NOAA's Response and Restoration Blog

An inside look at the science of cleaning up and fixing the mess of marine pollution


Leave a comment

An Oiled River Restored: Salmon Return to Alaskan Stream to Spawn

Last summer NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) traveled to the remote Adak Island in Alaska to help salmon return to their historical home by removing barriers from Helmet Creek. We headed back out this September to see how things were going. As you can see from our photos, the salmon seem to be big fans of our 2013 restoration work.

Our mission this September was to monitor the success of these habitat restoration efforts and make sure no new problems have occurred since then. A survey of the creek quickly showed that salmon are now pushing as far upstream as naturally possibly, allowing them to enter formerly impassable areas with ease. Now the only thing preventing salmon from continuing further upstream is a natural waterfall.

During this visit, Helmet Creek was teaming with Pink and Chum salmon. One walk of the roughly two kilometer (one and a quarter mile) portion of stream resulted in our counting more than 600 adult salmon, over half of which were beyond the areas where we had removed fish passage barriers.

Salmon swimming underwater in a creek.

Salmon make their way upstream in Helmet Creek, further than they have been able to access in years thanks to our restoration work. (NOAA)

Before we stepped in to restore Helmet Creek, salmon were hitting a number of man-made obstacles preventing them from getting to the natural areas where they reproduce, known as their spawning grounds. In 2013 we removed these fish barriers, pulling out a number of 55-gallon drums and grates, all of which were impeding the salmon’s ability to swim upstream and covering their spawning grounds.

While seeing all these active fish is exciting, we are also looking forward to the ways these fish will continue helping the environment after they die. As salmon are now able to travel further upstream, they will take valuable nutrients with them too. After spawning, these pink and chum salmon will die and their decaying carcasses will return extremely valuable nutrients to the stream habitat and surrounding area. These nutrients will provide benefits to resident trout, vegetation, and birds nearby.

Restoration of Helmet Creek resulted from our work to restore the environment after a 2010 oil spill on the remote Adak Island, part of Alaska’s Aleutian Island chain. Through DARRP, we worked with our partners to determine how the environment was injured and how best to restore habitat. You can read more about our efforts in—and the unusual challenges of—assessing these environmental impacts to salmon and Helmet Creek.


Leave a comment

For a Salt Marsh on San Francisco Bay’s Eastern Shore, Restoration Means a Return to the Tides

Degraded marsh area on edge of bay.

This area along the eastern shore of San Francisco Bay will be enhanced and expanded as part of the restoration of Breuner Marsh. (NOAA)

For more than half a century, a large portion of Breuner Marsh has been walled off from California’s San Francisco Bay, depriving it of a daily infusion of saltwater. The tide’s flooding and drying cycle is a key component of healthy salt marshes. But for decades, a succession of landowners drew up plans for developing the property and therefore were happy to keep the levee up and the bay’s waters out of it.

Today, however, ownership has changed and things look different at Breuner Marsh. The landing strip built for model airplanes is gone, and soon, parts of the levee will be as well. For the first time in years, this land which was once a salt marsh will be reconnected to the bay, allowing it to return to its natural state.

Before the Floodgates Open

A major milepost on the road to restoration for Breuner Marsh originated about five miles down the coast at Castro Cove. From the early 1900s until 1987, this tidal inlet on the eastern shore of San Francisco Bay had a discharge pipe pumping wastewater from the nearby Chevron Richmond Refinery into the cove. As a result, mercury and a toxic component of oil known as polycyclic aromatic hydrocarbons permeated the sediments beneath the cove’s waters.

Aerial view of Castro Cove next to Chevron refinery.

