and cause what oceanographers call “downwelling”—a time of lower growth and reproduction for marine life because offshore ocean waters with fewer nutrients are brought towards the coast. These conditions are also good for bringing marine debris from out in the ocean onto the beach, as was the case for this giant Japanese dock that came ashore in December 2012.

These winter storms are associated with the weather phenomenon known as the “Aleutian Low,” a low pressure system of air rotating counter-clockwise, which is usually located near Alaska’s Aleutian Islands. In winter, the Aleutian Low intensifies and moves southward from Alaska, bringing wind and rain to the Pacific Northwest. During late spring, the Aleutian Low retreats to the northwest and becomes less intense. Around the same time, a high pressure system located off California known as the “North Pacific High” advances north up the West Coast, generating drier summer weather and winds from the northwest.

Graphic showing the typical summer and winter locations of pressure systems in the North Pacific Ocean.

The typical location of the pressure systems in the North Pacific Ocean in winter and summer. “AL” refers to the low-pressure “Aleutian Low” and “NPH” refers to the high-pressure “North Pacific High” system. Used with permission of Jennifer Galloway, Marine Micropaleontology (2010). *See full credit below.

This summer change to winds coming from the northwest also brings a transition from “downwelling” to “upwelling” conditions in the ocean. Upwelling occurs when surface water near the shore is moved offshore and replaced by nutrient-rich water moving to the surface from the ocean depths, which fuels an increase in growth and reproduction of marine life.

The switch from a winter downwelling state to a summer upwelling state is known as the “spring transition” and can occur anytime between March and June. Oceanographers and fisheries managers are often particularly interested in the timing of this spring transition because, in general, the earlier the transition occurs, the greater the ecosystem productivity will be that year—see what this means for Pacific Northwest salmon. As we have seen this spring, the timing may also affect the volume of marine debris reaching Pacific Northwest beaches.

Why Is More Marine Debris Washing up This Year?

NOAA has been involved in modeling the movement of marine debris generated by the March 2011 Japan tsunami for several years. We began this modeling to answer questions about when the tsunami debris would first reach the West Coast of the United States and which regions might be impacted. The various types of debris are modeled as “particles” originating in the coastal waters of Japan, which are moved under the influence of winds and ocean currents. For more details on the modeling, visit the NOAA Marine Debris website.

The estimated arrival of modeled "particles" (representing Japanese tsunami marine debris) on the West Coast of the United States between May 2011 and May 2014.

The estimated arrival of modeled “particles” (representing Japanese tsunami marine debris) on Washington and Oregon shores between May 2011 and May 2014. (NOAA)

The figure here shows the percentage of particles representing Japan tsunami debris reaching the shores of Washington and Oregon over the last two years. The first of the model’s particles reached this region’s shores in late fall and early winter of 2011–2012. This is consistent with the first observations of tsunami debris reaching the coast, which were primarily light, buoyant objects such as large plastic floats, which “feel” the winds more than objects that float lower in the water, and hence move faster. The largest increases in model particles reaching the Pacific Northwest occur in late winter and spring (the big jumps in vertical height on the graph). After the spring transition and the switch to predominantly northwesterly winds and upwelling conditions, very few particles come ashore (where the graph flattens off).

Interestingly, the model shows many fewer particles came ashore in the spring of 2013 than in the other two years. This may be related to the timing of the spring transition. According to researchers at Oregon State University, the transition to summer’s upwelling conditions occurred approximately one month earlier in 2013 (early April). Their timing of the spring transition for the past three years, estimated using a time series of wind measured offshore of Newport, Oregon, is shown by the black vertical lines in the figure.

The good news for coastal managers—and those of us who enjoy clean beaches—is that according to this indicator, we are finally transitioning from one of the soggiest springs on record into the upwelling season. This should soon bring a drop in the volume of marine debris on our beaches, hopefully along with some sunny skies to get out there and enjoy our beautiful Pacific Northwest coast.

*Pressure system graphic originally found in: Favorite, F.A., et al., 1976. Oceanography of the subarctic Pacific region, 1960–1971. International North Pacific Fisheries Commission Bulletin 33, 1–187. Referenced in and with permission of: Galloway, J.M., et al., 2010. A high-resolution marine palynological record from the central mainland coast of British Columbia, Canada: Evidence for a mid-late Holocene dry climate interval. Marine Micropaleontology 75, 62–78.

Amy MacFadyenAmy MacFadyen is a physical oceanographer at the Emergency Response Division of the Office of Response and Restoration (NOAA). The Emergency Response Division provides scientific support for oil and chemical spill response — a key part of which is trajectory forecasting to predict the movement of spills. During the Deepwater Horizon/BP oil spill in the Gulf of Mexico, Amy helped provide daily trajectories to the incident command. Before moving to NOAA, Amy was at the University of Washington, first as a graduate student then as a postdoctoral researcher. Her research examined transport of harmful algal blooms from offshore initiation sites to the Washington coast.

Follow

Get every new post delivered to your Inbox.

Join 371 other followers