Southern Castro Cove and Chevron Richmond Refinery. Wildcat Creek entering Castro Cove in the background. Photo courtesy of Steve Hampton, California Department of Fish and Game. October 2005

The State of California had pinpointed this area as a toxic hotspot, and by the early 2000s, Chevron was ready to begin cleanup and restoration. Along with the state, NOAA and the U.S. Fish and Wildlife Service assessed the environmental impacts of historical pollution from the refinery and the amount of restoration needed to offset them. Through this Natural Resource Damage Assessment process, NOAA’s Damage Assessment, Remediation, and Restoration Program (DARRP) and our partners settled with Chevron on the funding the company would provide to implement that restoration: $2.65 million.

Because the impacts to Castro Cove’s salt marshes occurred over such a long time, even after Chevron cleaned up the roughly 20 worst-affected acres of the cove, there simply was not enough habitat in the immediate area to adequately make up for the backlog of impacts. The 2010 settlement called for Chevron to restore about 200 acres of marsh. This took us up the road to Breuner Marsh, part of a degraded coastal wetland that was ripe for restoration and which became one of two projects Chevron would fund through this settlement.

A Vision of Restoration

The vision for Breuner Marsh turned out to be a lot bigger than the $1 million originally set aside from Chevron’s settlement. A lot of this drive came from the Richmond, California, neighborhood of Parchester Village, a community across the railroad tracks from Breuner Marsh which was advocating the property’s habitat be restored and opened to recreation. Eventually, the East Bay Regional Park District was able to purchase the 218-acre-site and is managing the $8.5 million restoration of Breuner Marsh. Additional funding came from the park district and nine other grants.

Aerial view of marsh construction site, with berm separating the bay from the future marsh.

A view of the Breuner Marsh restoration site, where portions of the area have been graded and are waiting the take down of the berm. (Screen shot from video courtesy of Questa Engineering Corporation/East Bay Regional Park District)

Construction began in 2013 and the project, which also includes building trails, picnic areas, and fishing spots, is expected to wrap up in 2015. While at least 30 acres of Breuner Marsh will be transformed into wetlands fed by the tide, some areas will never be flooded because they sit at higher elevation.

Instead, they will become a patchwork of seasonal wetlands and prairie. Yet this diversity of habitats actually makes the salt marsh even more valuable, because this patchwork creates welcoming buffer zones for various birds, fish, and wildlife as they feed, rest, and reproduce.

But first, those levees need to be breached and the tide needs to reach deep into Breuner Marsh, creating conditions just right for the plants and animals of a salt marsh to take hold once more. Conditions the project managers have been working hard to prepare.


Leave a comment

When Planning for Disasters, an Effort to Combine Environmental and Human Health Data

Two men clean up oil on a beach.

Workers clean oil from a beach in Louisiana following the 2010 Deepwater Horizon spill. (NOAA)

Immediately following the Deepwater Horizon oil spill of 2010, there was a high demand for government agencies, including NOAA, to provide public data related to the spill very quickly. Because of the far-reaching effects of the spill on living things, those demands included data on human health as well as the environment and cleanup.

In mid-September of 2014, a group of scientists including social and public health experts, biologists, oceanographers, chemists, atmospheric scientists, and data management experts convened in Shepherdstown, West Virginia, to discuss ways they could better integrate their respective environmental and health data during disasters. The goal was to figure out how to bring together these usually quite separate types of data and then share them with the public during future disasters, such as oils spills, hurricanes, tornadoes, and floods.

The Deepwater Horizon spill experience has shown government agencies that there are monitoring opportunities which, if taken, could provide valuable data on both the environment and, for example, the workers that are involved in the cleanup. Looking back, it was discovered that at the same time that “vessels of opportunity” were out in the Gulf of Mexico assisting with the spill response and collecting data on environmental conditions, the workers on those vessels could have been identified and monitored for future health conditions, providing pertinent data to health agencies.

A lot of environmental response data already are contained in NOAA’s online mapping tool, the Environmental Response Management Application (ERMA®), such as the oil’s location on the water surface and on beaches throughout the Deepwater Horizon spill, chemicals found in sediment and animal tissue samples, and areas of dispersant use. ERMA also pulls together in a centralized format and displays Environmental Sensitivity Index data, which include vulnerable shoreline, biological, and human use resources present in coastal areas; ship locations; weather; and ocean currents. Study plans developed to assess the environmental impacts of the spill for the Natural Resource Damage Assessment and the resulting data collected can be found at www.gulfspillrestoration.noaa.gov/oil-spill/gulf-spill-data.

Screen shot of ERMA mapping program showing Gulf of Mexico with Deepwater Horizon oil spill data.

ERMA Deepwater Gulf Response contains a wide array of publicly available data related to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Here, you can see cumulative levels of oiling on the ocean surface throughout the spill, shorelines affected, and the location of the damaged wellhead. (NOAA)

Health agencies, on the other hand, are interested in data on people’s exposure to oil and dispersants, effects of in situ burning on air quality, and heat stress in regard to worker health. They need information on both long-term and short-term health risks so that they can determine if impacted areas are safe for the communities. Ideally, data such as what are found in ERMA could be imported into health agencies’ data management systems which contain human impact data, creating a more complete picture.

Putting out the combined information to the public quickly and transparently will promote a more accurate representation of a disaster’s aftermath and associated risks to both people and environment.

Funded by NOAA’s Gulf of Mexico Disaster Response Center and facilitated by the University of New Hampshire’s Coastal Response Research Center, this workshop sparked ideas for better and more efficient collaboration between agencies dealing with environmental and human health data. By setting up integrated systems now, we will be better prepared to respond to and learn from man-made and natural disasters in the future. As a result of this workshop, participants formed an ongoing working group to move some of the best practices forward. More information can be found at crrc.unh.edu/workshops/EDDM.

Dr. Amy Merten, of OR&R’s Assessment and Restoration Division co-authored this blog.


Leave a comment

Follow Along as NOAA Clears the Waters of the Northwestern Hawaiian Islands

Two people pull nets from the ocean into a small boat.

Two members of the NOAA dive team remove derelict fishing gear from a reef at Midway Atoll during the 2013 marine debris removal cruise. (NOAA)

Turquoise waters, vibrant coral reefs, white sand beaches—this is often what we think of when we think about far-off islands in the Pacific Ocean. But even the furthest reaches of wilderness, such as the tropical reefs, islands, and atolls of the Papahānaumokuākea Marine National Monument, which are hundreds of miles from the main Hawaiian archipelago, can be polluted by human influence. In these shallow waters, roughly 52 tons of plastic fishing nets wash up on coral reefs and shorelines each year.

For nearly two decades, NOAA has been leading an annual mission to clean up these old nets that can smother corals and entangle marine life, including endangered Hawaiian monk seals. This year, the NOAA Marine Debris Program has two staff—Dianna Parker and Kyle Koyanagi—joining the NOAA Pacific Islands Fisheries Science Center scientists and divers on board the NOAA Ship Oscar Elton Sette to document this effort.

A man pulls a net out of the ocean into a small boat.

Chief scientist Mark Manuel hauls derelict nets over the side of a small boat at Maro Reef during the 2014 expedition. (NOAA)

You can follow their journey to remove nets from five areas in the marine monument:

You can keep track of all things related to this expedition on the NOAA Marine Debris Program website.


Leave a comment

Out of Sandy, Lessons in Helping Coastal Marshes Recover from Storms

Cleanup workers scoop oil out of an oiled marsh with containment boom around the edges.

After Sandy’s flooding led to an oil spill at a Motiva refinery, Motiva cleanup workers extract oil from Smith Creek, a waterway connected to the Arthur Kill, in Woodbridge, New Jersey, on November 5, 2012. (NOAA)

Boats capsized in a sea of grass. Tall trees and power lines toppled over. A dark ring of oil rimming marsh grasses. This was the scene greeting NOAA’s Simeon Hahn and Carl Alderson a few days after Sandy’s floodwaters had pulled back from New Jersey in the fall of 2012.

They were surveying the extent of an oil spill in Woodbridge Creek, which is home to a NOAA restoration project and feeds into the Arthur Kill, a waterway separating New Jersey from New York’s Staten Island. When the massive storm known as Sandy passed through the area, its flooding lifted up a large oil storage tank at the Motiva Refinery in Sewaren, New Jersey. After the floodwaters set the tank back down, it caused roughly 336,000 gallons of diesel fuel to leak into the creek and surrounding wetlands.

That day, the NOAA team was there with Motiva and the New Jersey Department of Environmental Protection (DEP) to begin what can be a long and litigious process of determining environmental impacts, damages, and required restoration—the Natural Resource Damage Assessment process.

In this case, however, not only did the group reach a cooperative agreement—in less than six months—on a restoration plan for the oiled wetlands, but at another wetland affected by Sandy, NOAA gained insight into designing restoration projects better able to withstand the next big storm.

Cleaning up the Mess After a Hurricane

Hurricanes and other large storms cause a surprising number of oil and hazardous chemical spills along the coast. After Sandy hit New York and New Jersey, the U.S. Coast Guard began receiving reports of petroleum products, biodiesel, and other chemicals leaking into coastal waters from damaged refineries, breached petroleum storage tanks, and sunken and stranded vessels. The ruptured tank at the Motiva Refinery was just one of several oil spills after the storm, but the approach in the wake of the spill is what set it apart from many other oil spills.

“Early on we decided that we would work together,” reflected Hahn, Regional Resource Coordinator for NOAA’s Office of Response and Restoration. “There was a focus on doing the restoration rather than doing lengthy studies to quantify the injury.”

This approach was possible because Motiva agreed to pursue a cooperative Natural Resource Damage Assessment with New Jersey as the lead and with support from NOAA. This meant, for example, that up front, the company agreed to provide funding for assessing the environmental impacts and implementing the needed restoration, and agreed on and shared the data necessary to determine those impacts. This cooperative process resulted in a timely and cost-effective resolution, which allowed New Jersey and NOAA to transition to the restoration phase.

Reaching Restoration

Because of the early agreement with Motiva, NOAA and New Jersey DEP did not conduct exhaustive new studies detailing specific harm to these particular tidal wetlands. Instead, they turned to the wealth of data from the oil spill response and existing data from the Arthur Kill to make an accurate assessment of the oil’s impacts.

People driving small boats up a marshy river in winter.

A few days after the oil spill, Motiva’s contractors ferried the assessment team up Woodbridge Creek in New Jersey, looking for impacts from the oil. (NOAA)

From their shoreline, aerial, and boat surveys, they knew that the marsh itself had a bathtub ring of oil around the edge, affecting marsh grasses such as Spartina. No oiled wildlife turned up. However, the storm’s immediate impacts made it difficult to take water and sediment samples or directly examine potential effects to fish. Fortunately, the assessment team was able to use a lot of data from a nearby past oil spill and damage assessment in the Arthur Kill. In addition, they could rely on both general scientific research on oil spill toxicology and maps from the response team detailing the areas most heavily oiled.

Together, this created a picture of the environmental injuries the oil spill caused to Woodbridge Creek. Next, NOAA economists used the habitat equivalency analysis approach to calculate the amount of restoration needed to make up for these injuries: 1.23 acres of tidal wetlands. They then extrapolated how much it will cost to do this restoration based on seven restoration projects within a 50 mile radius, coming to $380,000 per acre. As a result, NOAA and New Jersey agreed that Motiva needed to provide $469,000 for saltwater marsh restoration and an additional $100,000 for monitoring, on top of Motiva’s cleanup costs for the spill itself.

To use this relatively small amount of money most efficiently, New Jersey DEP, as the lead agency, is planning to combine it with another, larger restoration project already in the works. While still negotiating which project that will be, the team has been eyeing a high-profile, 80-acre marsh restoration project practically in the shadow of the Statue of Liberty. Meanwhile, the monitoring project will take place upstream from the site of the Motiva oil spill at the 67-acre Woodbridge Creek Marsh, which received light to moderate oiling. NOAA already has data on the state of the animals and plants at this previously established restoration site, which will provide a rare comparison for before and after the oil spill.

Creating More Resilient Coasts

A storm as damaging as Sandy highlights the need for restoring wetlands. These natural buffers offer protection for human infrastructure, absorbing storm surge and shielding shorelines from wind and waves. Yet natural resource managers are still learning how to replicate nature’s designs, especially in urban areas where river channels often have been straightened and adjoining wetlands filled and replaced with shorelines armored by concrete riprap.

To the south in Philadelphia, Sandy contributed to significant erosion at a restored tidal marsh and shoreline at Lardner’s Point Park, located on the Delaware River. This storm revealed that shoreline restoration techniques which dampen wave energy before it hits the shore would help protect restored habitat and reduce erosion and scouring.

Out of this destructive storm, NOAA and our partners are trying to learn as much as possible—both about how to reach the restoration phase even more efficiently and how to make those restoration projects even more resilient. The wide range of coastal threats is not going away, but we at NOAA can help our communities and environment bounce back when they do show up on our shores.

Learn more about coastal resilience and how NOAA’s Ocean Service is helping our coasts and communities bounce back after storms, floods, and other disasters and follow #NOAAResilience on social media.


Leave a comment

When the Clock Is Ticking: NOAA Creates Guidelines for Collecting Time-Sensitive Data During Arctic Oil Spills

This is a post by Dr. Sarah Allan, Alaska Regional Coordinator for NOAA’s Office of Response and Restoration, Assessment and Restoration Division.

The risk of an oil spill in the Alaskan Arctic looms large. This far-off region’s rapid changes and growing ship traffic, oil and gas development, and industrial activity are upping those chances for an accident. When Shell’s Arctic drilling rig Kulluk grounded on a remote island in the Gulf of Alaska in stormy seas in December 2012, the United States received a glimpse of what an Arctic oil spill response might entail. While no fuel spilled, the Kulluk highlighted the need to have a science plan ready in case we needed to study the environmental impacts of an oil spill in the even more remote Arctic waters to the north. Fortunately, that was exactly what we were working on.

Soon, the NOAA Office of Response and Restoration’s Assessment and Restoration Division will be releasing a series of sampling guidelines for collecting high-priority, time-sensitive, ephemeral data in the Arctic to support Natural Resource Damage Assessment (NRDA) and other oil spill science. These guidelines improve our readiness to respond to an oil spill in the Alaskan Arctic. They help ensure we collect the appropriate data, especially immediately during or after a spill, to support a damage assessment and help the coastal environment bounce back.

Why Is the Arctic a Special Case?

NOAA’s Office of Response and Restoration is planning for an oil spill response in the unique, remote, and often challenging Arctic environment. Part of responding to an oil spill is carrying out Natural Resource Damage Assessment. During this legal process, state and federal agencies assess injuries to natural and cultural resources and the services they provide. They then implement restoration to help return those resources to what they were before the oil spill.

The first step in the process often includes collecting time-sensitive ephemeral data to document exposure to oil and effects of those exposures. Ephemeral data are types of information that change rapidly over time and may be lost if not collected immediately, such as the concentration of oil chemicals in water or the presence of fish larvae in an area.

It will be especially challenging to collect this kind of data in the Alaskan Arctic because of significant scientific and logistical challenges. The inaccessibility of remote sites in roadless areas, limited resources and infrastructure, extreme weather, and dangerous wildlife make it very difficult to safely deploy a field team to collect information.

However, the uniqueness of the fish, wildlife, and habitats in the Arctic and the lack of baseline data for many of them mean collecting pre- and post-impact ephemeral data is even more important and makes advance planning essential.

What Do We Need and How Do We Get It?

The first step in developing these guidelines was to identify the highest priority ephemeral data needs for damage assessment in the Arctic. We accomplished this by developing a conceptual model of oil exposure and injury, conducting meetings with communities in the Alaskan Arctic, and consulting with NRDA practitioners and Artic experts.

Our guidelines do not cover marine mammals and birds because the NOAA National Marine Fisheries Service and U.S. Fish and Wildlife Service already have developed such guidelines. Instead, our guidelines are focused on nearshore habitats and natural resources, which in the Arctic include sand, gravel, rock, and tundra shorelines and estuarine lagoons. These environments are at risk of being affected by onshore and nearshore oil spills and offshore spills when oil drifts toward the coast. Though Arctic lagoons and coastlines are covered with ice most of the year, they are important habitat for a wide range of organisms, many of which are important subsistence foods for local communities.

Once we defined our high-priority ephemeral data needs, we developed the data collection guidelines based on guidance documents for other regions, published sampling methods, lessons learned from other spills, and shared traditional knowledge. Draft versions of the guidelines were reviewed by NRDA practitioners and Arctic resource experts, including people from federal and state agencies, Alaskan communities, academia, nonprofit organizations, consulting companies, and industry groups.

With their significant and valuable input, we developed 17 guidelines for collecting data from plankton, fish, environmental media (e.g., oil, water, snow, sediments, tissues), and nearshore habitats and the living things associated with them.

What’s in One of These Guidelines?

Marine invertebrate measured next to a ruler.

Arctic isopod collected for a tissue sample along the Chukchi coast in 2014. (NOAA)

Our Arctic ephemeral data collection guidelines cover a lot, from a sampling equipment list and considerations to address before heading out, to field data sheets and detailed sampling strategies and methods. In addition, we developed a document with alternative sampling equipment and methods to address what to do if certain required equipment, facilities, or conditions—such as preservatives for tissue samples—are not available in remote Alaskan Arctic locations.

These guidelines are focused, concise, detailed, Arctic-specific, and adaptable. They are intended to be used by NRDA personnel as well as other scientists doing baseline data collection or collecting samples for damage assessment and oil spill science, and may also be used by emergency responders.

Meanwhile, Out in the Real World

Though we often talk about the Arctic’s weather, wildlife, access, and logistical issues, it is always humbling and instructive to actually work in those conditions. This is why field validating the ephemeral data collection guidelines was an essential part of their development. We needed to make sure they were feasible and effective, improve them based on lessons learned in the field, and gauge the level of effort required to carry them out.

Many of the guidelines can only be used when there is no shore-fast ice present, while others are specific to ice habitats or can be used in any season. We field tested versions of the guidelines’ methods near Barrow, Alaska, in the summer of 2013 and spring and summer of 2014, adding important details and making other corrections as a result. More importantly, we know in practice, not just in theory, that these methods are a reasonable and effective way to collect samples for damage assessment in the Alaskan Arctic.

People preparing an inflatable boat on a shoreline with broken sea ice.

Preparing to deploy a beach seine net around broken sea ice on the Chukchi coast in 2013. (NOAA)

The guidelines for collecting high priority ephemeral data for oil spills in the Arctic will be available soon at response.restoration.noaa.gov/arctic.

Acknowledgements

Thank you to everyone who reviewed the Arctic ephemeral data collection guidelines and provided valuable input to their development.

A special thanks to Kevin Boswell, Ann Robertson, Mark Barton, Sam George, and Adam Zenone for allowing me to join their field team in Barrow and helping me get the samples I needed.

Dr. Sarah Allan.

Dr. Sarah Allan has been working with NOAA’s Office of Response and Restoration Emergency Response Division and as the Alaska Regional Coordinator for the Assessment and Restoration Division, based in Anchorage, Alaska, since February of 2012. Her work focuses on planning for natural resource damage assessment and restoration in the event of an oil spill in the Arctic.


1 Comment

Protecting, Restoring, and Celebrating Estuaries—Where Salt and Freshwater Meet

Collage: lighthouse, kids viewing wildlife, heron, canoe in water, flowers, and meandering wetlands.

Estuaries are ecosystems along the oceans or Great Lakes where freshwater and saltwater mix to create wetlands, bays, lagoons, sounds, or sloughs. (NOAA’s National Estuarine Research Reserves)

As the light, fresh waters of rivers rush into the salty waters of the sea, some incredible things can happen. As these two types of waters meet and mix, creating habitats known as estuaries, they also circulate nutrients, sediments, and oxygen. This mixing creates fertile waters for an array of life, from mangroves and salt-tolerant marsh grasses to oysters, salmon, and migrating birds. These productive areas also attract humans, who bring fishing, industry, and shipping along with them.

All of this activity along estuaries means they are often the site of oil spills and chemical releases. We at NOAA’s Office of Response and Restoration often find ourselves working in estuaries, trying to minimize the impacts of oil spills and hazardous waste sites on these important habitats.

A Time to Celebrate Where Rivers Meet the Sea

September 20–27, 2014 is National Estuaries Week. This year 11 states and the District of Columbia have published a proclamation recognizing the importance of estuaries. To celebrate these critical habitats, Restore America’s Estuaries member organizations, NOAA’s National Estuarine Research Reserve System, and EPA’s National Estuary Program are organizing special events such as beach cleanups, hikes, canoe and kayak trips, cruises, and workshops across the nation. Find an Estuary Week event near you.

You and your family and friends can take a personal stake in looking out for the health and well-being of estuaries by doing these simple things to protect these fragile ecosystems.

How We Are Protecting and Restoring Estuaries

You may be scratching your head wondering whether you know of any estuaries, but you don’t need to go far to find some famous estuaries. The Chesapeake Bay and Delaware Bay are on the east coast, the Mississippi River Delta in the Gulf of Mexico, and San Francisco Bay and Washington’s Puget Sound represent some notable estuarine ecosystems on the west coast. Take a closer look at some of our work on marine pollution in these important estuaries.

Chesapeake Bay: NOAA has been working with the U.S. Environmental Protection Agency and Department of Defense on cleaning up and restoring a number of contaminated military facilities around the Chesapeake Bay. Because these Superfund sites are on federal property, we have to take a slightly different approach than usual and are trying to work restoration principles into the cleanup process as early as possible.

Delaware Bay: Our office has responded to a number of oil spills in and adjacent to Delaware Bay, including the Athos oil spill on the Delaware River in 2004. As a result, we are working on implementing several restoration projects around the Delaware Bay, which range from creating oyster reefs to restoring marshes, meadows, and grasslands.

Puget Sound: For Commencement Bay, many of the waterways leading into it—which provide habitat for salmon, steelhead, and other fish—have been polluted by industrial and commercial activities in this harbor for Tacoma, Washington. NOAA and other federal, state, and tribal partners have been working for decades to address the contamination and restore damaged habitat, which involves taking an innovative approach to maintaining restoration sites in the Bay.

Further north in Puget Sound, NOAA and our partners have worked with the airplane manufacturer Boeing to restore habitat for fish, shorebirds, and wildlife harmed by historical industrial activities on the Lower Duwamish River, a heavily used urban river in Seattle. Young Puget Sound Chinook salmon and Steelhead have to spend time in this part of the river, which is a Superfund Site, as they transition from the river’s freshwater to the saltwater of the Puget Sound. Creating more welcoming habitat for these fish gives them places to find food and escape from predators.

San Francisco Bay: In 2007 the M/V Cosco Busan crashed into the Bay Bridge and spilled 53,000 gallons of thick fuel oil into California’s San Francisco Bay. Our response staff conducted aerial surveys of the oil, modeled the path of the spill, and assessed the impacts to the shoreline. Working with our partners, we also evaluated the impacts to fish, wildlife, and habitats, and determined the amount of restoration needed to make up for the oil spill. Today we are using special buoys to plant eelgrass in the Bay as one of the spill’s restoration projects

Follow

Get every new post delivered to your Inbox.

Join 429 other followers